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VECTOR MAJORIZATION AND SCHUR–CONCAVITY OF SOME SUMS

GENERATED BY THE JENSEN AND JENSEN–MERCER FUNCTIONALS

MAREK NIEZGODA

Abstract. In this paper we study a vector majorization ordering for comparing two m -tuples of
vectors of a real linear space. This extends the classical approach of (scalar) majorization theory
for comparing m -tuples of scalars in R . We prove a Sherman type inequality for a vector-
valued �C -convex function f , where �C is a cone ordering. In consequence, we obtain a
Hardy-Littlewood-Pólya-Karamata type inequality generated by m -tuples of vectors in a vector
space. As applications, we present majorization generalizations of the superadditivity properties
of the Jensen and Jensen-Mercer functionals generated by a convex function f . In addition, we
show that some sums generated by the Jensen and Jensen-Mercer functionals are Schur-concave
with respect to their weight vectors. We also give interpretations of the obtained results for
tridiagonal doubly stochastic matrices and doubly stochastic circular matrices.
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