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Abstract—Many research efforts have been devoted to the
improvement of stereo image coding techniques for storage
or transmission. In this paper, we are mainly interested in
lossy-to-lossless coding schemes for stereo images allowing pro-
gressive reconstruction. The most commonly used approaches for
stereo compression are based on disparity compensation tech-
niques. The basic principle involved in this technique first consists
of estimating the disparity map. Then, one image is considered
as a reference and the other is predicted in order to generate a
residual image. In this paper, we propose a novel approach, based
on vector lifting schemes (VLS), which offers the advantage of
generating two compact multiresolution representations of the left
and the right views. We present two versions of this new scheme.
A theoretical analysis of the performance of the considered VLS
is also conducted. Experimental results indicate a significant
improvement using the proposed structures compared with con-
ventional methods.

Index Terms—Disparity, image compression, lifting schemes,
lossless coding, progressive reconstruction, stereoscopic images,
vector lifting schemes, wavelets.

I. INTRODUCTION

T
HE principle of stereoscopic imaging systems consists of

generating two images by recording two slightly different

view angles of the same scene. By presenting the appropriate

image of a stereo pair to the left/right eye, the viewer perceives

the scene in 3-D. The recent advances in acquisition and dis-

play technologies have allowed the widespread use of stereovi-

sion in various application fields such as entertainment, medical

surgical environments, tele-presence in videoconferences [1],

computer vision, and remote sensing [2]. For instance, today’s

advances in satellite remote sensing technology provide the ca-

pability to collect Stereo Image (SI) pairs for several applica-

tions, such as cartography and urban planning. Satellite stereo

images (such as those generated by IKONOS and SPOT5 sen-

sors) are especially helpful to generate a digital elevation model
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which is a 3-D representation of the topography of a given area

[3]. The increasing interest in SIs has led to the constitution

of image databases that require huge amounts of storage ca-

pacity. For example, the SPOT5 sensor covers areas of 60 Km

60 Km at a resolution of 2.5 m and a single view requires

more than 500 Megabytes. In addition to these stereo sensors, it

is worth mentioning the multiangle imaging spectroradiometer

(MISR), which uses nine cameras to generate multiview data

sets [4] at a data rate of 3.3 Mbps. Hence, the use of compres-

sion techniques is mandatory for image storage as well as for

image transmission. To the best of our knowledge, the ongoing

activity on stereoscopic still image coding is mainly carried out

independently of any standardization activity [5]. Consequently,

different approaches have been reported concerning still image

coding. The most simple ones consists of separately coding each

view by using existing still image coders. However, the resulting

data rates may remain too high for some practical stereoscopic

systems. As the two images have similar content, they are highly

correlated. Therefore, more efficient coding schemes have been

designed to exploit the cross-view redundancies [6], [7]. This

is usually achieved by first estimating the disparity field be-

tween the SI pair [8]. Then, one image is considered as a refer-

ence (say the left one) and the other image (target) is predicted

by disparity-compensating the reference one. A prediction error

image, called residual image, is thus generated. Finally, the dis-

parity field, the reference image and the residual one are en-

coded [7], [9]. This approach is known as disparity compensa-

tion due to its similarity with motion compensation techniques

which are popular for video coding [10]. The goal of this paper

is to design a novel joint coding approach enabling a gradual

and finally exact decoding of the stereo pairs. Our main con-

tribution is that the proposed coding scheme does not generate

any residual image, but directly two compact multiresolution

representations of the left and right images by exploiting the

cross-view redundancies via the available disparity field. Fur-

thermore, the proposed scheme is intrinsically flexible, as it al-

lows the designer to optimize the number of prediction filter taps

as well as the other parameters of the multiscale operators. In

this way, we build a joint coding scheme which is adapted to

the content of the stereo pair. Another advantage of the pro-

posed method is that it guarantees a perfect reconstruction of

the stereo images.

The remainder of this paper is organized as follows. Section II

gives an overview of SI coding schemes based on disparity es-

timation and compensation techniques. In Section III, we pro-

pose a novel coding structure of which two examples are given.

In Section IV, we conduct a theoretical analysis of the proposed

schemes in terms of prediction efficiency. Section V describes

how embedded binary streams can be produced to encode the

resulting multiscale representations. Finally, in Section VI, ex-
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perimental results are given and some conclusions are drawn in

Section VII.

II. STEREO IMAGE CODING

Generally, the reported stereo image coding methods rely on

Disparity Estimation techniques (DE) followed by Disparity

Compensation (DC) as discussed below. As mentioned earlier,

DE is a key issue for exploiting the cross-view redundancies.

This problem has been extensively studied in computer vision

and surveys of the different DE techniques proposed in the

literature can be found in [2], [11], and [12]. Two main ap-

proaches, pixel-based or block-based, can be used to estimate

the disparity map. In what follows, we use a fixed size block

matching DE, which consists of first partitioning the right

image into nonoverlapping blocks of size . For

each block, the objective is to find the most “similar” block

within a given search area in the left image . The disparity

vector for a current block in minimizes a

dissimilarity criterion

(1)

where are the spatial coordinates associated with the

top leftmost pixel in the block. Very often, the Sum of Square

Differences (SSD) or the Sum of Absolute Differences (SAD)

is the selected criterion. It should be noted that in the ideal par-

allel-axis geometry, the displacement between the two views is

restricted to the horizontal direction and it takes posi-

tive values . However, in practice, the matching point of

any current point of is not always rigorously on the epipolar

line because of the sensor noise, the discretization errors and the

deviation from the pinhole camera model. As a consequence,

a strip along the epipolar line is considered and all the points

falling within this strip are considered as potential matching

candidates to be paired with the current point. It is worth men-

tioning that several works aimed at improving this block-based

DE, e.g., by using overlapped block DE with adaptive windows

[13], [14]. Once the disparity vectors are generated, a disparity

compensation can be performed: the target image is pre-

dicted from along the disparity vectors. Then, the Disparity

Compensated Difference (DCD) is computed as follows:

(2)

where the dependence on of and has been

dropped for notation simplicity. Generally, the disparity vectors

are losslessly encoded using DPCM followed by arithmetic

encoding, whereas the reference and the residual images can

be coded in different transform domains. Some works apply

a discrete cosine transform [9], [15]. However, more recent

works have preferred the wavelet transform, in order to meet

the scalability requirement. In [16], an efficient exploitation

of the zerotree algorithm [17] is performed to shorten the

embedded bitstreams of the wavelet coefficients of both the

reference image and the DCD. In [18], both the estimation

and the disparity compensation take place in the wavelet do-

main, the coding of the wavelet coefficients being performed

through a Subspace Projection Technique (SPT). Furthermore,

we should note also that Annex I of Part II of the JPEG2000

standard is dedicated to multicomponent image coding [19].

A decorrelation of the spectral components may be performed

prior to the wavelet transform. In our case, each view of the

stereoscopic image can be seen as a single component. Unlike

the conventional methods, we propose a joint coding scheme

that directly generates a pair of multiresolution representations

of the left and the right images derived from a judicious lifting

decomposition which will be described in the next section.

III. PROPOSED VECTOR LIFTING SCHEMES

A. Motivations

A novel approach that is based on a joint multiscale decom-

position of and is developed in this section. It consists

of coding the reference image in intra mode (purely spatial),

whereas the other image is coded by exploiting cross-image re-

dundancies via the available disparity map. The decomposition

strategy is inspired from Vector Lifting Schemes (VLS) [20] and

it has been briefly presented as a preliminary work in [21]. The

main advantage of the proposed approach is that it does not ex-

plicitly generate a residual image, but two multiresolution rep-

resentations of and . Two versions of the VLS will be

described in the following.

B. VLS Decompositions

The wavelet coefficients of an image are usually obtained by

a dyadic filter bank structure [22]. If an exact reconstruction is

required, lifting schemes are often employed, since they allow

to generate integer-valued versions of the wavelet coefficients

whatever the underlying decomposition operators are [23], [24].

For the sake of simplicity, a separable decomposition is consid-

ered in this paper. Therefore, it is enough to address the decom-

position in one dimension. The corresponding analysis structure

is shown in Fig. 2. More precisely, at each resolution level ,

the even and odd samples of the approximation (scaling) coef-

ficients , , and

of and respectively are the input

coefficients of the lifting scheme. Furthermore, we denote by

the available disparity vectors which are ob-

tained by sampling and dividing by the initial (full resolu-

tion) disparity vectors , since the dimensions of

the subbands at the th resolution level correspond to the dimen-

sions of the initial images divided by

(3)

It is important to note that (3) may yield noninteger values of

the disparity vectors. Therefore, if the components of are

integer-valued, for any given pixel in the right image

corresponds a pixel in the disparity-compensated left image

. Otherwise, the

corresponding disparity-compensated intensity results from the

usual bilinear interpolation. The objective of the vector lifting

scheme is to simultaneously exploit the dependence existing

between and by producing 2 kinds of outputs: the

detail coefficients , and the approximation ones ,
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for both images. Similar lifting structures operating along

the image columns allow us to generate the approximation

coefficients and , as well as the associated detail

coefficients in the horizontal, vertical and diagonal directions

at the resolution level .1 A wide range of nonlinear

operators can be applied to reduce the intra and interimage

redundancies. However, for tractability purposes, we will only

use combinations of shift operators, linear filters and rounding

operations. For the reference image , the detail coefficients

can be interpreted as intraimage prediction errors at resolution

and expressed as

(4)

where is the prediction weighting vector,

is the reference vector con-

taining the even samples used in the prediction step, is the

support of the predictor of and is the in-

teger-part operator. Then, at the update step, the approximation

coefficients are computed as follows:

(5)

where is the update weighting vector,

is the reference vector

containing the details coefficients used in the update step, and

is the support of the update operator. The reversibility

of the basic lifting scheme is ensured since the prediction

in (4) only makes use of even indexed samples. The main

difference between a vector lifting scheme and a basic one

is that for the image , the prediction of the odd sample

involves even samples from the same

image and also neighbors of the matching sample taken from

the reference image. For the sake of simplicity, the notation

which

corresponds to the compensated image on the neighbors

of a given matching sample , will be replaced by

. Thus, the detail signal will be expressed

as

(6)

where (resp. )

is the prediction weighting vector of the intraimage

(resp. interimages),

is the reference vector containing the even samples,

is the vector con-

taining the neighbors of the matching sample associated with

the pixel to be predicted, and (resp.

1As we apply a separable decomposition, we denote by � the approximation
coefficients after the first mono-dimensional processing at the � level, and by
� the final approximation subband.

) is the spatial support of the intraimage (resp. interim-

ages) predictor. The update step for can be performed

similarly to (5). The decomposition is iterated on the columns

of the resulting subbands, leading to 2 4 sub-images

for the left and right images at each resolution level and the

decomposition is again repeated on the approximation sub-im-

ages over resolution levels. It is worth pointing out that the

disparity based vector lifting scheme is perfectly reversible

and that it maps integers to integers. However, an appropriate

choice of the involved prediction and update operators remains

necessary in order to generate compact representations of

. To illustrate the ability of the considered vector

lifting structure to produce a sparse representation, we provide

a simple example (denoted by VLS-I) of the considered lifting

structure. The image is first decomposed following the

well-known integer-to-integer 5/3 scheme employed for the

lossless mode of JPEG 2000 [23]. According to our notations,

the spatial supports for the prediction and update operators

are: , and their related weights

are: , . The hybrid

intra/inter prediction step related to is then expressed via

the following spatial supports: , .

In other words, the prediction mask contains the same spatial

prediction indices as those used in the 5/3 scheme and the

co-located position in the left image. As the detail coefficients

can be viewed as prediction errors, the prediction coefficients

and can be optimized at each resolution level by

solving the well-known Yule-Walker equations. Concerning

the update step, it is possible to generalize the optimization

procedure described in [25], [26] in order to adapt the under-

lying operators to the statistical properties of the input image.

A straightforward alternative solution that we preferred in our

experiments consisted of choosing the same update operator

at all resolution levels, the update employed for being the

same as the two-tap filter employed for in (5).

C. Improved VLS

One of the potential drawbacks of the previous VLS-I struc-

ture is that it generates an update leakage effect, in the sense

that the information coming from the left view, which is used

for the prediction of the right one, is also used, through the up-

date operator, to compute the approximation coefficients of the

right view. An alternative solution is given by the predict-up-

date-predict (P-U-P) lifting structure shown in Fig. 3. The im-

proved decomposition is described as follows:

(7)

(8)

(9)

where notations similar to those used in Section III-B are used

and is the second intraimage predictor associ-

ated to the reference vector .
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It is worth noting that a prediction and an update as in (7) and

(8) (with the same weights) are applied to . In addition, at

the last resolution level , instead of directly coding the

approximation , we predict it from the approximation sub-

band at the last level of the disparity-compensated image and

only code the residual subband given by

(10)

where

and

Let the coefficients and (resp. ) be optimized so

as to minimize the variance of (resp. ) at each reso-

lution level (resp. at the coarsest resolution level ).

An interesting property of the proposed decomposition is the

following: in the ideal situation corresponding to ,

the multiresolution representation of reduces to zero under

some constraints that we are going to define in the following.

Indeed, in the ideal case when , the disparity vectors

are zero: . Therefore, (9) becomes

(11)

It is worth pointing out that the coefficients and

are optimized, at each decomposition level, by solving the

Yule-Walker equations, the rounding operator being omitted.

Thus, the detail coefficients can be viewed

as the errors involved in the prediction of

by the signal

. In this way,

we can ensure that the detail coefficients of the right image

are zero if the prediction signal is a

linear combination of (at least) the same samples as those used

by the reference signal to be predicted. This can

be guaranteed provided that the support of the hybrid predictor

satisfies the two following conditions.

(i) The first term in the expression of

in (7) can be found in the expression of

the prediction signal if .

(ii) The second term in the expression of in-

volves the samples . These

samples can be found in the expression of the prediction

signal if .

When the conditions (i) and (ii) are satisfied and ,

the decomposition of first provides a detail subband

which is equal to zero and an approx-

imation subband which is equal to that of :

. Then, while processing

the image along the columns, the decomposition of

generates in the same way a detail subband which is equal

to zero and an approximation subband which is equal

to that of : . Finally, the

decomposition of provides two null detail subbands since

. Consequently, the resulting multiresolu-

tion representation of based on the new scheme allows

us to generate an approximation subband which is identical to

that of and three detail subbands equal to zero. Since at

each resolution level the approximation subbands of and

are equal, the residual sub-image in (10) becomes null

if . Therefore, the P-U-P decomposition satisfies

the property of cancelling the values of the wavelet coeffi-

cients of the multiresolution representation of provided

that , when , and

. This is a desirable property of the considered de-

composition in order to get a consistent joint representation of

and . In contrast, this property does not hold for VLS-I.

Finally, as a supporting example, we design a scheme, which

will be denoted in the following by VLS-II, by adding a predic-

tion stage to the conventional 5/3 lifting structure. This amounts

to choose , , and

, , while the last prediction stage is per-

formed by setting , and for

and . The coefficients and

are determined by solving the Yule-Walker equations (still

omitting the rounding operations) and imposing again the sym-

metry properties: and (which allows

us to obtain linear phase filters often considered as desirable for

image coding [27]).

IV. THEORETICAL ANALYSIS

In this section, we perform a theoretical analysis of the perfor-

mances of VLS-I and VLS-II in terms of prediction efficiency,

which is directly related to the coding efficiency [28], [29]. First,

we give the explicit expressions of the optimal prediction co-

efficients as well as the variance of detail signals for the two

schemes. Then, we confirm that the prediction error variance of

VLS-II is smaller than the one of VLS-I.

A. Notations

In the following, we will develop our analysis in the case of

1-D signals, since we have considered a separable scheme. More
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precisely, let be a given pixel, we consider the pair of

1-D signals defined for all by

(12)

We assume that, at a given resolution level , these signals sat-

isfy the following symmetric linear statistical model:

(13)

where such that , and and are

two stationary random processes which are mutually indepen-

dent. For the sake of simplicity, we assume that they are zero-

mean (which is always verified for wavelets coefficients) and

they have the same autocorrelation function with .

Then, it is easy to show that

(14)

(15)

where and (with ).

At this point, it is worth noticing that the spatial similarities be-

tween the samples of (or ) are related to the autocorrela-

tion function . The factor controls the cross-redundancies

between the samples of and .

B. Minimum Prediction Error Variance of VLS-I

By considering the support and the weights of the prediction

operator involved in VLS-I (still omitting the rounding opera-

tors), the detail signal is expressed as follows:

(16)

Thus, can be viewed as the error in the predic-

tion of by the multivariate reference signal

. The pre-

diction weight vector satisfies the normal

equations

(17)

Hence, the optimal weights can be deduced as follows:

(18)

where .

Consequently, the minimum value of the prediction error

variance achieved by VLS-I is

(19)

C. Minimum Prediction Error Variance of VLS-II

Considering now VLS-II (still omitting the rounding opera-

tors), the detail signal is given by

(20)

where, as shown by (8), the signal can be expressed as

(21)

Therefore, it can be checked that

(22)

where

(23)

(24)

From (22), can be viewed as the error in the prediction

of by the reference samples grouped into the vector

given by

(25)

The vector is found

by minimizing the variance of . Consequently, the

following set of normal equations must be solved

where and . Once
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the auto-correlation matrix and the cross-correlation vector

are determined, the optimal weights are obtained as follows:

(26)

(27)

(28)

(29)

(30)

where

. Finally, the minimal

value of the variance of the prediction error generated by

VLS-II is

(31)

D. Discussion

It should be noticed that the expressions of and are

not restricted to a particular form of the autocorrelation func-

tion , and so they are valid for any second-order stationary

process. Furthermore, it is interesting to note that, unlike ,

is separable in and . In order to emphasize the ad-

vantages of VLS-I and VLS-II, we will consider a simple multi-

variate random process model driven by two autoregressive pro-

cesses of order 1, and in (13). In this particular case,

the autocorrelation function is given by

(32)

where is the correlation factor. Therefore, the vari-

ances and of the prediction errors reduce to

(33)

(34)

where and

.

Furthermore, we can check that the variance of the intra pre-

diction error generated by the 5/3 transform as indicated by (23)

is given by

(35)

Fig. 4(a) shows the variations of , and with

respect to for a given value of . Thus, by taking into ac-

count the spatial redundancies (controlled by ), the variance

is smaller than . Lower values of the prediction

error variance are further achieved by the VLS-II transform

for any value of . We are also interested in comparing the vari-

ations of these three prediction errors with respect to for a

given value of , as depicted by Fig. 4(b). It can be noted that

VLS-II gives also the best results by exploiting the interimage

redundancies (controlled by ). This study has clearly shown

the benefit that can be drawn from the use of VLS-II compared

to VLS-I. This is explained by the proposed P-U-P structure in

which the cross-view redundancies are exploited in the addi-

tional prediction step in order to avoid injecting the information

coming from the reference image in the approximation of the

target image.

V. EMBEDDED CODING OF STEREO IMAGES

A. Coding Techniques

After applying a VLS to a stereo image pair, the generated

coefficients must be encoded. However, the coding scheme

should enable quality scalability for progressive reconstruction

purposes. This is basically achieved by sending the coefficients

in decreasing order of their importance. In other words, the most

significant ones are first encoded at a reduced accuracy. So, a first

approximation image is produced, which is further gradually

refined by decoding the least significant coefficients. To this end,

several scalable codecs have been developed [17], [30]–[32]. The

main advantage of these embedded codecs is that the encoder

can terminate the encoding at any point, thereby allowing a target

bitrate to be exactly met. Similarly, the decoder can also stop

decoding at any point resulting in the image that would have been

produced at the rate corresponding to the truncated bitstream.

In our experiments, we have employed the JPEG2000 codec,

which yields excellent performance in terms of compression

efficiency and quality scalability.

B. Transmission Cost of the Prediction Coefficients

The prediction coefficients involved in the proposed VLS de-

compositions have to be transmitted to the decoder in order to

proceed to the inverse transform with perfect reconstruction of

the stereo pairs. The prediction weights correspond to an amount

of floating point coefficients, where is the number

of prediction weights in the VLS and represents the number

of resolution levels (the factor 3 stems from the fact that one

horizontal prediction and two vertical predictions, one in the

low-pass horizontal subband and the other in the high-pass hori-

zontal subband, are performed). These weights are stored on 32

bits, inducing a negligible increase of the overall bitrate. More

precisely, for a stereo pair of size , the transmission cost

of the prediction coefficients will increase the bitrate achieved
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Fig. 1. Original SI pair “spot5”: the left and right images.

Fig. 2. Principle of the VLS-I decomposition.

by VLS-I and VLS-II, by bits per pixel. For ex-

ample, when and , the gain will be

decreased by 0.0007 bpp (resp. 0.0018 bpp) in the case of VLS-I

(resp. VLS-II) which is a very small fraction of the whole data

bitrate.

VI. EXPERIMENTAL RESULTS

Simulations have been carried out on 6 image pairs of size 512

512 which have been extracted from a SPOT5 scene. The full

scene, which corresponds to an urban zone, is shown in Fig. 1

and the six image pairs are represented in white squares. We

have also used four pairs of natural stereo images (“fruit,” “pent-

agon,” “shrub,” and “birch”) downloaded from http://vasc.ri.

cmu.edu/idb/html/stereo/index.html and http://vasc.ri.cmu.edu/

idb/html/jisct/. It should be noted that some stereo images have

significant illumination variations between the views. For this

reason, DC is performed by applying to the original SI the re-

versible remapping technique based on sorting permutations in-

troduced in [33]. This preprocessing step is often used to im-

prove the coding efficiency of pairs of images [34]. The dis-

parity map is computed using a block-matching technique with

a 8 8 block size and a search area that depends on the ac-

quisition of the stereo pair ( 50 pixels in the horizontal direc-

tion and 2 in the vertical direction for SPOT5 stereo images,

and +30 pixels in the horizontal direction and 4 in the ver-

tical direction for natural stereo images). The SSD is the chosen

matching criterion. The resulting disparity vectors are losslessly

encoded using a median prediction and DPCM with arithmetic

encoding. In order to show the benefit of the joint coding by

VLS, we compare VLS-I and VLS-II decompositions carried
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Fig. 3. Principle of the VLS-II decomposition.

out over resolution levels with some representative SI

wavelet-based coding methods.

• The first one is the baseline coder which consists of coding

the left image and the DC-residual with a 5/3

transform [16]. In the following, this method will be des-

ignated by scheme B.

• The second one is the subspace projection technique in

the wavelet domain (SPT-WT) proposed by Jiang et al.

[18]. This method consists of applying the DE and DC

steps in the wavelet domain. More precisely, the method

starts by applying the 5/3 transform to the original SI

pair. We denote by

(resp. ) the re-

sulting approximation and detail subbands for the right

(resp. left) image. A block-based DE is performed

between the corresponding subbands and

. Then, a DC of each block of the image

subbands is carried out, leading to the predicted subbands

. Finally, the computation of

the DCD is obtained by projecting each block of the

approximation subband of the target image onto

the subspace ,

yielding the projection

where are computed by a least squares

approach. In our experiments, and in order to ensure a

lossless reconstruction, we have encoded a rounded ver-

sion of . Consequently, the approximation subband

of the residual image is defined by ,

whereas the other detail subbands are simply computed

as: .

• We have also tested a version of JPEG2000 (Annex I of Part

II) dedicated to multicomponent images. It consists first of

a decorrelation of the SI pair. Note that this decorrelation

step must use a reversible transform in order to exactly

recover the original SI pair. As a result, a pair is

produced by using a variation of the Haar transform [35]

[see (36), shown at the bottom of the page], where is

the set of connected pixels in the left image. Then, the 5/3

transform is separately applied to and . This method

will be designated in the following by scheme C.

The compression measure is given by the final bitrates of

the multiresolution representations. Let us denote by ,

, , and , respectively, the bitrate of the dis-

if

if

(36)
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Fig. 4. Prediction efficiency: �� ���� (dotted line), � �� � � � (dashed line), � �� � � � (solid line). (a) Variations w.r.t � when � � � and � � 	
�.
(b) Variations w.r.t � when � � � and � � ��	.

TABLE I
PERFORMANCE OF SI WAVELET-BASED LOSSLESS CODECS IN TERMS OF

AVERAGE BITRATE (IN bpp) USING JPEG2000

parity vectors and of the images , , and . For

the methods based on the coding of the residual image, we

have computed the following average bitrate:

(37)

while the average bitrate for the proposed decompositions

is given by

(38)

It can be noticed that the average coding cost of the

losslessly encoded disparity vectors is around 0.07 bpp.

Table I provides the final bitrates obtained in a lossless

context by applying the JPEG2000 codec used only as an

entropy codec on the produced subbands. Our simulations

indicate that VLS-I results in an average gain of about

0.1 bpp over conventional methods. If we now compare the

performance of VLS-II to those provided by VLS-I, our ex-

periments show that VLS-II leads to a further improvement

of about 0.1 bpp.

We have also tested the performance of our methods when

applied as a lossy codec. In this case, the improved VLS

are also compared in terms of peak-signal-to-noise ratio

(PSNR) given by

(39)

Fig. 5. PSNR (in dB) versus the bitrate (bpp) after JPEG2000 encoding for the
SI pair “shrub”.

Fig. 6. PSNR (in dB) versus the bitrate (bpp) after JPEG2000 encoding for the
SI pair “spot5-6”.

where and respectively correspond to the

mean squared error of the left and right images recon-

structed at the rates and . We also used the SSIM

quality metrics, which is based on models of visual percep-

tions, to evaluate the reconstruction quality of each com-

pression method [36]. We are first interested in studying

the evolution of the PSNR versus the bitrates achieved by
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Fig. 7. Reconstructed target image � of the “pentagon” pair at 0.2 bpp:
(a) scheme B; (b) VLS-II.

VLS-I, VLS-II, the conventional schemes B and C, and the

independent SI coder. In order to decode the SI pair, two

alternatives can be envisaged. The most basic one consists

of firstly decoding exactly the reference image. Then, the

target image is decoded by using the original left image

and the disparity vectors. However, in order to minimize

the latency at the decoder side and to achieve the transmis-

sion of both images for a given bandwidth, we choose to

simultaneously decode the SI pair. In other words, the de-

coding of the target image at a specified bitrate is

achieved by using the decoded left image at a bitrate

without waiting for the final decoding of the reference

image.

• More precisely, for the coding scheme B, the reconstructed

target image is obtained by using the reconstructed left

image and the residual image , decoded respec-

tively at and

(40)

Then, by comparing the original images and with

the reconstructed ones and , we can evaluate the

Fig. 8. Reconstructed target image � of the “spot5-5” pair at 0.13 bpp:
(a) scheme B; (b) VLS-II.

quality of reconstruction of the SI pair at the average bitrate

defined by (37).

• Concerning the proposed methods, the reference image is

decoded at different bitrates in the same way as in the pre-

viously mentioned methods. Then, the right image is de-

coded at some bitrate by using the reference image

decoded at a bitrate . Thus, we still evaluate the quality

of reconstruction of the SI pair at the average bitrate given

by (38). Figs. 5 and 6 show the scalability in quality with

this reconstruction procedure by displaying the variations

of the PSNR versus the bitrate for the SIs pair “shrub” and

“spot5-6”, using JPEG2000 as an entropy codec. These

plots show that schemes B and C (based on the coding of

the residual image) outperform the independent decompo-

sition scheme, especially at low bitrates. VLS-I performs

more poorly than these schemes at low bitrates but be-

yond some bitrate it is more performant. Finally, VLS-II

outperforms all the schemes and improves the PSNR by

at least 0.4 dB at high bitrate and the difference becomes

much more important at low bitrates. Figs. 7 and 8 display

a zoom applied on the reconstructed target image of the SI

pairs “pentagon” and “spot5-5” for scheme B and VLS-II.

We notice that the coding of the residual image leads to
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Fig. 9. Reconstructed target image � of the “shrub” pair at different bitrates: left column: VLS-I; right column VLS-II.

TABLE II
EXECUTION TIME OF THE PROPOSED METHODS (IN SECONDS)

blocking artifacts at low bitrates. This problem is signifi-

cantly reduced by resorting to VLS decompositions. Fig. 9

illustrates the reconstructed right image of the “shrub” pair

at the decoder side corresponding to a progressive recon-

struction. The quality of these images is compared both in

terms of PSNR and SSIM. The difference in PSNR (resp.

SSIM) between VLS-I and VLS-II ranges from 1.5 dB to

2 dB (resp. 0.05 to 0.1).

Finally, we propose to compare the different schemes in

terms of execution time. Table II presents the encoding and

decoding time of a Matlab implementation of the tested

methods, at 0.2 bpp, for two stereo images of size 512

512. Simulations are carried out by using an Intel Core 2

(3 GHz) computer. We can note that the proposed methods

VLS-I and VLS-II require respectively an additional av-

erage time of about 1.1 and 1.3 s compared to the residual

image coding based method (scheme B). However, this dif-

ference in execution time is compensated by the good com-

pression performance of the proposed VLS.

VII. CONCLUSIONS AND PERSPECTIVES

In this paper, we have presented a new technique for lossy-to-

lossless compression of stereo image pairs. In order to take ad-

vantage of the correlations between the two images, we have

proposed two schemes based on the vector lifting concept. Un-

like conventional methods which generate a residual image to

encode the stereo pair, the proposed schemes use a joint mul-

tiscale decomposition directly applied to the left and the right

views. They exploit the intra and interimage redundancies by

using the estimated disparity map between the two views. Fur-

thermore, the proposed decompositions guarantee the perfect re-

construction of the original stereo images. It is worth pointing
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out that these decompositions are also adapted to the content of

the images. A theoretical analysis in terms of prediction error

variance was conducted in order to show the benefits of the un-

derlying VLS structure. Experimental results, carried out on a

set of remote sensing and natural stereoscopic images, have in-

dicated the good performance of the VLS over the conventional

approaches in terms of bitrate and quality of reconstruction. In

future work, we plan to improve the proposed decomposition

by better taking into account the effect of occlusions. Also, an

extension of the proposed scheme to multiview/video coding is

currently envisaged.
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