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1 Introduction

The low energy effective theory of QCD in the limit of the massless Nf -flavor quarks is a
non-linear sigma model corresponding to the breaking SU(Nf )L × SU(Nf )R → SU(Nf )V .
The ’t Hooft anomaly [1] for SU(Nf )L×SU(Nf )R×U(1)V is matched by the Wess-Zumino-
Witten (WZW) term [2, 3]. In the large Nc limit [4] of massless QCD, the axial symmetry
U(1)A is restored and the η′ meson is regarded as the Nambu-Goldstone (NG) boson
associated with the spontaneous U(1)A breaking [5, 6]. The η′ field is, therefore, described
as a U(1)-valued pseudo-scalar field. The WZW term can be extended to include η′. In the
large Nc limit, the baryons should be described as solitons since the mass and the couplings
of order Nc and 1/Nc, respectively, are naturally explained [7, 8]. Indeed, the Skyrmion
configurations [9] of the pions are identified as the baryons by the coupling between the
external baryon gauge field and the topological charge in the WZW term.

Recently, the notion of the ’t Hooft anomalies and their matching has been extended
to the discrete symmetries [10, 11] and higher form symmetries [12]. One of the important
results is given in ref. [13], where a mixed anomaly involving time reversal and the 1-form
center symmetry is discussed in the SU(Nc) Yang-Mills theory at θ = π. The anomaly
implies that if the confinement persists at θ = π, there are two degenerate vacua corre-
sponding to the spontaneous breaking of time reversal (or CP), and the effective theory
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on a domain wall separating two vacua is an SU(Nc)1 Chern-Simons (CS) theory.1 One
can also consider the ’t Hooft anomaly for symmetries in the parameter space of the the-
ory [16, 17]. In QCD, there is a mixed anomaly involving the θ-periodicity and the global
symmetry [17]. The matching of such anomalies provides new restrictions on the effective
theory especially for topologically non-trivial objects.

In the effective theory of QCD including η′, there are topologically non-trivial config-
urations of η′ in addition to the Skyrmions. One of them is the domain-wall configuration
which connects two minima of the periodic potential of η′, where the potential is gener-
ated at the next-to-leading order of the 1/Nc expansion. Although this object is stable
within the effective theory, it should not be so in full QCD since there is no corresponding
conserved charges. The object to destabilize the domain wall can be identified as a string
around which η′ winds. Komargodski recently pointed out that the domain wall bounded
by a string, which is referred to as a pancake or a Hall droplet, can have stable excited
states that can be regarded as a spin-Nc/2 baryon [18]. This proposal is based on an ex-
pectation that the effective theory on the domain wall is a CS theory, which implies that
there must be chiral edge modes on the boundary of the domain wall. Excited states on the
edge with a unit U(1) charge can be regarded as baryons if we identify the U(1) symmetry
of the chiral edge modes as the baryon symmetry. It has been proposed that this baryon
can be understood as a chiral bag in a 1 + 2 dimensional strip using the Cheshire Cat
principle [19].

The existence of a CS theory on the domain wall is an expectation from the spontaneous
CP breaking in the Yang-Mills theory at θ = π. If we insert a interface of θ changing from
0 to 2π in the Yang-Mills theory, there appears a domain wall with a CS theory on it
at the location of the interface. When massless quarks are added, the θ dependence is
eliminated by a shift of η′, and thus a domain wall where η′ shifts from a minimum of
the potential to another corresponds to the θ interface in the Yang-Mills theory. This
means that it is expected that the domain wall of η′ supports a CS theory on it. However,
this explanation is rather heuristic and there are also proposals that such a CS theory
is replaced by a topologically trivial gapped theory when light quarks are added to the
Yang-Mills theory [20, 21].

The pancake story provides a new insight into the role of the vector mesons (ρ and
ω) as the dual gluons [20–23] in the sense of the Seiberg duality in N = 1 supersymmetric
QCD [24]. The interpretation of the vector mesons as the Seiberg dual gauge boson has
been discussed in literature [25–31] where the vector mesons are identified as the Higgsed
magnetic gauge bosons. Indeed, the effective theory of the vector mesons can be formu-
lated consistently as the gauge theory of a hidden local symmetry in the non-linear sigma
model [32]. In this formulation, the WZW term can be extended to include the vector
mesons by adding a set of gauge invariant operators [33]. The Lagrangian of the vector
mesons on the domain wall is determined up to four parameters. It is certainly interesting
to note that the postulated CS theory on the wall is U(Nf )−Nc whereas the vector mesons

1There are other logical options but an SU(Nc)1 is the most plausible one [14]. See also [15] for an
alternative argument for the existence of the phase transition.
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can also form a U(Nf ) CS Higgs theory on the wall. It is natural to suspect that there is
some relation between these two theories. Since one can formally interpret the U(Nf )−Nc

CS theory on the wall as that of the (level-rank) dual gluon, there seems to be a deep
connection between the hidden local symmetry and the Seiberg duality through the theory
on the domain wall. The topics of the baryon number of the pancake objects, the topo-
logical quantum field theory on the wall, new ’t Hooft anomalies, and the Seiberg duality
seem to be all related, and it is quite important now to look for the consistent picture and
determine the effective (or dual) theory.

In this paper, we determine the effective theory of pions and η′ including the back-
ground θ term as well as background gauge fields of global symmetries, SU(Nf )L ×
SU(Nf )R × U(1)V . We include the domain wall as the dynamical degree of freedom,
that is necessary to reproduce the cusp in the η′ potential. We show that some topological
quantum field theory should live on the domain wall by using the anomaly matching in-
volving the periodicity of θ. This confirms the heuristic explanation of the presence of the
U(Nf )−Nc theory on the domain wall. We find that the anomalous coupling between η′ and
the background fields implies that the global U(1) symmetry of the CS theory is actually
identified with the baryon symmetry, and the exited states with a unit U(1) charge belong
to the correct representation of the flavor symmetry. In addition, we propose a specific form
of the coupling between the vector meson fields and the gauge field of the CS theory on the
edge of the pancake in order to recover the gauge invariance of the SU(Nf )L × SU(Nf )R
gauge field, which must be maintained for consistency. From this effective theory, one can
understand the real meaning of the duality between the gluon and the vector mesons. We
discuss the implication of the behavior of the vector mesons near the chiral phase transition.
The effective theory we derived is quite different from the proposals in refs. [20, 21], where
the theory on the pancake is claimed to be a CS Higgs theory of the vector mesons. We
argue that the CS theory, not CS Higgs theory, is required by the matching of the anomaly
while the vector mesons mix with the gauge field of the CS theory on the edge of the
pancake. There are important differences in the formula of the baryon and flavor currents.
The existence of the CS theory on the wall will also be quite important in the discussion
of the physics of the vector mesons such as the anomalous coupling among hadrons as well
as how they approach to the chiral symmetric phase.

This paper is organized as follows: In section 3, we determine the effective theory
for η′ including the anomalous coupling to the background fields. With an appropriate
counter term, the constant θ dependence is compensated by a shift of η′. However, we
find that naive coupling between η′ and the background fields satisfying this feature is not
adequate when we consider a violation of the θ-periodicity, which is originated from the
division part of the global symmetry [SU(Nf )L×SU(Nf )R×U(1)V ]/[ZNc × (ZNf

)V ]. This
violation is actually an anomaly when gcd(Nc, NF ) 6= 1 [17]. As a result, at least when
gcd(Nc, Nf ) 6= 1, we find that there has to be some topological quantum field theory on
the domain wall of η′. We further restrict the effective theory by considering the large-Nc

argument by Witten [5], which states that the part of the effective theory only including
glueballs are the same as that of the Yang-Mills theory. The domain wall we consider
corresponds to the change of η′ over one period. This corresponds to the shift of θ from
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0 to 2πNf . As we mentioned above, a topological quantum field theory on the interface
of θ from 0 to 2π is SU(Nc)1. When θ changes from 0 to 2πNf , the theory (SU(Nc)1)Nf

can undergo a transition to another topological quantum field theory [14]. It has been
suggested that the theory is SU(Nc)Nf

[13]. Due to the level-rank duality, an SU(Nc)Nf

CS theory is identified with a U(Nf )−Nc CS theory. Thus we can expect that there is a
U(Nf )−Nc CS theory on the domain wall. In section 4, we determine the effective theory
on the pancake when there is the background U(Nf )V /ZNc gauge field. We find that if
we couple the gauge field of the CS theory to the background gauge field properly, then
we can maintain the gauge invariance of the background gauge field. As a result, we
confirm that an excited state with a unit U(1) charge belongs to the correct representation
of the global symmetry as a spin-Nc/2 baryon. In section 5, we consider the coupling
between the SU(Nf )L×SU(Nf )R background gauge field and the domain wall. Unlike the
case in section 4, the gauge field of the CS theory cannot be used to recover the gauge
invariance of the SU(Nf )L × SU(Nf )R gauge field. We propose that the vector mesons as
the gauge field of the hidden local symmetry should couple to the domain wall instead of
the background fields. Due to the mass mixing of the vector mesons and the background
fields, the representation for a spin-Nc/2 baryon is correctly reproduced. Also, it is found
that the vector meson cannot have nonzero instanton charge for a consistency. In section 6,
physical implications of the coupling between the vector mesons and the domain wall are
explained. The effective theory we derived provides us with new understanding of the
“duality” between the gluon and the vector mesons.

2 Practice: a domain wall and a monopole

Before going into the technical detail, we start with a physical question in QCD where the
baryon number symmetry, U(1)B, is weakly gauged. Let us consider a configuration where
a magnetic monopole, whose magnetic charge under U(1)B is unity, is surrounded by the
domain wall that connects η′ = 0 and η′ = 2π ∼ 0. The WZW term of QCD contains the
following term:

i

8π2
Nf

Nc
η′dABdAB, (2.1)

where AB is the baryon gauge field where it is normalized such that the baryon has the
charge unity. This term induces the Witten effect2 [36] when η′ changes from 0 to 2π. The
electric charge, i.e., the baryon number, of this configuration is Nf/Nc. In the effective
theory, such an object is not allowed by the Dirac quantization condition for general values
of Nf and Nc.

This already provides an interesting puzzle. When we go back to QCD, the monopole
with the unit magnetic charge is allowed by the Dirac quantization condition. For the first
look it has a problem with the quarks which has baryon number 1/Nc, but it is actually

2The modern understanding of the Witten effect associated with the axion domain wall has been dis-
cussed in refs. [34, 35], where a higher-group structure is found among the higher form symmetries in the
axion electrodynamics.

– 4 –



J
H
E
P
0
3
(
2
0
2
1
)
0
2
3

consistent by attaching the color magnetic flux to the monopole [37]. For consistency, the
effective theory should also allow such a monopole to exist. But once it is allowed, since
there is no gluon degrees of freedom in the effective theory, one cannot attach the color
magnetic flux anymore, and the Dirac quantization condition seems to be just violated.

In order to fix this problem, we need something topologically nontrivial on the domain
wall. The “something” should be either a term to cancel the Witten effect so that the
configuration is allowed or some term to make the configuration impossible. We will see
that QCD choose the latter by having a CS theory on the wall.

3 The effective theory for η′

We consider large-Nc QCD with Nf massless Dirac fermions. The (Euclidean) La-
grangian is

L = Nc

4λ2 tr(f?f) + iNcψ̄ /Dψ + iθ
1

8π2 tr f2. (3.1)

At the leading order of the 1/Nc expansion, the U(1)A symmetry is recovered and we can
write the effective action by using a U(Nf )-valued field U . We decompose U into U(1) part
and SU(Nf ) part as U = eiη

′
Û , Û ∈ SU(Nf ), and focus on η′. This decomposition is not

determined uniquely, but if we fix the pion field Û , this ambiguity is not relevant.
When we add small masses to quarks, the effective Lagrangian should include a term:

f2
πΛ
2 tr(MU +M †U †), (3.2)

whereM is the Nf×Nf mass matrix and Λ is the scale of the strong interaction. In the fol-
lowing, we discuss the effective theory of QCD in the massless limit. The correction by the
quark masses can always be taken into account by adding eq. (3) as a small perturbation.3

It is known that, to the next to leading order of 1/Nc expansion, the effective La-
grangian for η′ is

Leff
η′ = Nff

2
π

8 dη′?dη′ + f2
π

8Nf
m2
η′ min
n∈Z

(Nfη
′ + θ − 2πn)2, (3.3)

where the Nc dependence of the parameters is given as

f2
π = O(Nc), m2

η′ = O(1/Nc). (3.4)

Here the normalization of η′ is chosen so that, under U(1)A transformation ψ →
exp(iαγ5)ψ, it transforms as η′ → η′ + 2α. For this normalization, η′ is 2π-periodic.
The coefficients are determined so as to reproduce the Witten-Veneziano formula [5, 6]

m2
η′ = 4Nf

f2
π

χ, (3.5)

3At θ = π, with finite quark masses, m, the vacuum structure in the large Nc limit actually depends on
the order of two limits, m → 0 and 1/Nc → 0 [38]. Our discussion of the massless quarks corresponds to
m→ 0 first, where the η′ mass is larger than mΛ. However, the domain wall of our interest which connects
η′ = η′

0 and η′
0 + 2π always exists independent of the vacuum structure, and the discussion of the theories

on the domain wall and on its boundary are unchanged even in the other limit since the effective theory is
constructed only based on anomaly matching and the gauge invariance.
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where χ is the topological susceptibility in the SU(Nc) Yang-Mills theory. The periodicity
and 1/Nc expansion imply that the η′ potential has a cusp at Nfη

′ + θ = nπ with n

odd integers.
We consider how to couple the background gauge fields to the effective theory. The

global symmetry of the theory is [SU(Nf )L × SU(Nf )R × U(1)V ]/[ZNc × (ZNf
)V ] [39].

This is because the group with the faithful action on the fermion field is [SU(Nc) ×
SU(Nf )L × SU(Nf )R × U(1)V ]/[ZNc × (ZNf

)V ] rather than the simple direct product
SU(Nc)× SU(Nf )L × SU(Nf )R ×U(1)V . In this section, we focus on the subgroup

Gsub := [SU(Nf )V ×U(1)V ]/[ZNc × (ZNf
)V ], (3.6)

and couple the corresponding background fields to QCD.

3.1 Anomaly constraint

Recently, it is shown that QCD has an anomaly involving the θ-periodicity and the global
symmetry [17]. We can use this anomaly to restrict the coupling between the background
fields and η′ at large Nc.

In the following discussion, the division part of Gsub plays the main role. In order
to express the division part we should introduce the 2-form background gauge fields for
the ZNc and ZNf

groups (see refs. [13, 39]). A 2-form ZNc gauge field is realized as a
pair of a 2-form U(1) gauge field and a 1-form U(1) gauge field, (B(2)

c , Âc), that satisfies
a constraint NcB

(2)
c = dÂc, where the normalization of Âc is given as

∫
Σ dÂc ∈ 2πZ for a

closed 2-surface Σ. They transform under a 1-form U(1) gauge transformation as

B(2)
c → B(2)

c + dλ(1)
c , Âc → Âc +Ncλ

(1)
c , (3.7)

where λ(1)
c is an arbitrary 1-form U(1) gauge field whose normalization is given as

∫
Σ dλ

(1)
c ∈

2πZ. As the gluon degrees of freedom, we introduce a dynamical U(Nc) gauge field ã

instead of the SU(Nc) gauge field. To eliminate the extra degrees of freedom, we impose a
constraint on the field strength, f̃ , as

tr f̃ = dÂc. (3.8)

Under the 1-form U(1) gauge transformation in eq. (3.7), ã transforms as

ã→ ã+ λ(1)
c 1 (3.9)

to maintain the constraint. The field strength f for the SU(Nc) gauge field in the action
is replaced by

f̃ −B(2)
c 1. (3.10)

Note that it is a 1-form gauge invariant su(Nc)-valued 2-form locally.
In the same way, we introduce a 2-form ZNf

gauge field (B(2)
f , Âf ), and a 1-form U(Nf )

gauge field Ãf that satisfy a constraint

tr F̃f = dÂf . (3.11)
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They transform under a 1-form gauge transformation as

Ãf → Ãf + λ
(1)
f 1, B

(2)
f → B

(2)
f + dλ

(1)
f , Âf → Âf +Nfλ

(1)
f . (3.12)

Let ÃV be the U(1)V gauge field, which transforms under the 1-form gauge transfor-
mations as

ÃV → ÃV − λ(1)
c − λ

(1)
f . (3.13)

Using these fields, the covariant derivative is defined as

Dψ = (d− iã− iÃf − iÃV )ψ, (3.14)

which is invariant under the 1-form gauge transformations. We define “the instanton charge
densities” as 1-form gauge invariant quantities,

qc := 1
8π2

(
tr(f̃2)− 1

Nc
(dÂc)2

)
, qf := 1

8π2

(
tr(F̃ 2

f )− 1
Nf

(dÂf )2
)
,

qV := 1
8π2

(
dÃV + 1

Nc
dÂc + 1

Nf
dÂf

)2

. (3.15)

In order for a U(1)A transformation ψ → exp(iαγ5)ψ to compensate a constant shift
of θ, we introduce the counter term

Lc = iθ
1
Nf

(Ncqf +NcNfqV ). (3.16)

Because a constant shift of θ is compensated by a shift of η′, we should add the following
term to the effective Lagrangian:

Leff
topo = i(Nfη

′ + θ) 1
Nf

(Ncqf +NcNfqV ). (3.17)

Note that under the U(1)A transformation ψ → exp(iαγ5)ψ, η′ changes as η′ → η′ + 2α.
However, as we will see in the following, this term alone added by eq. (3.3) cannot be the
correct effective theory. We need more terms in the effective Lagrangian.

Because of the division part of the symmetry, we can find that full QCD has the
following properties that should be maintained in the effective theory:

• Fractional instanton charges. The instanton charges can have fractional values. The
values of the instanton charges are restricted as [40]

Qc :=
∫
qc = −mcm

′
c

Nc
+ lc, Qf :=

∫
qf = −

mfm
′
f

Nf
+ lf ,

QV :=
∫
qV =

(
mc

Nc
+ mf

Nf
+ lV

)(
m′c
Nc

+
m′f
Nf

+ l′V

)
,

mc,f ,m
′
c,f = 0, . . . , Nc,f − 1, lc, lf , lV , l

′
V ∈ Z. (3.18)

Note that mc,m
′
c,mf ,m

′
f , lf , lV , l

′
V are determined by the background fields. Only lc

depends on the dynamical field.
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• Z(θ) = 0 for some background fields. For some background fields, the partition
function Z(θ) becomes zero. This is because the index of the Dirac operator is

ind i /D =NfQc +NcQf +NcNfQV

=mcm
′
f +m′cmf + (Nfmc +Ncmf )l′V + (Nfm

′
c +Ncm

′
f )lV

+Nclf +Nf lc +NcNf lV l
′
V

= lI +Nf (mcl
′
V +m′clV +NclV l

′
V ) +Nf lc,

lI :=mcm
′
f +m′cmf +Nc(mf l

′
V +m′f lV + lf ). (3.19)

Again note that only lc depends on the dynamical fields and other integers are de-
termined by the external fields. If lI is not an integer multiple of Nf , the index
is nonzero for all values of lc, and thus in this case the partition function is zero.
Conversely, when lI is an integer multiple of Nf (for example Ãf = Âf = 0), the
partition function is in general non-vanishing.

• The anomaly between the θ-periodicity and Gsub. Under the 2π shift of θ, the unnor-
malized expectation value 〈X[ψ]〉θ of some operator X[ψ] transforms as

〈X[ψ]〉θ+2π = exp
(

2πi lI
Nf

)
〈X[ψ]〉θ , (3.20)

for the choice of the counter term eq. (3.16). This violation of the 2π-periodicity of
θ is actually anomaly if the greatest common divisor L := gcd(Nc, Nf ) is not equal
to 1, because in this case this phase shift cannot be eliminated by adding a counter
term to the Lagrangian as shown in ref. [17].
Because we choose the counter term so that a constant shift of θ is compensated by
a U(1)A transformation, the (Z2Nf

)A transformation gives the same phase shift as〈
X

[
exp

(
−i 2π

2Nf
γ5
)
ψ

]〉
θ

= exp
(

2πi lI
Nf

)
〈X[ψ]〉θ . (3.21)

This means, when lI is not an integer multiple of Nf , a non-vanishing path integral
requires an appropriate insertion of fermion operators such as (ψ̄ψ)lI . This is actually
the anomaly between (ZNf

)L and Gsub [39]. Note that for a different choice of the
counter term, the 2π-shift of θ gives a different phase shift, and a constant θ shift
cannot be compensated by a U(1)A transformation.

We can see that the effective Lagrangian in eq. (3.17) added by eq. (3.3) is not satisfac-
tory. By using the background with fractional instanton charges, that should be allowed,
the partition functions and the θ dependence above do not quite match. Let us take lI as
an integer multiple of Nf . As we have seen, the partition function, Z(θ), should not vanish
in this background. In the effective theory, Z(θ) is obtained as the path integral of η′. By
changing the variable as η′ → η̃′ = η′+2π/Nf , which leaves the kinetic and the mass terms
invariant, we obtain

Z(θ) = e−2πimcm′
c

Nc Z(θ), (3.22)

from eq. (3.17). When mcm
′
c 6= 0, the phase is not unity, which implies Z(θ) = 0.
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The property of the 2π shift of θ is also not maintained. Because of the term (3.16), the
2π-shift of θ gives the phase exp(2πi(lI/Nf +mcm

′
c/Nc)), which is different from eq. (3.20).

In order to avoid these pathologies, we should add some term to the effective La-
grangian. It is expected that the term contains a 4-form C(4) that depends only on the
background fields and satisfies ∫

C(4) = mcm
′
c

Nc
mod 1. (3.23)

For example, the term

−(Nfη
′ + θ)C(4) (3.24)

seems to fix the pathologies. However, we cannot write this type of terms at least if
L := gcd(Nc, Nf ) 6= 1. This is because, C(4) that satisfies the condition (3.23) cannot
be written as a field that only contains the background fields and is invariant under the
1-form gauge transformations (3.7), (3.12) and (3.13) if L 6= 1 [17]. Since the original QCD
Lagrangian is invariant under the 1-form gauge transformation, the effective theory must
be invariant.

We show that C(4) cannot be written as a 1-form gauge invariant field by following
ref. [17]. It is enough to show that, if L 6= 1, there are no solutions of the equation for
variables s and t,

Qfs+QV t = mcm
′
c

Nc
mod 1. (3.25)

Note that s and t do not depend on mc, m′c, mf , m′f , lc, lf or lV , because these quantities
only defined as the integrals over the whole space, but C(4) is a local quantity. In order
to eliminate lf , lV and l′V , the variable s has to be an integer and t has to be an integer
multiple of NcNf/L. Then the equation becomes

mcm
′
c

Nc

(
−1 + t

Nc

)
+
mfm

′
f

Nf

(
−s+ t

Nf

)
+
mcm

′
f +m′cmf

NcNf
t = 0 mod 1. (3.26)

It follows from this that

− 1
Nc

+ t

N2
c

= R ∈ Z, − s

Nf
+ t

N2
f

= P ∈ Z,
t

NcNf
= J ∈ Z. (3.27)

The first and last equation imply

1 = NfJ −NcR. (3.28)

Because the right-hand side is an integer multiple of L, there is a solution only if L = 1.
Therefore, if L 6= 1 we cannot write C(4) as a 1-form gauge invariant field.

Since the coupling between the background fields and η′ cannot solve the problems, we
need to extend the effective theory to include more dynamical degrees of freedom. In the
following we introduce a dynamical domain wall and a CS theory on it. In the potential

– 9 –



J
H
E
P
0
3
(
2
0
2
1
)
0
2
3

for η′ in eq. (3.3), there are jumps between different branches. In each branch labeled by
an integer n, the potential for η′ is given as

f2
π

2 m
2
η′(Nfη

′ + θ − 2πn)2. (3.29)

The jump between branches indicates that a dynamical domain wall (made of some heavy
degrees of freedom) attaches at the location where n changes. The location is dynamically
chosen such that the energy is minimized. We propose that in the effective action, there is
the term

−2πi
∫
nC(4), (3.30)

where n takes different values on the each side separated by the domain wall. The action
is accompanied by the term on the world volume,

i

∫
∂X4

c(3), (3.31)

where X4 is the interior of the domain wall, and c(3) should be some dynamical degree of
freedom on the wall which is necessary to maintain the gauge invariance. The value of n
inside X4 is one greater than the value outside X4.

One can find that the problems are solved as follows. If we change the variable in the
path integral as η′ → η̃′ = η′ + 2π/Nf , we should also change n as n→ ñ = n+ 1 in order
for the potential in eq. (3.29) to be unchanged. Due to the contribution from eq. (3.30),
the unwanted phase in eq. (3.22) is cancelled. The phase shift eq. (3.20) is also reproduced
in the same way.

The condition (3.23) does not determine the form of C(4) and c(3) uniquely, but the
simplest possibility is to set

C(4) = Nc

8π2 (B(2)
c )2, (3.32)

and introduce c(3) as the U(1)−Nc CS theory,

i

∫
∂X4

c(3) = −i 1
4π

∫
∂X4

(Nccdc+ 2cdÂc), (3.33)

where c transforms as c→ c−λ(1)
c and is normalized as

∫
Σ dc ∈ 2πZ. The normalization con-

dition is necessary for the CS action to be well-defined. With this choice, the whole action
is invariant under the 1-form transformation. This provides a consistent effective theory.

Generally, if C(4) is given as eq. (3.32), a theory on the domain wall has to be able to
couple to the 2-form ZNc gauge field (B(2)

c , Âc), but it cannot be 1-form gauge invariant.
This means that the theory has to have an anomaly for a ZNc 1-form symmetry. In other
words, the path integral of the theory on the wall is defined by the combination with the
four-dimensional symmetry protected topological (SPT) phase (3.32), and it depends on
how to take the four-dimensional space X4. If the domain wall separates the spacetime
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into two regions X4 and X ′4, the difference between the two choices is the integral over the
whole space,

− iNc

4π

(∫
X4

(B(2)
c )2 −

∫
X′

4

(B(2)
c )2

)

= −iNc

4π

∫
whole space

(B(2)
c )2 = −2πimcm

′
c

Nc
mod 2πi. (3.34)

Thus, the dependence on the choice of X4 is characterized by an element of ZNc in this case.
In the next subsection, we will see that eq. (3.32) is the most plausible form of C(4),

but logically, there are other possibilities of C(4), e.g.,

C(4) = −R
L

N2
c

8π2 (B(2)
c )2 − J

L

NcNf

4π2 B(2)
c (dÃV +B

(2)
f ) + JNcNf

L
qV + JNc

L
qf , (3.35)

where J and R are integers that satisfy

JNf −RNc = L. (3.36)

For this C(4), a theory on the domain wall has to have an anomaly that is controlled by
the first two terms in eq. (3.35). Note that the last two terms in eq. (3.35) is 1-form gauge
invariant. The difference between two choices of the interior is calculated as

−2πi
∫ [
−R
L

N2
c

8π2 (B(2)
c )2 − J

L

NcNf

4π2 B(2)
c (dÃV +B

(2)
f )

]
= − 2πim

L
mod 2πi,

m := −Rmcm
′
c − J(mcm

′
f +m′cmf ).

(3.37)

Here m can be any integer because R and J are relatively prime. Thus we find that the
theory on the wall has a ZL anomaly for this C(4), which is different from the case (3.32)
where a theory on the wall has a ZNc anomaly. It is hard to believe that the theory on
the domain wall depends on L, but we cannot deny this possibility only from the anomaly
argument. Especially, if L = 1, we cannot show even the necessity of dynamical degrees of
freedom on the wall. In this case, C(4) can be written only using 1-form gauge invariant
background fields as

C(4) = JNcNfqV + JNcqf . (3.38)

If C(4) is actually this form, there does not need to be dynamical degrees of freedom on
the wall.

When we consider the situation that the Nfη
′+θ changes rapidly from 0 to 2πk, there

are additional possibilities of the theory on the wall other than the theory obtained by
simply adding k copies of the same theory. In this case, the theory has to have an anomaly
controlled by

−2πik
∫
X4
C(4). (3.39)
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For example, if C(4) is eq. (3.32), the theory on the wall can be an SU(Nc)k CS theory
rather than (U(1)−Nc)k.

In summary, the effective action for the domain wall corresponding to 2πk shift of
Nfη

′ + θ is

i
2πk
Nf

∫
X4

(Ncqf +NcNfqv −NfC
(4)) + i

∫
∂X4

c
(3)
k , (3.40)

where X4 is an interior of the domain wall, C(4) is a background 4-form field that satisfies
the condition (3.23), and c(3)

k is a dynamical 3-form field for which the theory i
∫
c

(3)
k has

an anomaly controlled by the bulk action −2πik
∫
C(4).

3.2 Additional large-Nc argument

Using a large-Nc argument, we further restrict the effective action. As discussed in ref. [5],
at the leading order of the 1/Nc expansion, the terms in the effective action for QCD
including only glueballs are the same as that of the Yang-Mills theory except for the
replacement of θ by Nfη

′ + θ. Now we consider the effect of the background fields. The
only background fields that affect the gluon field f is B(2)

c . If we focus on the gluon part,
B

(2)
c can be regarded as the background 2-form gauge field for the 1-form ZNc symmetry

in the Yang-Mills theory. It is known that, in the Yang-Mills theory with θ parameter,
there is a domain wall where θ crosses π, and the effective theory on the domain wall has
an anomaly controlled by eq. (3.23) (if the spacetime is a spin manifold) [13]. Therefore
we can conclude that eq. (3.23) is the correct form of C(4) irrespective of gcd(Nc, Nf ). In
addition, it is suggested in ref. [13] that, in the Yang-Mills theory, if θ changes rapidly
from 0 to 2πk, the theory on the wall is SU(Nc)k. This expectation comes from an analogy
with the N = 1 supersymmetric Yang-Mills theory. Alternatively, by considering that the
theory on the wall is SU(Nc)k in the UV, we can expect the same theory at low energy if
we assume that the confinement in the bulk does not affect the theory on the wall.

According to this argument, we conclude that a theory on the domain wall correspond-
ing to 2πk shift of Nfη

′+ θ is an SU(Nc)k CS theory. Because of the level-rank duality, an
SU(Nc)k CS theory is identified with a U(k)−Nc CS theory. Therefore, in the rest of this
paper, we use

C(4) = Nc

8π2 (B(2)
c )2, c

(3)
k = − 1

4π

[
Nc tr

(
cdc− i23c

3
)

+ 2 tr(c)dÂc
]
, (3.41)

where c is a 1-form U(k) gauge field and transforms under the 1-form gauge transforma-
tion as

c→ c− λ(1)
c 1. (3.42)

3.3 Resolution of the puzzle

We can see the resolution of the puzzle in section 2. A monopole surrounded by the domain
wall gives the integration of the magnetic flux over a time slice X2 of the wall as

1
2π

∫
X2

(
dÃV + 1

Nc
dÂc + 1

Nf
Âf

)
= 1
Nc
, (3.43)
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DW

Figure 1. A time slice of the domain wall with the operator (3.45). The surface S is infinitely long
or ended at another quark representing the color-electric flux tube.

which means Âc is non-vanishing on the wall. By the Gauss law constraint on the wall
from eq. (3.41), dc− ic2 = −dÂc1/Nc, c is forced to have the magnetic flux,

1
2π

∫
X2
d tr(c) = − Nf

2πNc

∫
X2
dÂc = −Nf

Nc
mod 1, (3.44)

which does not satisfy the quantization condition
∫

Σ d tr(c) ∈ 2πZ. Such a configura-
tion is not allowed in accordance with the discussion of the Witten effect and the Dirac
quantization.

The monopole can only be surrounded by the domain wall on which appropriate
“quark” operators are inserted. An example of such an operator is [41]

exp
(
i

∫
C

tr c
)

exp
(
i

∫
S
B(2)
c

)
, (3.45)

where C is a contour on the domain wall, and S is a two-dimensional surface whose bound-
ary contains C. The first part of the operator is the Wilson loop in a charge-Nf represen-
tation of the U(1) subgroup. Let C intersect with each time slice of the domain wall only
once. It is known that in the CS theory, the insertion of the Wilson loop causes the same
effect as the singular gauge transformation [42]. In this case, the operator corresponds to
the gauge transformation by g(ϕ) = exp(iϕ1/Nc) with an angular variable ϕ around C.
Thus, when we insert the operator (3.45), the Gauss law constraint becomes

dcg − i(cg)2 = − 1
Nc
dÂc1, cg := gcg−1 + igdg−1, (3.46)

where we only include the spatial components. Due to the singularity, the integral of
d tr(cg) should be evaluated over X2 \ Dε with an infinitely small subregion Dε around
C as

1
2π

∫
X2\Dε

d tr(cg) = − 1
2π

∫
∂Dε

d tr(igdg−1) mod 1 = −Nf

Nc
mod 1. (3.47)

Thus the Gauss law constraint can be satisfied.
The operator (3.45) itself does not have the baryon charge. However, the whole object

has the baryon charge Nf/Nc due to the Witten effect.
In full QCD, the field B(2)

c in the definition of the operator (3.45) represents the color-
electric flux tube emerging from the quark. Because C intersects with each time slice of the
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domain wall only once, the surface S has to be infinitely long or ended at another quark.
See eq. (1). The color electric flux can also be understood as the one generated by the
Witten effect since the monopole sources the color magnetic flux.

4 The effective theory on the pancake

The shift of η′ by 2πk/Nf for an integer k can be reversed by shifting U while keeping detU
fixed, where U is the U(Nf )-valued field to describe the pions and η′. As a consequence,
the domain wall corresponding to 2πk shift of Nfη

′ + θ could be bounded by a string.
At the core of the string, the chiral symmetry has to be recovered because otherwise the
energy diverges there due to the kinetic term for U .

In this paper, we mainly consider domain walls corresponding to 2πNf shift of Nfη
′+θ

bounded by a string around which η′ has the monodromy η′ → η′ + 2π. We call such an
object a pancake. For this type of domain walls, the pion field does not need to change
because η′ = η′0 and η′ = η′0 + 2π is the same point in the target space of U .

In ref. [18], it is proposed that a pancake can be regarded as a baryon. In this paper,
we clarify how to couple the background fields to pancakes and confirm that the objects
belong to an appropriate representation.

In the previous section, we have found that, in general, the effective theory on the
domain wall depends on the choice of the interior as eq. (3.40). We cannot consider that
such a domain wall breaks and has a boundary. However, when k = Nf , the wall theory
does not depend on the choice of the interior because

2πi
∫

(Ncqf +NcNfqV −NfC
(4)) ∈ 2πiZ, (4.1)

where the integral is performed over the whole spacetime. This consists with the fact that
η′ = 0 and η′ = 2π represents the same vacuum when θ = 0. Then the action of the theory
on the domain wall for k = Nf reduces to

i
1

4π

∫
Y3

[
−Nc tr

(
cdc− i23c

3
)

+Nc tr
(
AfdAf − i

2
3(Af )3

)
+ 2 (tr(Af )− tr(c)) dÂc

]
,

(4.2)

where we define a U(Nf ) gauge field as

Af := Ãf + ÃV 1. (4.3)

Actually, this is the gauge field for the U(Nf )V global symmetry. This field transforms
under the 1-form gauge transformation as

Af → Af − λ(1)
c 1. (4.4)

We can check that this action is invariant under the zero-form and 1-form gauge transfor-
mations if Y3 is a closed manifold.

For a domain wall bounded by strings, the action (4.2) is not gauge invariant. In order
to recover the gauge invariance we need to modify the action on the boundary. Because
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c is a dynamical field only on the domain wall, we can impose a boundary condition. On
the other hand, since Af and Âc are background gauge fields living in the four dimensional
spacetime, we cannot impose a boundary condition. A simple way to maintain the gauge
invariance for the background fields is to add the boundary term

−i 1
4π

∫
∂Y3

Nc tr(Afc). (4.5)

For this action, we can check the 1-form gauge invariance immediately. To check the zero-
form gauge invariance, we should consider a boundary condition for c. Because a boundary
condition should be imposed so that there are no boundary correction to the equation of
motion, the condition is that one of the components of c − Af is zero. Note that this
condition is 1-form gauge invariant. To maintain the Lorentz invariance, the choice of a
component that is imposed to be zero is restricted. We decompose the gauge fields such
as c = ctdt+ c̃, and let t denote such a component, i.e., we impose

ct −Aft = 0. (4.6)

This condition implies that c transforms under the U(Nf )V transformation in the same
way as Af on the boundary. Then we can check that the action is invariant under the
zero-form gauge transformations.

Due to the boundary condition, the theory on the wall is equivalent to the one with
only including dynamical edge degrees of freedom, that is the chiral version of the Wess-
Zumino-Witten (WZW) model [43]. In the following, we set Âc = 0. By integrating out ct
we obtain the Gauss law constraint as

f̃c = 0. (4.7)

The solution of this constraint is

c̃ = iW d̃W−1, W ∈ U(Nf ). (4.8)

Then the action reduces to

Sp = i
Nc

4π

∫
∂Y3

tr
(
Wd̃W−1W∂tW

−1dt+ 2iW d̃W−1Aft dt− ÃfA
f
t dt
)

+ i
Nc

4π

∫
Y3

tr
(
−1

3(WdW−1)3 +AfdAf − i
2
3A

3
f

)
. (4.9)

Note that under the U(Nf )V gauge transformation, the fields transform as

Af → gfAfg−1
f + igfdg

−1
f , W → gfW, gf ∈ U(Nf )V , (4.10)

on the boundary.
We can read off the baryon charge B from the action (4.9),

B = 1
2π

∫
∂Y2

tr(Af − iWdW−1)− 1
2π

∫
Y2

tr(Ff ), (4.11)

where Y2 is the slice of Y3 at a fixed t. There is no contribution from the external fields when
we take a gauge such that no Dirac string penetrates the pancake due to the cancellation
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between the bulk and boundary contributions. Therefore the baryon number is the winding
number of W around the slice corresponding to π1(U(Nf )) = Z.

It has been proposed that the operator ρ(W ) for the SymNc(�) representation ρ de-
scribes a baryon with spin Nc/2 [18]. This operator actually belongs to the correct repre-
sentation of spin Nc/2 baryons because under the U(Nf )V transformation, it transforms
as

ρ(W )→ ρ(gf )ρ(W ), (4.12)

which means that the corresponding state has baryon number one, and belongs to the
representation SymNc(�) of SU(Nf )V .

5 The role of the vector mesons

Now we obtain the consistent effective theory and boundary conditions on the wall. We
have seen that we obtained the consistent picture by coupling c to the external field Af
on the boundary. Here, we try to recover all the background fields AL and AR for the
SU(Nf )L and SU(Nf )R symmetry. Once they are recovered, the vectorial part of the
external field Af does no longer transform properly under the full global symmetry, and
thus the effective action in eqs. (4.2) and (4.5) is not invariant under the SU(Nf )L,R gauge
transformations. This is a problem since this breaks the anomaly matching condition
for SU(Nf )L × SU(Nf )R. One may use the Nambu-Goldstone field U to compensate the
gauge transformation, but it is not possible on the boundary, since the chiral symmetry
is unbroken there. We propose to include the vector meson in the theory so that the
appropriate boundary condition can be imposed.

The background gauge field for SU(Nf )L,R is introduced via U(Nf ) valued gauge fields
ÃL,R in the same way as SU(Nf )V gauge field. We impose constraints

tr F̃L,R = dÂf , (5.1)

and the fields transform under the 1-form gauge transformation as

ÃL,R → ÃL,R + λ
(1)
f 1. (5.2)

Similarly to the SU(Nf )V representation, they couple to the domain wall via Nfη
′ + θ as4

i(Nfη
′ + θ) 1

Nf

(1
2NcqL + 1

2NcqR +NcNfqV

)
(5.4)

4The counter term is chosen so that a U(1)A transformation compensates a constant shift of θ as

Lc = iθ
Nc

8π2 (NcqL/2 +NcqR/2 +NcNfqV ).

This is because, under the U(1)A transformation ψ → exp(iαγ5)ψ, the Lagrangian is shifted as

L → L+ iα(2Nfqc +NcqL +NcqR + 2NcNfqV ). (5.3)

This shift is obtained as follows. If the massless Dirac fermions ψ couple to the gauge fields L and R as
(d−iLPL−iRPR)ψ with the projection operators PL,R, the anomaly is characterized by the 6-dimensional
action

S6 = 2π
3!(2π3)

∫
tr[(dL − iL 2)3 − (dR − iR2)3].
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= i(Nfη
′ + θ) 1

4πNf

[1
2Nc tr(F2

L) + 1
2Nc tr(F2

R) + (d tr(AL) + d tr(AR))dÂc
]
,

where we define

qL,R := 1
8π2

(
tr(F̃ 2

L,R)− 1
Nf

(dÂf )2
)
, AL,R := ÃL,R + ÃV , FL,R := dAL,R − iA2

L,R.

(5.5)

This gives the theory on a domain wall for k = Nf as5

i
1

4π

∫
Y3

[
−Nc tr

(
cdc− i23c

3
)

+ 2 (tr(AL)/2 + tr(AR)/2− tr(c)) dÂc

+ 1
2Nc tr

(
ALdAL − i

2
3(AL)3

)
+ 1

2Nc tr
(
ARdAR − i

2
3(AR)3

)]
. (5.6)

However, for Y3 with a boundary, we cannot recover the gauge invariance in the same way
as in the previous section because there are two independent background fields AL and
AR. Although it seems possible that this problem is solved by using U and replacing AR
by UARU−1 + iUdU−1, we cannot use U on the boundary because the chiral symmetry is
restored there. Our claim is that, to solve this problem, we should use the vector mesons
as the gauge field for the hidden local symmetry.

5.1 Hidden local symmetry

In the formulation of the hidden local symmetry, the effective Lagrangian of the pions and
the vector mesons is written in terms of a gauge theory as follows:

Lh = LV + aLA,

LV = −f
2
π

4 tr(DµξLξ
†
L +DµξRξ

†
R)2,

LA = −f
2
π

4 tr(DµξLξ
†
L −DµξRξ

†
R)2,

DξL,R = dξL,R − ivξL,R + iξL,RAL,R, (5.7)

where v is the gauge field for the hidden local symmetry U(Nf )h, and ξL and ξR relate to
the U(Nf )-valued field U that involves the pion field and η′ as

ξ†LξR = U. (5.8)

We set L = ã+ ÃL + ÃV 1 + AA1 and R = ã+ ÃR + ÃV 1− AA1. The linear term in AA is given as the
surface integral

S6 ⊃
1

8π2

∫
[AA(2Nfqc +NcqL +NcqR + 2NcNfqV ].

This means that under the U(1)A transformation, the Lagrangian changes as eq. (5.3) if AA = 0.
5The domain wall action depends on the interior if Nc

∫
(tr(F2

L)/2 + tr(F2
R)/2)/(8π2) is not an integer.

To avoid this, we consider AL,R with the same instanton numbers. If we couple AL and AR with different
instanton charges among them, U becomes singular at a point as we discuss later. We need to modify the
effective theory to describe such a point.
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Under the gauge transformations, the fields transform as

v → hvh−1 + ihdh−1, AL,R → gL,RAL,Rg−1
L,R + igL,Rdg

−1
L,R, ξL,R → hξLg

−1
L,R,

h ∈ U(Nf )h, gL,R ∈ U(Nf )L,R. (5.9)

To maintain the 1-form gauge invariance, v transforms as

v → v − λ(1)
c 1. (5.10)

The term LA does not depend on v and reduces to the kinetic term for U . The term LV
is regarded as the mass term for v. Due to this term, fields with the U(Nf )h charge also
couple to AL and AR. Actually, when we fix the gauge so that ξ†L = ξR =: ξ, to maintain
this gauge under the global transformation, fields with the U(Nf )h charge are transformed
by h(ξ, gL, gR) that satisfies

gLξh
−1(ξ, gL, gR) = h(ξ, gL, gR)ξg−1

R . (5.11)

Therefore if gL = gR =: gf , then h(ξ, gL, gR) = gf , which means that fields with the
U(Nf )h charge has the corresponding U(Nf )V charge. The effective theory including v

should reduce to the effective theory for U if the mass term for v is minimized, i.e., if it is
satisfied that

v = 1
2(AξL

L +AξR
R ),

AξL,R

L,R := ξL,RAL,Rξ−1
L,R + iξL,Rdξ

−1
L,R. (5.12)

5.2 Coupling between the pancake and the vector mesons

We propose that, the theory on the pancake should be written using the vector mesons
v as

i
1

4π

∫
Y3

[
−Nc tr

(
cdc− i23c

3
)

+Nc tr
(
vdv − i23v

3
)

+ 2(tr(v)− tr(c))dÂc
]

(5.13)

+ i
Nc

4π

∫
∂Y3

tr(vc),

up to terms we discuss in section 5.3.6 For this action, the gauge invariance of the effective
theory on the pancake is maintained in the same way as in section 4. In order for the
CS term for v to be included, tr(f2

v ) must couple to η′, and the coupling (5.4) has to
be reproduced when we minimize the mass term for v, i.e., by substituting eq. (5.12).
Therefore the bulk action contains the coupling of v to η′ and θ as follows:

iη′Ncqv + iθ

(
bNcqv + (1− b) 1

Nf
(NcqL/2 +NcqR/2 +NcNfqV )

)
,

qv := Nc

8π2 tr
[(
fv + 1

Nc
dÂc1

)2
]
, (5.14)

6When we consider the pancake configuration made of a subset of flavors, i.e., the U(nf ) subgroup of
U(Nf ), we can start from the hidden local symmetry only for the subgroup U(nf ) and ignore the rest of
NG bosons and vector mesons. Then the gauge group of c and v are both reduced to U(nf ) while the CS
levels −Nc are unchanged.
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where the parameter b is left arbitrary within our discussion. We can check that this
reproduces eq. (5.4). When the mass term is minimized, it is satisfied that

tr(f 2
v ) = 1

2 tr(F2
L) + 1

2 tr(F2
R)− 1

2d tr[(AξL
L −A

ξR
R )(ξLFLξ−1

L − ξRFRξ
−1
R )],

tr(fv) = NfdÃV + dÂf . (5.15)

By substituting this, we obtain eq. (5.4) added by the term

i
Nc

16π2 (η′ + bθ)d tr[(AξL
L −A

ξR
R )(ξLFLξ−1

L − ξRFRξ
−1
R )]. (5.16)

This term is admissible because η′ couples to the exterior derivative of a locally gauge
invariant field, and thus the term is invariant under constant shifts of η′. Such a term does
not change the property that constant shifts of θ are compensated by shifts of η′, which
we used to determine the coupling of η′ to the background fields.

It is not enough that eq. (5.4) is reproduced when the mass term is minimized. More-
over, we need to check that the anomaly between (Z2Nf

)A and Gsub, eq. (3.21), is repro-
duced. Under the (Z2Nf

)A transformation, η′ is shifted as η′ → η′ + 2π/Nf . The phase
shift is reproduced if and only if the instanton number for v satisfies

1
8π2

∫
(Ncqv −NcqL/2−NcqR/2−NcNfqV ) ∈ NfZ (5.17)

This means that if there are no background fields, the instanton charge for v is restricted
as an integer multiple of Nf . The simplest possibility is that v cannot have instantons on
their own.

From the low-energy point of view, the left-hand side of eq. (5.17) is always zero for the
following reason. For simplicity, we set Âc = 0. If the background fields AL,R have nonzero
instanton charge, there should be topologically nontrivial transition functions gL,R of the
U(Nf )L,R transformation. Since the instanton charge is gauge invariant, the instanton
charge for vξL,R := ξL,Rvξ

−1
L,R + iξL,Rdξ

−1
L,R is the same as that for v. Since vξL,R gauge

transform in the same way as AL,R, they have the same transition function gL,R and thus
the same instanton charge as AL,R. This means the left-hand side of eq. (5.17) is zero.7

The condition (5.17) has to be maintained as long as the effective theory makes sense
such as at finite temperatures. One thing we already have assumed is that the full theory
admits a string around which η′ winds by restoring the chiral symmetry at the core. Here
we additionally need to assume that the effective theory does not admit instantons for v.
This assumption seems to prohibit a simple UV completion of the hidden local symmetry
by embedding ξL and ξR into scalar fields whose target space is linear. In such a UV theory,
it is expected that the mass term for v can vanish, and thus the singular points of ξL,R are
allowed, which means there are configurations with non-zero instanton number for v even
if there are no instanton solutions.

7This also means that the instanton charge for AL and AR is the same as long as we assume that ξL

and ξR are non-singular.
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Another thing we should check is that whether the domain wall can be identified with
a spin-Nc/2 baryon. From the point of view of the effective theory on the domain wall, v
should be regarded as a background field although it is dynamical in the four-dimensional
spacetime. The field ρ(W ) on the edge, which is defined similarly in the previous section,
transforms under the SymNc(�) representation of U(Nf )h. In the four-dimensional theory,
the pancake where the edge state corresponding to ρ(W ) excites has the correct charge of
U(Nf )V due to the mass term for v. Thus the object is regarded as a spin-Nc/2 baryon
correctly. The baryon number is given by eq. (4.11) with the replacement of Af by v,

B = 1
2π

∫
∂Y2

tr(v − iW d̃W−1)− 1
2π

∫
Y2

tr(fv), (5.18)

The contribution from v is again cancelled as long as we take a gauge where a Dirac string
does not penetrate the pancake.

The coupling of θ to the vector mesons and background fields in eq. (5.14) affects what
happens if we insert an interface of θ. Even if b is not an integer, the effective theory on
the interface from 0 to 2πNf does not depend on the choice of the interior. This is because
by using ξL and ξR, we can rewrite the term linear in b in eq. (5.14) as

ibθ

(
Ncqv −

1
Nf

(NcqL/2 +NcqR/2 +NcNfqV )
)

= i
bθ

2
∑

H={L,R}

1
4πd

(
Nc tr

[
(v −AξH

H )(fv + ξHFHξ−1
H ) + i

1
3(v −AξH

H )3
]

+ 2 tr(v −AξH
H )dÂc

)
,

(5.19)

where we have used

tr(f2
v )− tr(F2

L,R) = d tr
[
(v −AξL,R

L,R )(fv + ξL,RFL,Rξ−1
L,R) + i

1
3(v −AξL,R

L,R )3
]
. (5.20)

Here since the exterior derivative acts on the locally gauge invariant quantity, we can safely
use the Stokes theorem. Thus the effective action on the interface is the sum of eq. (5.6) and

i
b

2
∑

H={L,R}

1
4π

∫
V3

(
Nc tr

[
(v −AξH

H )(fv + ξHFHξ−1
H ) + i

1
3(v −AξH

H )3
]

+ 2 tr(v −AξH
H )dÂc

)
. (5.21)

We can consider the configuration that the pancake attaches to the interface. This
happens depending on how fast θ varies on the interface. On the edge of the pancake,
we cannot use ξL and ξR because the chiral symmetry is restored there. This means that
near the core of the string where the order parameter of the chiral symmetry breaking, fπ,
approaches to zero, the value of b should approach to an integer, m,

b→ m. (5.22)
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The contribution from the integer part, m, of eq. (5.21) does not depend on ξL and ξR,
and is given by

i
m

4π

∫
V3

[
Nc tr

(
vdv − i23v

3
)

+ 2
(
tr(v)− tr(AL)/2− tr(AR)/2

)
dÂc

−1
2Nc tr

(
ALdAL − i

2
3A

3
L

)
− 1

2Nc tr
(
ARdAR − i

2
3A

3
R

)]
. (5.23)

In this sense, we can say that on the interface, there is a CS term for v with the level mNc.
The following two values of b are rather special:

• b = 0: the vector mesons v do not couple to the interface. When the pancake attaches
to the interface, there is only the CS term for v on the pancake and not those for
c and the background fields. On the other region of the interface, there are the CS
terms for c and the background fields, and not that for v.

• b = 1: the vector mesons v couple to the interface via the CS term with the level
Nc. When the pancake attaches to the interface, there are no fields on the pancake
except for the edge. On the other region of the interface, there are the CS terms for
c and v, and not those for the background fields.

To summarize, we consider the pancake and the interface for Nf = 1. For simplicity,
we set Âc = 0, and only consider the ω meson field, the U(1) gauge field c of the CS theory,
and the U(1)V background gauge field AV . We set ξL,R = exp(iφL,R). The coupling of
these fields to η′ and θ is

Ncη
′dω2 +Ncθ(b dω2 + (1− b)dA2

V ). (5.24)

The theory on the pancake is

i
Nc

4π

∫
Y3

(−cdc+ ωdω) + i
Nc

4π

∫
∂Y3

ωc. (5.25)

The theory on the interface is

i
Nc

4π

∫
X3

(b(ω −AV + dφL/2 + dφR/2)(dω + dAV )− cdc+AV dAV )

=


i
Nc

4π

∫
X3

(−cdc+AV dAV ) for b = 0,

i
Nc

4π

∫
X3

(−cdc+ ωdω) for b = 1.
(5.26)

5.3 Relation to the generalized WZW term with the vector mesons

In the context of the hidden local symmetry, the possible generalization of WZW term
that includes the vector mesons has been discussed [33]. We consider the relation between
our proposal of the coupling between η′ and v in eq. (5.14), and the generalized WZW
term. In this subsection, we only consider the case where Âc = 0, which means the 1-
form symmetry corresponding to λ(1)

c is fixed. Especially, AL,R are 1-form gauge invariant.
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Note that we consider the WZW term corresponding to the anomaly for U(Nf )L×U(Nf )R
because the axial U(1) symmetry is restored at the leading order of the 1/Nc expansion.
The external gauge field for the axial symmetry is later taken to be vanishing, AA = 0, since
the symmetry is broken when we include the 1/Nc corrections in the effective Lagrangian.

We can only add the gauge invariant terms to the WZW term in order to match the
’t Hooft anomaly, and thus possible additional terms consist of the gauge covariant building
blocks fv, F̂L,R := ξL,RFL,Rξ−1

L,R and α̂L,R := AξL,R

L,R − v. The additional term to the WZW
term is written as a linear combination of four terms as [44]

Γ[ξL, ξR, v,AL,AR] =ΓWZW[ξ†LξR,AL,AR] + Γv,

Γv :=− i Nc

16π2

∫
M4

4∑
i=1

ciLi,

L1 = tr(α̂3
Lα̂R − α̂3

Rα̂L),

L2 = tr(α̂Lα̂Rα̂Lα̂R),

L3 = tr(fv(α̂Lα̂R − α̂Rα̂L)),

L4 =1
2 tr

(
F̂L(α̂Lα̂R − α̂Rα̂L)− F̂R(α̂Rα̂L − α̂Lα̂R)

)
. (5.27)

The four terms, Li, are the general gauge invariant 4-forms that conserve parity and charge
conjugation but violate the intrinsic parity.

The term (5.14) is included if we choose c1 = 2/3, c2 = −1/3, c3 = 1, c4 = 1 as8

Γ ⊃ i Nc

8π2

∫
η′ tr(f2

v ). (5.28)

However, this does not mean that the values of c1, . . . , c4 are fixed for the following reason.
We can add freely terms in the form dη′A(3) for a locally gauge invariant 3-form field A(3)

because they only add locally gauge invariant terms to the effective action on the wall. The
problem is how to deal with them on the edge of the domain wall if A(3) includes ξL,R. On
the edge, the chiral symmetry is restored and we cannot use ξL,R. A simple possibility is
that they become zero at the point where the chiral symmetry is restored. By considering
the finite thickness of the string, it is possible that the coefficients ci gradually deform
into a required combination as we approach to the core of the string. If the terms behaves
like that, we can add them to the effective theory without affecting the argument in the
previous section.

6 Summary and discussion

By the consideration of the large Nc limit of QCD, the η′ potential should have cusps at
Nfη

′ + θ = nπ with n odd integers. We find that the consistent effective theory of the η′
meson should be accompanied by the dynamical domain wall which appears when Nfη

′+θ

8The same values of ci are proposed in ref. [21] in the similar context.
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goes across the cusp. On the domain wall, there should be a Chern-Simons (CS) theory in
order for the anomaly matching to be satisfied.

The domain wall can have an edge where the chiral symmetry is restored. In this
circumstance, in order to impose a consistent boundary condition, we find that the gauge
boson of the hidden local symmetry, i.e., the vector mesons, should couple to that of the
CS theory. The whole framework gets consistent by this construction, and the quantum
numbers of the pancake excitations are correctly obtained as the spin-Nc/2 baryons.

It is interesting to find that the existence of the pancake configuration is made possible
by the presence of the vector mesons, and thus it is essential to include them in the
effective theory.

Another interesting finding is that the consistency of the periodicity of η′ requires
that the vector mesons should not have a non-vanishing instanton number. This indicates
that a simple UV completion of the hidden local symmetry by a linear sigma model is not
possible. This has some implication for the discussion of the finite temperature system
or in general for the chiral phase transition. The vector mesons should not simply go to
massless near the transition point.

By the analogy with the Seiberg duality [24] in supersymmetric QCD, the effective
theory as a U(Nf ) gauge theory based on the hidden local symmetry can be interpreted as
some “dual” description of QCD [25–31]. Our discussion clarifies what is really the relation
between the gluon and the vector mesons. In the UV theory, if we insert a sharp interface
of θ from 0 to 2πNf , there appears an SU(Nc)Nf

CS theory whose gauge field is the gluon
field. If we assume that confinement in the bulk does not affect the theory on the wall, we
find that even at low energy, the gauge field of the CS theory on the wall is actually the
gluon field. The field c in our description of the wall theory, eq. (5.13), is the gauge field
in the level-rank dual of the SU(Nc)Nf

CS theory. In this sense, c can be regarded as the
“dual gluon field.” The CS theory of c and the hidden local symmetry of v have the same
gauge group, U(Nf ), which makes it possible for them to mix. Indeed, we find that such
a mixing is necessary on the edge of the pancake as in eq. (5.13) in order to maintain the
gauge invariance of the external gauge fields, i.e., for consistency.

Let us go back to the discussion of the phase transition. When we go to the finite
temperature system, η′ can cross the cusps of the potential more easily and frequently at
high temperatures. In this situation, c can propagate in the four-dimensional space due
to creation of the pancakes, and mixes with v and they are eventually indistinguishable.
Although a simple linear sigma model is not possible as we discussed above, the vector
mesons can gradually deform into the dual gluons in this picture. If this is the correct pic-
ture, the pancakes are essential for the description of the behavior of the vector resonances
near the phase transition.

It is interesting to consider the S1 compactified QCD where θ winds around the S1

direction Nf times. The three-dimensional effective theory for a small radius is known
to be an SU(Nc)Nf

CS theory, and for a large radius, the effective theory is the one we
discussed in this paper. In ref. [22], it has been claimed that the two limits of the theory
are interpolated by the Higgs mechanism of a U(Nf )−Nc CS theory with 2Nf scalar fields.
Our result is consistent with this. At a small radius where the change of θ is so rapid, η′
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cannot follow the change of θ, which means there appears the domain wall with k = Nf .
The U(Nf )−Nc CS theory of c is realized on the wall, which is naturally identified as the
level-rank dual of the theory in the small radius limit, SU(Nc)Nf

. The gauge boson of
SU(Nc)Nf

is nothing but the gluons. On the other hand, for a large radius, η′ follows the
change of θ, and then there is no domain wall. Instead of the CS theory for c, there is a
CS Higgs theory for the vector mesons (at least if m in eq. (5.23) is not equal to 1). Again,
the creation of the pancakes can make the transition smooth by the mixing between v and
c on the edges. Although the simple Higgs mechanism does not work in four dimensions,
the transition of the lowest modes, i.e., the three-dimensional effective theory, can be a
smooth transition from the CS Higgs theory of vector mesons to the CS theory of c as the
radius gets smaller.
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