
Vector Models for Data-Parallel Computing

Guy E. Blelloch

The MIT Press

Cambridge, Massachusetts

London, England

c© 1990 Massachusetts Institute of Technology

vi

Contents

Preface xiii

Acknowledgments xv

1 Introduction 1

1.1 Parallel Vector Models . 3

1.2 Vector Instructions . 5

1.3 Implementation . 9

1.4 Summary and Roadmap . 10

I Models 15

2 Parallel Vector Models 19

2.1 The Vector Random Access Machine . 19

2.2 Comparison to P-RAM Models . 22

2.3 Comparison to Circuit and Network Models 27

2.4 Comparison to Bit-Vector Models . 30

2.5 Selecting Primitives . 31

2.6 Other Issues . 31

2.6.1 Serially Optimal Algorithms . 31

2.6.2 Space Complexity . 32

2.6.3 Equal Time Assumption . 32

2.6.4 Do We Need the Scalar Memory? 32

2.7 Conclusion . 33

3 The Scan Primitives 35

3.1 Why Scan Primitives? . 37

vii

viii CONTENTS

3.2 Notation . 39

3.3 Example: Line-of-Sight . 40

3.4 Simple Operations . 42

3.4.1 Example: Split Radix Sort . 43

3.5 Segments and Segmented Scans . 45

3.5.1 Example: Quicksort . 46

3.5.2 Notes on Segments . 47

3.6 Allocating Elements . 48

3.6.1 Example: Line Drawing . 50

3.6.2 Notes on Allocating . 51

3.7 Long Vectors and Load Balancing . 51

3.7.1 Load Balancing . 53

3.7.2 Example: Halving Merge . 54

3.7.3 Notes on Simulating Long Vectors 56

4 The Scan Vector Model 59

4.1 The Scan Vector Instruction Set . 59

4.1.1 Scalar Instructions . 61

4.1.2 Elementwise Instructions . 61

4.1.3 Permute Instructions . 62

4.1.4 Scan Instructions . 63

4.1.5 Vector-Scalar Instructions . 63

4.2 Simple Operations . 64

4.3 Segments and Segmented Instructions 67

4.4 Segmented Operations . 68

4.5 Additional Instructions . 70

4.5.1 Merge Instruction . 70

4.5.2 Combine Instructions . 71

4.5.3 Multi-Extract Instruction . 72

4.5.4 Keyed-Scan Instructions . 73

II Algorithms 75

5 Data Structures 79

5.1 Graphs . 79

5.1.1 Vector Graph Representations 80

5.1.2 Neighbor Reducing . 83

5.1.3 Distributing an Excess Across Edges 83

CONTENTS ix

5.2 Trees . 84

5.2.1 Vector Tree Representation . 84

5.2.2 Leaffix and Rootfix Operations 86

5.2.3 Tree Manipulations . 87

5.3 Multidimensional Arrays . 91

6 Computational-Geometry Algorithms 93

6.1 Generalized Binary Search . 94

6.2 Building a k-D Tree . 96

6.3 Closest Pair . 99

6.4 Quickhull . 101

6.5
√
n Merge Hull . 103

6.6 Line of Sight . 105

7 Graph Algorithms 109

7.1 Minimum Spanning Tree and Connectivity 110

7.2 Maximum Flow . 114

7.3 Maximal Independent Set and Biconnectivity 114

8 Numerical Algorithms 117

8.1 Matrix-Vector Multiplication . 117

8.2 Linear-Systems Solver . 118

8.3 Simplex . 122

8.4 Outer Product . 123

8.5 Sparse-Matrix Multiplication . 123

III Languages and Compilers 127

9 Collection-Oriented Languages 131

9.1 Collections . 132

9.2 Collection Operations . 135

9.3 Mapping Collections onto Vectors . 138

10 Flattening Nested Parallelism 143

10.1 Nested Parallelism and Replicating . 144

10.2 The Replicating Theorem . 147

10.3 Access-Restricted Code . 149

10.4 Access-Fixed Replicating Theorem . 150

10.5 Indirect Addressing . 152

x CONTENTS

10.6 Conditional Control . 154

10.6.1 Branch-Packing . 154

10.6.2 Contained Programs . 157

10.6.3 Containment of Functions in Book 160

10.6.4 Round-Robin Simulation . 161

11 A Compiler for Paralation Lisp 163

11.1 Source Code: Paralation Lisp . 165

11.1.1 Data Structures . 166

11.1.2 Operators . 167

11.1.3 Restrictions . 169

11.2 Target Code: Scan-Vector Lisp . 169

11.2.1 Data Structures . 170

11.2.2 Operations . 170

11.3 Translation . 171

11.3.1 Data Structures . 171

11.3.2 Operations . 175

IV Architecture 185

12 Implementing Parallel Vector Models 189

12.1 Implementation on the Connection Machine 189

12.1.1 The Vector Memory . 190

12.1.2 The Instructions . 192

12.1.3 Optimizations . 193

12.1.4 Running Times . 195

12.2 Simulating on P-RAM . 195

13 Implementing the Scan Primitives 197

13.1 Unsigned +-Scan and Max-Scan . 197

13.1.1 Tree Scan . 198

13.1.2 Hardware Implementation of Tree Scan 199

13.1.3 An Example System . 202

13.2 Directly Implementing Other Scans . 202

13.2.1 Backward and Segmented Scans 203

13.2.2 Multidimensional Grid Scans 205

13.3 Floating-Point +-Scan . 205

CONTENTS xi

14 Conclusion 209

14.1 Contributions . 210

14.2 Directions for Future Research . 211

14.3 Implementation Goals . 212

14.4 Development of Book Ideas . 213

A Glossary 217

B Code 223

B.1 Simple Operations . 224

B.2 Segments . 226

B.2.1 Useful Utilities . 226

B.2.2 Segment Descriptor Translations 227

B.2.3 Segmented Primitives . 228

B.2.4 Segmented Conditionals . 229

B.3 Other Routines . 229

C Paralation-Lisp Code 231

C.1 Utilities . 231

C.2 Line Drawing . 233

C.3 Quad-Tree . 233

C.4 Convex Hull: Quickhull . 234

C.5 Quicksort . 235

C.6 Entropy . 236

C.7 ID3: Quinlan’s Learning Algorithm . 237

Bibliography 243

Index 251

xii CONTENTS

Preface

This book is a revised version of my Doctoral Dissertation, which was completed at the

Massachusetts Institute of Technology in November, 1988. The main purpose of the work

was to explore the power of data-parallel programming; this exploration lead to the follow-

ing conclusions:

1. The advantages gained in terms of simple and clean specifications of applications, al-

gorithms, and languages makes a data-parallel programming model desirable for any

kind of tightly-coupled parallel or vector machine, including multiple-instruction

multiple-data (MIMD) machines.

2. The range of applications and algorithms that can be described using data-parallel

programming is extremely broad, much broader than is often expected. Further-

more, in most applications there is significantly more data-parallelism available than

control parallelism.

3. The power of data-parallel programming models is only fully realized in models

that permit nested parallelism: the ability to call a parallel routine multiple times in

parallel—for example, calling a parallel matrix-inversion routine over many different

matrices, each possibly of a different size, in parallel. Furthermore, to be useful, it

must be possible to map this nested parallelism onto a flat parallel machine.

4. A set of scan primitives are extremely useful for describing data-parallel algorithms,

and lead to efficient runtime code. The scan primitives can be found in every algo-

rithm in this book with uses ranging from load-balancing to a line-of-sight algorithm.

The work does not claim that data-parallel programming models are applicable to all prob-

lems, but it demonstrates that for a very wide class of problems, data-parallel programming

models are not only applicable, but preferable, for programming tightly-coupled machines.

xiii

xiv PREFACE

Outline

This book is organized into four parts, models, algorithms, languages and architecture,

which are summarized as follows:

1. Models: formally defines a class of strictly data-parallel models, the parallel vector

models. The definition is based on a machine that can store a vector in each memory

location and whose instructions operate on these vectors as a whole—for example,

elementwise adding two equal length vectors. In the model, each vector instruction

requires one “program step”. The model also supplies a complexity measure based

on the lengths of the vectors.

2. Algorithms: shows how data structures including graphs, grids and trees can be

represented with vectors so that many useful operations, such as summing neigh-

bors in a graph, can be executed in a constant number of program steps. It then

describes algorithms for a wide variety of problems, ranging from sorting to linear-

programming, and from finding the minimum-spanning-tree of a graph to finding

the closest-pair in a plane.

3. Languages: describes how a class of very-high-level languages, the collection-

oriented languages can be mapped onto the parallel vector models. This class of

languages includes SETL, PARALATION LISP, and APL. This part also describes

a working compiler for PARALATION LISP. The compiler is the first compiler for

a data-parallel programming language that compiles nested-parallel constructs into

completely parallel code.

4. Architectures: describes the implementation of parallel vector models on the Con-

nection Machine. The techniques used are applicable to most tightly-coupled com-

puters, both SIMD and MIMD. This part also shows how various scan instructions

can be implemented efficiently in hardware.

The book tries as much as possible to be complete, in the sense that it tries to show all sides

of the story. To show that a parallel quicksort can be written in three lines of impeccable

code, but that it then runs twice as slow on 10 processors of an Encore Multimax than a C

version of quicksort on a single processor, would be incomplete.

Acknowledgments

I would mostly like to thank Charles Leiserson, my advisor, for convincing me to take these

ideas and turn them into a thesis. He helped me recognize what was important, and made

many contributions to this work. I would also like to thank the rest of my thesis committee,

Tom Knight, Jim Little, and Guy Steele, for their invaluable help. Tom Knight introduced

me to parallel computing and first got me interested in the Connection Machine. Jim Little

helped flesh out many of my ideas, and was a great person to talk to about anything. Guy

Steele helped me understand the importance of clean and simple definitions.

I would like to thank Danny Hillis and David Waltz for their guidance. As with Charles,

Danny helped convince me that the material in this book would make a good thesis. Dave

gave me a lot of advice on general approaches to research. I spent many hours talking with

Gary Sabot and Cliff Lasser about parallel languages. Without Gary’s PARALATION LISP,

I would have never implemented the compiler I discuss in Chapter 9. Without Cliff’s work

on *Lisp, Connection Machine programming would have been set back a year.

The work on grid operations and the algorithms based on them is joint work with Ajit

Agrawal, Cynthia Phillips and Robert Krawitz. Some of the work on computational ge-

ometry algorithms is joint work with James Little. Some of the work on the PARALATION

LISP compiler is joint work with Gary Sabot. Some of the work on graph algorithms is

joint work with Andrew Goldberg and Charles Leiserson. Some of the work on tree manip-

ulations is joint work with Charles Leiserson. The split-pack sort was thought up by John

Rose, Abhiram Ranade and me. The radix-sort described in Section 4.5.4 was though of

independently by Craig Stanfill, Abhiram Ranade and me. The quicksort using segmented

scans was though of by Guy Steele and me. These sorting algorithms are simple enough

that I am sure many people have thought of them before. Charles Leiserson suggested the

proof that a floating-point +-reduce would never lose more than one bit. Charles

In addition to my thesis committee, I would like to thank Paul Resnick and Gary Sabot

for making detailed comments on a draft of the book. These comments greatly improved

xv

xvi ACKNOWLEDGMENTS

the presentation of the book.

I had many helpful conversations with, and suggestions from, Philip Agre, Alan Baw-

den, Todd Cass, Michael Drumheller, Carl Feynman, Donna Fritzsche, Lennart Johnsson,

Brewster Kahle, John Mallery, Stephen Omohundro, Alan Ruttenberg, James Salem, Karl

Sims, and Lewis Tucker. I am grateful to the people I met during my interviews for many

useful comments. Especially to John Canny, Thomas Cheatham, Allan Fisher, Thomas

Gross, John Hennesey, Paul Hudack, Richard Karp, H.T. Kung, Dragutin Petkovic, Jorge

Sanz, Mark Snir, Jeff Vitter, and Daniel Weise.

I would like to thank Esther Peres for proofreading the book, Cheah Schlueter for

helping me with the index, and Jerry Roylance and Chris Lindblad for implementing the

tools used to automatically insert the figures into this thesis with absolutely no cutting or

pasting. I would also like to thank the School of Computer Science at Carnegie Mellon

University for giving me the time to convert my dissertation into this book.

This work was motivated and supported by the excellent environments at Thinking

Machines and at the M.I.T. Artificial Intelligence Laboratory. If there were a handful of

people I had to name whose ideas most affected this thesis, I would name Kenneth Batcher,

W. Daniel Hillis, Kenneth Iverson, Charles Leiserson, Jacob Schwartz, Guy Steele and Uzi

Vishkin.

Chapter 1

Introduction

In the past decade there has been a titanic quantity of research and development on parallel

computing. This work has spanned the three core areas of computer science: theory, lan-

guages and architecture. Unfortunately, the work in these three areas has evolved almost

independently: the most attractive algorithmic models and the most general languages have

not been implemented on the most successful machines, and the algorithms have not been

described using the languages.

This book defines a class of data-parallel machine models called parallel vector mod-

els and demonstrates that these models are an excellent framework on which to unify these

three areas of parallel computing. Parallel vector models can be mapped onto a broad vari-

ety of architectures and can serve both as algorithmic models to analyze the complexity of

algorithms, and as instruction sets for a virtual machine to which higher level programming

languages can be compiled. The goal of this unification is to make it possible to program

parallel algorithms in high-level languages, to have the algorithms execute efficiently on

a diverse set of real machines, to be able to derive theoretical complexity measures of the

algorithms, and to have these complexities be an accurate predictor of actual running times

(see Figure 1.1).

This introduction outlines the general architecture of the parallel vector models; intro-

duces two important classes of primitive instructions, the scan and segmented instructions;

shows how the model and the instructions can be used to compile part of a parallel quick-

sort algorithm; and motivates the book.

1

2 CHAPTER 1. INTRODUCTION

Quicksort in a Very-High Level Language (SETL)

proc quicksort(s);

if #s< 2 then return s; end;

x := random s;

lesser-elts := {y in s|y< x};

greater-elts := {y in s|y≥ x};

return quicksort(lesser-elts) + [x] + quicksort(greater-elts);

end proc quicksort;

↓
Parallel Vector Models

↓ ↓
Parallel Computers Algorithmic Models

Vector:

CRAY Y-MP, Convex C240, Hitachi S-820

Shared Memory:

Encore Multimax, Sequent Balance

Distributed Memory, MIMD:

Intel iPSC/2, Intel/CMU iWARP

Distributed Memory, SIMD:

NASA MPP, Thinking Machines CM2

(Expected Time)

P-RAM:

O(n lgn/p+ lg2 n)

Circuit Models:

s= O(n lg2 n) d = O(lg2 n)

Hypercube Model:

O(n lg2 n/p+ lg2 n)

Grid Model:

O(n lgn/
√
p+

√
p lgn)

Figure 1.1: A high level, inherently parallel, description of quicksort in the language SETL

[100]. The parameter s is a set of input keys. The form #s returns the size of s, random s

returns a randomly selected element of s, and + appends two sequences. Ideally we would

like to translate this description into efficient code for a broad variety of architectures, and

also to determine the complexity of the algorithm on various theoretical models. This book

suggest that the parallel vector models are a good basis on which to merge these goals.

1.1. PARALLEL VECTOR MODELS 3

Figure 1.2: The architecture of a V-RAM. The machine is a random access machine

(RAM) with the addition of a vector memory, a parallel vector processor, and a vector

input/output port. Each location of the vector memory can contain a vector of different

length. The parallel vector processor executes operations on whole vectors.

1.1 Parallel Vector Models

As with a random access machine (RAM) model [40] or the Turing machine model [116],

the parallel vector models are conveniently defined in terms of a machine architecture, the

vector RAM (V-RAM). The V-RAM is a standard serial RAM with the addition of a vec-

tor memory and a vector processor (see Figure 1.2). Each memory location in the vector

memory can contain an arbitrarily long vector of atomic values; the vector length is asso-

ciated with the vector not the memory location. Each instruction of the vector processor

operates on a fixed number of vectors from the vector memory and possibly scalars from

the scalar memory. A vector instruction might, for example, sum the elements of a vector,

rearrange the order of the elements of a vector, or merge the elements of two sorted vec-

tors (see Figure 1.3). A program for a V-RAM is no different from a program for a serial

RAM except that it can include these additional vector instructions. A dot-product of two

vectors, for example, could be executed with an instruction which elementwise multiplies

the elements of two vectors followed by an instruction that sums the elements of a vector.

The set of instructions that a V-RAM supplies can have a strong effect on the power of the

machine—this is discussed in the next section.

Two time complexity measures are associated with the execution of a program on a

4 CHAPTER 1. INTRODUCTION

Mv[0] = [3 17 7 13 5 1 11 2]

Ms[0] ← sum Mv[0] = 59

Mv[0] (data vector) = [c o g n i t i o n]

Mv[1] (index vector) = [2 8 4 1 0 7 6 3 2]

Mv[2] ← permute Mv[0],Mv[1] = [i n c o g n i t o]

Mv[0] = [4 7 11]

Mv[1] = [2 9 12 21]

Mv[2] ← merge Mv[0],Mv[1] = [2 4 7 9 11 12 21]

Mv[0] = [5 1 3 4 3 9 2 6]

Mv[1] = [2 5 3 8 1 3 6 2]

Mv[2] ← p+ Mv[0],Mv[1] = [7 6 6 12 4 12 8 8]

Figure 1.3: Some vector instructions. The sum instruction sums the elements of a vector,

the permute instruction rearranges the elements of a vector according to a second vector

of indices, the merge instruction merges the elements of two sorted vectors, and the ele-

mentwise add instruction (p+) adds corresponding elements of two vectors. Mv[i] is the ith

location of the vector memory, and Ms[i] is the ith location of the scalar memory.

V-RAM: the step complexity and the element complexity. The step complexity is the num-

ber of steps executed by a program, and the element complexity is the sum, over the steps,

of the lengths of the vectors manipulated in each step. The two complexities can be thought

of as the parallel and serial complexities, respectively, and are analogous to the depth and

size complexities in the boolean circuit models [117, 26, 37, 38]. To guarantee that the

primitives run in reasonable times, and to put useful bounds on simulating them on other

models, we place two restrictions on the vector primitives. First, we require that all vector

instruction can be simulated on a serial RAM in O(n) time on vectors of length n. With

this requirement, the element complexity is an asymptotic upper bound on the time com-

plexity of simulating a V-RAM program on a RAM. Second, we require that all primitives

can be executed on a boolean circuit of depth O(lgn) (are in NC1 [37]). This guarantees a

reasonable bound on the parallel complexity of the algorithms.

We consider the salient features of this machine model, especially as compared to

models based on a set of communicating serial processors (multiprocessors), such as the

1.2. VECTOR INSTRUCTIONS 5

P-RAM models1, the message passing models or the hypercube models. First, the total

work performed on each “program step” of a V-RAM is not constant since each vector

can have a different length, while on a multiprocessor, the total work performed on a step

is equal to the number of processors. It is for this reason that the element complexity is

important in the V-RAM. Second, the model has very strict serial control; it does not even

allow certain elements to be turned off such as allowed in the SIMD P-RAM models, or

in the data-parallel model of Hillis and Steele [54]. This book is therefore a interesting

demonstration of the power of strict serial control. Third, the V-RAM permits a broader

set of primitives—the primitives are no longer limited to local processor computations and

various forms of memory references or messages.

Models, such as the parallel vector models, that center around collections of values and

operate on these collections as a whole, are henceforth called collection-oriented models.

Similarly, models based on a set of communicating serial processors, are henceforth called

processor-oriented models. The key difference is that the collection-oriented models ex-

ecute a set of parallel primitives, whereas the processor-oriented models execute a set of

serial primitives in parallel—one per processor. For example, a vector model scan prim-

itive is a parallel primitive executed in serial, while a P-RAM shared-memory-read is a

serial primitive executed in parallel, once per processor.

1.2 Vector Instructions

The term “vector model” invokes in the minds of many computer scientists thoughts of

highly-regular numerical algorithms, perhaps written in FORTRAN and executed on serial

vector machines, such as a CRAY computer [95]. Given a sufficiently weak set of vector

instructions, the usefulness of the vector models is indeed restricted to a handful of highly-

regular algorithms. This book will demonstrate, however, that given a sufficiently powerful

set of instructions, the parallel vector models are useful for a surprisingly wide variety of

algorithms.

This section introduces two classes of vector instructions: the scan2 instructions and

the segmented instructions. The combination of these instructions can be found in almost

all the algorithms described in this book. The section also shows how the instructions can

be used to execute parts of the quicksort algorithm shown in Figure 1.1.

1Appendix A contains a brief description of the P-RAM models.
2The term scan is taken from APL [61]. In the computer theory community the operation is usually referred

to as the all prefix sums operation. A brief history of the operation can be found in Appendix A.

6 CHAPTER 1. INTRODUCTION

The Scan Instruction

A scan instruction for a binary associative operator ⊕, takes a vector of values A and returns

to each position of a new equal-length vector, the operator sum of all previous positions in

A. For example:

A = [1 3 5 7 9 11 13 15]

+-scan(A) = [0 1 4 9 16 25 36 49]

B = [3 2 1 6 5 4 9]

max-scan(B) = [0 3 3 3 6 6 6]

In the quicksort algorithm (see Figure 1.1), the scan instructions can be used to select

the lesser-elts and greater-elts. Assuming the keys s are stored in a vector, the statement

{y in s|y < x} can be implemented as shown in Figure 1.4. The implementation first dis-

tributes the pivot x across a new vector x′; this distribution is itself a type of scan. Then, to

select the lesser elements, the implementation elementwise compares the pivot vector with

the s vector returning a vector of 1s and 0s. A +-scan on this result returns a unique in-

dex to each element less than the pivot. A version of the permute primitive is then used to

move the lesser elements into a new smaller vector based on these indices. The greater-elts

can be selected similarly.

The Segmented Instructions

A segmented vector is a vector partitioned into a set of contiguous segments. The seg-

mented vector can be represented with two vectors, one containing the values and the

second containing the length of each segment. For example, the two vectors:

A = [s y l l a b l e s]

L = [3 2 4]

would represent the vector:

A′ = [s y l] [l a] [b l e s] .

The segmented instructions are versions of the vector instructions that execute inde-

pendently over each segment of a segmented vector. For example, consider the following

operations:

1.2. VECTOR INSTRUCTIONS 7

$ x is the pivot

$ s is the set of values

lesser-elts := {y in s|y< x}
↓

l ← length(s);

x′← distribute(x,l);

f ← s p< x′;
i ← +-scan(f);

$ select-permute permutes elements s

$ to index i if flag f is set.

lesser-elts ← select-permute(s,i, f);

SETL to Vector Model Translation

s = [7 18 6 3 14 9 0 16 11]

x = 9

l = 8

x′ = [9 9 9 9 9 9 9 9 9]

f = [1 0 1 1 0 0 1 0 0]

i = [0 1 1 2 3 3 3 4 4]

lesser-elts = [7 6 3 0]

Example

step complexity = 1+1+1+1+1 = O(1)
element complexity = 1+n+n+n+n = O(n)

Complexity

Figure 1.4: The program transformation needed to convert the SETL code, which selects

elements of s less than the pivot x, into instructions for a parallel vector machine ($ is the

comment character in SETL). Also, an example of the execution of the vector instructions,

and the complexity of the vector model code.

8 CHAPTER 1. INTRODUCTION

Quicksort

↓ ↓
Quicksort Quicksort

↓ ↓ ↓ ↓
Quicksort Quicksort Qs Quicksort

↓ ↓ ↓ ↓ ↓ ↓
Qs Qs Quicksort Quicksort Quicksort Qs

↓ ↓ ↓ ↓ ↓ ↓
Qs Qs Qs Qs Qs Qs

Figure 1.5: The quicksort algorithm. Just using parallelism within each block yields a

step complexity proportional to the number of blocks (O(n)). Just using parallelism from

running the blocks in parallel yields a step complexity at least proportional to the largest

block (O(n)). By using both forms of parallelism the step complexity is proportional to the

depth of the tree (expected O(lgn)).

A = [6] [1 3 7 9]

B = [2 4 7] [4 8]

seg-+-scan(A) = [0] [0 1 4 11]

seg-merge(A, B) = [2 4 6 7] [1 3 4 7 8 9] .

To illustrate the importance of segments and segmented instructions, consider the quick-

sort example again. When applied to a set s, quicksort splits the set into two subsets (the

elements lesser and greater than the pivot) and calls itself recursively on each set. This

recursive invocation generates a tree of calls which would look something like the tree

shown in Figure 1.5. If we were to only take advantage of the parallelism within each

quicksort to subselect the two sets (the parallelism within each block), we would do well

near the root and badly near the leaves. Inversely, if we were to only take advantage of the

parallelism available by running the invocations of quicksort in parallel (the parallelism

between blocks but not within a block), we would do well at the leaves and badly at the

root. In both cases the parallel time complexity is O(n) rather than the ideal O(lgn) (the

expected depth of the tree).

Segments and segmented instructions allow a simple technique for using both kinds of

parallelism. Each invocation of quicksort at a single level of the recursion tree is placed in

a separate segment of a segmented vector and the segmented instructions are used to split

the values independently within each segment. This allows the implementation to execute

a whole level of the tree at a time (with a constant number of vector instructions); near the

1.3. IMPLEMENTATION 9

root of the recursion tree the segmented vector contains a few large segments while at the

leaves it contains many small segments. The expected step complexity of the algorithm is

O(lgn) (if somewhat careful about picking pivots) and the expected element complexity is

O(n lgn).

Chapter 10 derives a general theorem about how segments can be used to execute nested

parallel code, and the compiler discussed in Chapter 11 uses the derived techniques.

1.3 Implementation

This section outlines how a V-RAM can be implemented on two architectures: a shared

memory SIMD multiprocessor and a distributed memory MIMD multiprocessor. As exam-

ples, it considers two vector instructions: an elementwise add (p+) and a permute. Details

on how to implement the scan instructions and the segmented instructions are discussed in

Chapters 3 and 13. Details of how to implement a V-RAM on the Connection Machine, a

distributed memory SIMD multiprocessor, are discussed in Chapter 12.

Shared Memory SIMD Multiprocessor

The vector memory is simulated by placing each vector in a contiguous region of the shared

memory and assigning each processor to an independent block of each vector. When ex-

ecuting a vector instruction on a vector a, each processor loops over the elements of a it

is responsible for. The processor only needs to know the offset address of the vector, the

number of elements per processor, and its processor number, to determine the memory ad-

dresses to access. For example, in a p+ instruction, each processor loops over its elements

in the two source vectors, adds them together, and stores the result in the destination vec-

tor. For a permute instruction, each processor reads a value and index for its elements, and

writes the value in the destination vector at the position specified by the index (it needs only

know the offset of the destination vector). For a vector of length n, and for p processors,

each primitive will run in O(n/p+1) time.

Distributed Memory MIMDMultiprocessor

Each vector is evenly divided among the processor memories. The processors run in single

program multiple data (SPMD) mode and each processor is responsible for the elements in

its own memory. The p+ only requires local operations. The permute instruction requires

sending data to other processors—based on the index each source processor determines

the destination processor for each of its elements and sends the elements to those proces-

sor (this assumes the machine has some kind of routing facility). Synchronization is not

10 CHAPTER 1. INTRODUCTION

required after the elementwise operations, but a barrier synchronization is required after

the permute. If the vectors are large compared to the number of processors, the synchro-

nization overhead becomes relatively small, and the latency of the router becomes less

significant (just the throughput matters).

1.4 Summary and Roadmap

With a basic understanding of the vector models and how they compare to other parallel

models, we now return to and expand on the central claim of this book, the claim that

parallel vector models can be mapped onto a broad variety of architectures and are good

both as algorithmic models to analyze the complexity of algorithms, and as instruction sets

for a virtual machine to which higher level programming languages can be compiled. We

mention each of the core areas—algorithms, languages and architectures—separately and

then consider how they fit together.

Algorithms

The parallel vector models can be used to implement a broad variety of algorithms, much

broader than might be expected. This book describes algorithms ranging from graph al-

gorithms, to numerical algorithms. Table 1.1 lists the algorithms described in this book

along with the section in which they appear and their complexities. The parallel vector

models allow quite concise description of these parallel algorithms since they hide many

low level issues from the algorithm designer, such as synchronization, processor allocation,

and simulation of multiple elements on each processor.

The parallel vector models have a theoretical foundation that is no weaker than other

parallel algorithmic models, such as the P-RAM or boolean-circuit models. The com-

plexity measures in the parallel vector models can both be mapped onto the complexity

measures of other models (see Section 12.2), and are powerful on their own.

Languages

The parallel vector models form an natural virtual machine on which to compile many very

high-level languages such as APL [59, 60], APL2 [58], CM-LISP [108], NIAL [77, 99],

PARALATION LISP [96], SETL [100]. These languages are all based on manipulating

collections of values as a whole. Chapter 11 describes a compiler that translates a sub-

set of PARALATION LISP onto the instructions of the scan vector model. Appendix C

shows many algorithms—including a convex-hull, a quicksort and a learning algorithm—

implemented in PARALATION LISP.

1.4. SUMMARY AND ROADMAP 11

Algorithm Section Complexity

Step Element

Sorting and Merging

n Keys

Split-Radix Sort 3.4.1 O(lgn) O(n lgn)
Quicksort 3.5.1 O(lgn) O(n lgn)
Halving Merge 3.7.2 O(lgn) O(n)

Computational-Geometry

n Points

Closest Pair 6.3 O(lgn) O(n lgn)
Quickhull (m Hull Points) 6.4 O(lgm) O(n lgm)√
n Merge Hull 6.5 O(lgn) O(n lgn)

Line of Sight 6.6 O(1) O(n)
Line Drawing 3.6.1 O(1) O(n)

Graph

n Vertices, m Edges

Minimum Spanning Tree 7.1 O(lgn) O(m lgn)
Maximum Flow 7.2 O(n2) O(n2m)
Maximal Independent Set 7.3 O(lgn) O(m lgn)
Biconnected Components 7.3 O(lgn) O(m lgn)

Numerical

n×m Dense Matrices

Matrix-Vector Multiply 8.1 O(1) O(nm)
Linear-Systems Solver (n= m) 8.2 O(n) O(n2)
Step of Simplex 8.3 O(1) O(nm)

Table 1.1: A list of the algorithm described in this book along with the section they appear

in and their asymptotic complexities. The complexities for the quicksort and quickhull

are expected complexities. Some of the algorithms are probabilistic. The split-radix sort

complexities assumes that the keys are O(lgn) bits long.

12 CHAPTER 1. INTRODUCTION

By compiling high-level languages onto the vector models, much of a compiler be-

comes machine independent—the machine dependent parts are implemented below the

level of the vector models.

Architectures

The parallel vector models can be implemented efficiently on a broad variety of tightly-

coupled architectures including serial machines, vector machines, and parallel machines,

with both serial and parallel control. The flexibility of the models arises because the models

make no assumptions about how data elements are allocated to processors, and because the

models have strict serial control. Chapter 12 describes an implementation on the Connec-

tion Machine, a highly parallel SIMD computer [53, 113]. The general technique described

can be straightforwardly extended to any synchronous parallel machine with a sufficiently

powerful communication network. Chapter 13 describes how the scan instructions can be

implemented efficiently in hardware.

In Combination

If an algorithm is defined in a high-level language and compiled through the vector models

onto a real machine, how efficient is the final code? To test this, a quicksort routine written

in PARALATION LISP (Section C.5), was compiled by a compiler (Chapter 11) into the scan

vector model (Chapter 4), and then executed on both a Connection Machine (Chapter 12)

and a Symbolics 3600, a serial machine. The compiled code on both machines was within

a factor of two as fast as the sorting routine supplied by the machine vendor as part of the

system.3

Although compiling very high-level languages into code that is within a factor of two

of highly optimized code is not unusual for serial machines, it is quite unusual for parallel

machines. Of course, these results are not enough to “prove” the usefulness of the vector

models, but they show the models have promise.

Roadmap

Figure 1.6 shows a roadmap for the book. Part I, models, forms the foundation of the book.

It defines the parallel vector models in more detail, describes the implications of including

a set of scan operations as primitives of the P-RAM models, and introduces a particular

parallel vector model, the scan vector model.

3The supplied sorting routine on the Connection Machine is a carefully optimized radix sort and executes

about equally fast as a microcoded bitonic sort [11]. The supplied sorting routine on the Symbolics 3600 is a

carefully optimized quicksort.

1.4. SUMMARY AND ROADMAP 13

Figure 1.6: A roadmap to the book. Each road is a chapter of the book. Each fork signifies

that the branches are independent and can be read in any order. Each join signifies that the

following chapter relies to some extent on all the incoming branches.

14 CHAPTER 1. INTRODUCTION

The next three parts correspond to the three core areas: algorithms, languages and

architectures. These parts are independent and can be read in any order. Part II, algorithms,

describes how several important data structures, including trees, graphs and arrays, can be

mapped onto the scan vector model so that they can be efficiently manipulated. It then

describes many algorithms for the model. Part III, languages, compares a set of high-

level languages called the collection-oriented languages. It then describes a technique

called replicating and describes a compiler for PARALATION LISP. Part IV, architecture,

describes how the parallel vector models are implemented on the Connection Machine and

how they can be simulated on a P-RAM. It also describes how the various scan operations

can be implemented directly in hardware.

Part I

Models

15

Introduction: Models

This part defines the models on which the rest of this book in founded. It contains three

chapters. Chapter 2, parallel vector models, defines the parallel vector models, and com-

pares them to other parallel algorithmic models, such as the P-RAM and boolean-circuit

models. Chapter 3, scan primitives, introduces a set of scan operations, argues that these

operations should be considered primitive instructions, and illustrates many examples of

how they are used in algorithm design. These two chapters are completely independent: the

parallel vector models are introduced without commitment to a particular set of primitives,

and the scan primitives are introduced in the framework of the P-RAM models.

Although the parallel vector models and scan primitives are introduced independently,

the scan primitives fit naturally into and enhance the parallel vector models. Chapter 4,

scan vector model, defines a specific parallel vector model that includes the scan primitives

in its instruction set, as well as instructions that elementwise operate on vectors and that

permute the elements of a vector. Chapter 4 also describes a set of vector operations

that can be implemented with the instructions of the scan vector model, a set of segmented

versions of the primitive instructions, and a set of other primitive instructions which are not

included in the scan vector model, but might be included in other parallel vector models.

All the algorithms described in the book are based on the scan vector model, and the

compiler described in Chapter 11 compiles into the instructions of the scan vector model.

17

18

Chapter 2

Parallel Vector Models

This chapter defines the parallel vector models based on an abstract machine, the V-RAM,

compares the models to other parallel algorithmic models including the P-RAM models

and the boolean circuit models, and discusses why and when the parallel vector models

might be more appropriate than these other models. Some of the definitions outlined in the

introduction of this book are repeated in this chapter for the sake of completeness.

2.1 The Vector Random Access Machine

As with a random access machine (RAM) model [40] and the Turing machine model [116],

the parallel vector models are conveniently defined in terms of a machine architecture.

Figure 2.1 illustrates the general architecture of such a machine, the V-RAM. The V-RAM

is a serial random access machine (RAM) with the addition of a vector memory, a parallel

vector processor, and vector input and output ports.

The vector memory is a sequence of locations each containing a simple vector. A

simple vector is a linear-ordered collection of scalar values. The number of values in the

collection is called the length. We place no limit on the length, and each vector can be a

different length. Allowing each vector to have a different length is an important feature of

the vector models and is intricately tied in with the complexity measures. Allowing each

vector to be arbitrarily long makes it impossible to implement a vector memory directly;

it must somehow be simulated on a real machine. One technique to simulate the vector

memory is for each vector memory location to contain a pointer into a chunk of locations

in a real memory where the values of the vector are actually stored. Chapter 12 describes

such an implementation.

The parallel vector processor executes primitive instructions on a fixed number of vec-

19

20 CHAPTER 2. PARALLEL VECTOR MODELS

Figure 2.1: The architecture of a V-RAM. The machine is a random access machine

(RAM) with the addition of a vector memory, a parallel vector processor, and a vector

input/output port. Each location of the vector memory can contain a vector of different

length. The parallel vector processor executes operations on whole vectors, such as per-

muting the elements of a vector or executing a scan operation on a vector.

Mv[0] : [4 7 11]

Mv[1] : [2 9 12 21]

Ms[0] ← sum Mv[0]

Mv[2] ← merge Mv[0], Mv[1]

Ms[0] : 22

Mv[2] : [2 4 7 9 11 12 21]

Figure 2.2: Example of a sum and a merge primitive for a vector model. Mv[i] is the ith

location of the vector memory, and Ms[i] is the ith location of the scalar memory.

2.1. THE VECTOR RANDOM ACCESS MACHINE 21

Figure 2.3: Time complexity measures. The step complexity is the total number of steps

(16 in the example). The element complexity is the sum, over the steps, of the length of the

vectors manipulated during each step (72 in the example).

tors and scalars from the vector and scalar memories. A primitive might, for example,

read a vector from the vector memory, sum the elements, and write the result in the scalar

memory, or it might read two sorted vectors from the vector memory, merge the elements,

and write the result back in the vector memory (see Figure 2.2). Particular vector models

can differ in the primitive instructions they supply, and these different sets of primitives

can lead to different complexities of algorithms. Chapter 4 defines a set of primitive in-

structions for the scan vector model. Section 2.5 discusses principles for selecting a good

set of primitives for a vector model, and Section 4.5 discusses other possible primitives.

The time complexity of an algorithm in the vector models is specified using two mea-

sures: the step complexity and the element complexity. The step complexity is the number

of calls to the primitive instructions and the element complexity is the vector length per

primitive instruction call, summed over the number of calls. Since a primitive might take

more than one argument, we say that the vector length of a primitive call is the sum of the

lengths of the arguments (including the destination). The step complexity can be thought

of as the parallel complexity of the algorithm assuming an infinitely wide parallel vec-

tor processor, whereas, the element complexity can be thought of as the serial complexity

assuming we simulate the parallel vector processor on a serial RAM. The relationship be-

tween the step and element complexities is analogous to the relationship between the depth

and size complexities in the boolean circuit models. The depth of a boolean circuit is the

number of layers, and the size is the sum over the layers of the number of elements in each

layer. Section 12.2 shows how the step complexity and element complexity are related to

time complexity in the P-RAM model. Section 2.6 introduces analogous space complex-

ity measures and discusses assumptions on which the step and element complexities are

based.

22 CHAPTER 2. PARALLEL VECTOR MODELS

P-RAM models Vector Models

(1) Fixed number of element operations on

each step.

(1) Variable number of element operations on

each step.

(2) Complexity is based on one function of

two variables: n (the size of the input) and

p (the number of processors).

(2) Complexity is based on two functions,

the step and element complexities, of one

variable: n.

(3) Atomic values are the only primitive data. (3) Supplies a primitive data structure: the

vector.

(4) Parallel or serial control. (4) Strictly serial control.

(5) Parallelism comes from serial primitives

running in parallel.

(5) Parallelism comes from parallel primi-

tives.

Table 2.1: Summary of the differences between the P-RAM models and the parallel vector

models.

2.2 Comparison to P-RAMModels

This section compares parallel vector models to parallel random access machine (P-RAM)

models [42, 101, 104, 48, 49], Section 2.3 compares them to the boolean-circuit models

and the fixed-network models such as hypercube or grid models, and Section 2.4 compares

them to the bit-vector models. Vector models are compared to these other parallel algorith-

mic models for two reasons: first, many important algorithms and techniques found in the

literature are set in the context of these other models and we would like to transfer these

results to the vector models; and second, we would like to explore possible advantages, or

disadvantages, of the vector models. Although this section specifically compares the vec-

tor models to the P-RAM models, many of the comparisons are valid when comparing any

collection-oriented model to any processor-oriented model. This section assumes a basic

understanding of P-RAM models.1

The parallel vector and P-RAM models are both natural extensions of the serial RAM

model. In the vector models we add to the RAM a set of parallel primitives and an enhanced

memory, whereas in the P-RAM models we include multiple copies of the processor part

of a RAM, attach it to a shared memory, and execute the same serial primitives in parallel.

The two different extensions of the RAM give rise to important differences in the two

1Appendix A contains a brief description of the P-RAM models.

2.2. COMPARISON TO P-RAM MODELS 23

Vector Models P-RAM Models

Algorithm Step Element Time

Split Radix Sort O(lgn) O(n lgn) O((n lgn)/p+ lgn)
Halving Merge O(lgn) O(n) O(n/p+ lgn)

In General s e O(e/p+ s)

Table 2.2: Comparison of the description of time complexity measures in the vector

models and the P-RAM models. The time complexity in the vector models is specified

with two functions of one variable while in the P-RAM models it is specified with one

function of two variables. The two algorithms will be discussed in Chapter 3. In both

models we assume the primitives include the scan operations.

classes of models. These differences are summarized in Table 2.1. The remainder of this

section discusses the four primary differences: the complexity, the control, the primitive

data, and the primitive operations. To illustrate some of the differences we also discuss the

merging problem.

Complexity

A P-RAM executes an equal number of element operations2 on each step—exactly p—

whereas a V-RAM can execute a varying number of element operations on each step—the

number depends on the length of the vectors used on the step. As an example of why this

difference is important, consider an algorithm that starts with n elements and halves the

number of elements on each iteration. In a vector model, the algorithm only needs to halve

the vector length on each iteration, therefore, halving the number of element operations.

In a P-RAM model, since the number of element operations on each step is constant, the

algorithm would either start by simulating multiple elements per processor and halve the

number of steps on each iteration, or it would always use n processors and waste most of

the processors after the first iteration.

Since the number of element operations in a vector model varies between steps, the

number of steps (the step complexity) by itself is inadequate as a measure of time complexity—

it does not tell us how many element operations have been executed. The vector models,

therefore, include a second measure of time complexity—the sum of the vector lengths

over the steps (the element complexity). In the P-RAM models, the element complexity

is not necessary—the element complexity is simply p times the step complexity. The step

complexity in the P-RAM models, however, must contain the extra variable p, which is not

2We define the number of element operations of a step as the time complexity of simulating the step on a serial

RAM.

24 CHAPTER 2. PARALLEL VECTOR MODELS

necessary in the vector models. Table 2.2 compares the complexity measures for the two

classes of models.

What is the relationship between the P-RAM complexity and the vector model com-

plexities? In the two limits p = ∞ and p = 1 the P-RAM complexity reduces to the step

complexity and element complexity, respectively (see Table 2.2). Since the step and ele-

ment complexities are just the limits of the P-RAM complexity, it might appear that the

P-RAM complexity holds more information than the other two complexities. As we il-

lustrate in Section 12.2, this is not the case—we show that in general the P-RAM time

complexity can be generated from the two limits with the simple relation

O(e/p+ s) , (2.1)

e is the element complexity and s is the step complexity. I contend that the two limits are a

cleaner notation for specifying time complexity even when using a P-RAM model.

Primitive Data

The P-RAM models only supply atomic values as primitive data—the memory is com-

pletely flat—and data structures are built out of these atomic values. The vector models,

in contrast, supply a primitive data structure: the vector. To take advantages of the parallel

vector primitives, other data structures, such as trees or graphs, should be mapped onto the

primitive vectors. As an example of how this difference is important, consider representing

a tree. In a P-RAM model, we might represent a tree using a linked list in the Euler tour

order [112]. This linked list might be scattered over an arbitrarily large area of memory

with large portions of unused memory interspersed among the elements. This linked list

representation is inappropriate for a vector model. Instead, the tree must be mapped onto

vectors, and the vectors should be kept as short (dense) as possible: there should be no

unused elements interspersed in the vector. Chapter 5 describe such a mapping.

Having a primitive data structure allows simpler and more precise descriptions of al-

gorithms and allows a more straightforward translation into programs that implement the

algorithm. The algorithm designer need not worry about allocating data elements to pro-

cessors, about keeping track of which processors or memory banks contain data, nor about

simulating multiple elements on each processor. Vectors make vector models more abstract

than P-RAM models and further removed from an implementation on a real machine. In

spite of raising the level of abstraction, algorithms written in the models are likely to be

more practical on real machines than P-RAM algorithms since the vector models can sup-

ply a broader set of primitives (as discussed below), and because the memory references

are more predictable.

2.2. COMPARISON TO P-RAM MODELS 25

Control

Control in the vector models is strictly serial whereas control in the P-RAM models can

either be serial (single instruction) or parallel (multiple instruction). The notion of serial

control in the P-RAM model is not precise, however, and presents some problems. For

example, consider a conditional-jump instruction in a serial control P-RAM. Can some

processors take the jump and others not? If so, won’t the two sets of processors need to

execute different instructions? If we force all processors to take the same branch, from

which processor do we look at a flag to decide on whether to take a branch or not? These

problems can be worked out but with extra explanation and room for confusion.3 In con-

trast, conditional branches are straightforward in the vector models. As in the standard

RAM model, conditional branches are scalar primitives and jump based on a single flag in

the scalar memory.

Serial control has important advantages over parallel control. First, it simplifies algo-

rithm design: the designer only needs to worry about a single program. Second, it simpli-

fies the debugging of programs: if a programmer stops a program to check the state, she

only needs to worry about the single-instruction stream. Third, it allows an implementation

on a broader variety of machines: algorithms with serial control can be implemented on

SIMD computers, such as the Connection Machine, and possibly on serial pipelined vector

processors such as supplied on the Cray computers and other supercomputers.

On the other hand, serial control is more restrictive than parallel control. How many

algorithms really need parallel control? This book hopes to demonstrate that even the

strict serial control of the vector models can be applied naturally to a very wide variety of

problems—certainly every application and algorithm in this book. Not all problems can be

conveniently solved with serial control, but because of its advantages, one should stretch

its use as broadly as possible.

Primitive Operations

As mentioned earlier, the primitives of a vector model are parallel—they operate on a col-

lection of values. In contrast, the primitives of a P-RAM model are serial—as with the

RAM model, they operate on a fixed number of scalar values—and the parallelism comes

from applying the serial primitives in parallel. Supplying parallel primitives has two ef-

fects. First, it permits a broader set of primitives. For example, we might include in a

vector model a primitive that merges the elements of two vectors. To add a merge primi-

tive to a P-RAM model, we would need to stretch and warp the model—the P-RAM would

become more than just a set of RAM processors sharing a common memory. Second, non-

3Issues involving conditional jumps appear again in Chapter 10.

26 CHAPTER 2. PARALLEL VECTOR MODELS

P-RAM Models Primitives Vector Models Primitives

Arithmetic and Logical Elementwise (Section 4.1.2)

Memory Reference

Exclusive Write Permutation (Section 4.1.3)

Exclusive Read Inverse-Permutation (Section 4.2)

Concurrent Write Combine (Section 4.5.2)

Concurrent Read Multi-Extract (Section 4.5.3)

Fetch-and-Op (Multiprefix) Keyed-Scan (Section 4.5.4)

Global Primitives

— Scan (Section 4.1.4)

— Merge (Section 4.5.1)

— Reduce (Section 4.2)

— Pack (Section 4.2)

Table 2.3: A comparison of the primitive operations supplied by the P-RAM models and

the vector models. The correspondence is by no means exact. The elementwise primitives,

for example, if simulated on a P-RAM require both memory references and arithmetic

operations. The vector models can include a much broader variety of primitives.

primitive parallel operations, such as sorting, are operations on whole collections. These

operations, therefore, have the same interface as the primitive of a vector model, but a dif-

ferent interface than the primitives of a P-RAM model. Having the same interface allows

a more uniform description terminology.

By allowing a broader set of primitives, we can more accurately model the running

time of algorithms on real machines, while maintaining the high-level description. To

more accurately model real machines, we can either add other primitives that are as fast as

general permutations4—such as the scan primitives—or we can restrict the permutations

to a certain class—such as permutations on a grid, or permutations that can be executed

deterministically on a single pass of a butterfly network.

An Example

As an example of how the P-RAM models and vector models can lead to different al-

gorithms, we consider the merging problem. Shiloach and Vishkin [44, 104] describe a

P-RAM algorithm for merging two sorted sets of values of length n and m (n > m). On

p processors this algorithm has a complexity of O(n/p+ lgn). The basic idea of the al-

4As discussed in Section 3.2, a permutation of a vector is at least as easy as a memory reference in a P-RAM

model.

2.3. COMPARISON TO CIRCUIT AND NETWORK MODELS 27

gorithm is to extract p evenly spaced elements from each set, we call these fenceposts, to

merge the fenceposts using a logarithmic merge such as the bitonic merge [11], and then to

use each processor to serially merge the elements between two fenceposts. The logarithmic

merge has complexity O(lg p). Since the fenceposts are n/p apart, the serial merging has

complexity O(n/p).

Does this algorithm make any sense in a vector model? Why would we pick p evenly

spaced elements when we do not even have the concept of p? In a vector model, we might

instead think about somehow reducing the size of the vectors by a constant factor. This is

the motivation for the halving merge algorithm which will be described in Section 3.7.2.

The basic idea of the halving merge algorithm is to extract odd-indexed elements from each

vector, to recursively merge the extracted elements, and then to use the result of the merge

to merge the even-indexed elements. Unlike the P-RAM algorithm, the halving merge

algorithm is recursive. With the primitives of the scan vector model (defined in Chapter 4),

the algorithm has an element complexity of O(n+ n/2 + n/4 + · · ·) = O(n) and a step

complexity of O(lgn). In an EREW P-RAM model with scan primitives, the algorithm has

a step complexity of O(n/p+ lgn)—this complexity is based on equation 2.1.

The halving merge algorithm has some advantages over the P-RAM algorithm. First,

the halving merge algorithm only needs a single recursive version, whereas the P-RAM

algorithm needs a parallel merge to merge the fenceposts and a serial merge to merge

between fenceposts. Second, in the halving merge algorithm, the length of the vectors con-

tinue to decrease even when the number of elements is less than the number of processors.

This has a practical consequence in that it reduces the load on a communication network

after we have less elements than processors, and probably speeds up each step.

Translating from P-RAM Algorithms

Many very impressive algorithms and techniques found in the literature are set in the con-

text of the P-RAM model, and it would be a serious drawback if these contributions could

not be applied in the vector models. Fortunately, much of this research can be translated to

the vector models, and, in fact, many of the algorithms described in this book are modifica-

tions of P-RAM algorithms. This translation is possible because the algorithms described

in the literature typically only need a single stream of control. The work on nested paral-

lelism described in Chapter 10 greatly simplifies the translation.

2.3 Comparison to Circuit and Network Models

In this section we compare the parallel vector models to the boolean-circuit models [117,

26, 37, 38] and to the fixed-network models. Fixed-network models are processor-oriented

28 CHAPTER 2. PARALLEL VECTOR MODELS

models in which the processors are restricted to communicate to a fixed set of neighbors.

These models include sets of processors connected by butterfly networks [32, 84, 11],

shuffle-exchange networks [109], cube-connected-cycles [89], multidimensional grids [115],

or pyramids [110].

As mentioned earlier, the complexity measures of the vector models are analogous to

the complexity measures of the boolean-circuit models. In this analogy, each step in a

vector algorithm corresponds to a level in a boolean circuit. The step complexity therefore

corresponds to the depth (number of levels), and the element complexity to the size (sum

over the number of elements in each level). This analogy between step in a vector algorithm

and level in a boolean circuit can be made slightly deeper. It turns out that vector algorithms

without conditionals and without indirect addressing5 can be converted into circuits by

replacing each primitive with a circuit that implements the primitive (see Figure 2.4).

In spite of this analogy, the two classes of models differ in important ways. First, al-

though circuit models allow arbitrary logic, the vector models restrict the logic to a fixed

set of modules. We can think of algorithm design in a vector model as building a circuit out

of a fixed sequence of building blocks. This greatly simplifies programming and descrip-

tion at the cost of being less flexible. Second, each step in a vector algorithm might require

many levels in a boolean circuit. For example, a merge primitive that merges n elements

requires a circuit module of depth O(lgn).

Third, in vector models the element complexity of a step can depend not only on the in-

put size but also on the particular data. For example, in the line-drawing routine discussed

in Section 3.6.1, the number of pixels generated depends on the length of the lines—this

depends not only on the size of the input but on the particular input data. To use boolean

circuits to solve this problem, a family of circuits must be defined, and each member must

solve the problem for a particular line length. The problem is that we do not know which

particular member of the family can be used to solve the problem until we have executed

part of the computation (determining the lengths of the line). This is a conceptually awk-

ward aspect of the boolean-circuit models. A similar problem arises with programs, such

as quicksort, whose step complexity can vary depending on the input data. In quicksort,

the worst case step complexity is O(n) and the expected complexity is only O(lgn).

We now briefly compare the vector models to the fixed-network models. Since the

fixed-network models are processor oriented, many of the comparisons made in Section 2.2

for the P-RAM models also apply here. The fixed-network models, however, are lower-

level models than either the vector models or P-RAM models: they can be implemented

more directly on a real machine.

Algorithms for low-level models can have two disadvantages over algorithms for high-

level models: they must be described at a more detailed level, and they are more machine

5Problems with indirect addressing and conditionals are considered again in Chapter 10.

2.3. COMPARISON TO CIRCUIT AND NETWORK MODELS 29

Figure 2.4: Vector algorithms without conditional branches and without indirect addressing

can be converted into a circuit by replacing each primitive with a circuit that implements

the primitive, and by converting the vector memory locations into bundles of wires. In

the above example, we illustrate how the split operation, which will be defined in Sec-

tion 3.4.1, is mapped onto a circuit. The number of independent bundles of wires crossing

between two levels in the circuit is equal to the number of vector memory locations re-

quired between two steps in the vector algorithm.

30 CHAPTER 2. PARALLEL VECTOR MODELS

dependent. The first disadvantage can be remedied by building high-level operations on

top of the low-level models and then basing the algorithms on these operations. The op-

erations only need to be defined once, and many algorithms might make use of them. If

algorithms are being defined using these high-level operations, however, why not just use

a model based on these operations? Using such a model can simultaneously solve the sec-

ond problem (machine dependence) since we are no longer committed to implementing the

operations on a particular machine. This is perhaps the principal motivation for the parallel

vector models: a model based on a set of primitive parallel operations without commitment

to a particular architecture.

Low-level might still be useful for describing algorithms when the algorithm cannot be

described at a higher level and then mapped into an efficient algorithm at the lower level.

From a programmer’s point of view, I hope that this does not happen very often.

2.4 Comparison to Bit-Vector Models

Perhaps the closest theoretical model to the V-RAM is the bit-vector machine introduced

by Pratt and Stockmeyer [87]. In this model, each register (memory location) can con-

tain an arbitrary long vector of bits. The vector instructions included (1) elementwise bit

operations over the vectors, such as logical-or or logical-not, and (2) logical shifts

of the vectors right or left by an arbitrary amount. Pratt and Stockmeyer showed how

the model can implement arbitrary precision integer arithmetic, and how to transpose and

multiply boolean matrices in O(lgn) program steps. The bit-vector model, however, had

only a single complexity measure, the step complexity. Since they did not consider an

element complexity, they were able to show that P = NP within the model (just based on

the number of program steps). This is because they could simulate the nondeterminism on

each step by spreading the branches across the length of a vector, in effect executing each

branch in “parallel”. This, of course leads to vectors which are exponentially large, and

would lead to an exponential element complexity.

If we did introduce an element complexity to the bit-vector machine, we could simu-

lated the V-RAM on a bit-vector machine in the following way with at most polylogarith-

mic differences in complexities. Since an integer can itself be represented as a sequence of

bits, each vector of integers can be represented with a vector of bits broken into word sized

blocks. To represent pointers in an n element vector, each block would require O(lgn)

bits. The total bit length would therefore be O(n lgn). Chapter 4, introduces a particular

set of vector instructions for the parallel vector models. We briefly mention here how they

can be simulated on the bit-vector machine. The elementwise operations, such as addi-

tion, can be simulated by using segmented instructions and all require at most O(lg lgn)

steps. The permute can be executed by simulating an Omega network using the shifts, and

2.5. SELECTING PRIMITIVES 31

could execute in determenistic O(lg2 n) steps. The scan operations could be implemented

in O(lgn lg lgn) steps using the tree implementation discussed in Chapter 13.

2.5 Selecting Primitives

Parallel vector models, as with P-RAM models, allow some flexibility in selecting a set

of primitives. We, therefore, need principled criteria by which to make this selection.

This section briefly considers several such criteria. First, the primitives should be easy to

implement and efficient both when implemented in parallel and in serial, both in theory

and in practice. Second, the primitives should be implementable on a broad range of

architectures—including existing architectures. Third, the primitives should be useful.

Fourth, there should be a small set of primitives so that it is easy to describe them and to

port the primitives to different machines.

To restrict ourselves to primitives which are efficient, we only consider primitives

which obey the following two criteria:

1. Each primitive when applied to argument vectors of total length n, must requireO(n)

time on a serial RAM. We call such a primitive, a serially linear primitive.

2. Each primitive must be in NC1: for vectors of length n, the primitive can be calcu-

lated on a boolean circuit of O(lgn) depth and of polynomial size. See [37] for more

details on the class NC1.

Although these criteria guarantee that the primitives are efficient in theory in both the

serial and parallel limits, the constants might be large. To decide on whether a primitive

is practically efficient, we must look at the constants on various architectures. When we

introduce the scan vector model in Chapter 4, we consider the various criteria and justify

our selection of primitives based on these criteria. We also consider these criteria when

introducing other primitives in Section 4.5.

2.6 Other Issues

2.6.1 Serially Optimal Algorithms

What is the relationship between the element complexity of an algorithm on a vector model

and the complexity of the algorithm on a serial RAM model? We say that a vector primitive

is serially linear if when applied to argument vectors of total length n, it can be simulated in

O(n) time on a serial RAM. We call a model in which all the primitives are serially linear,

serially linear. If a model is serially linear, then the element complexity gives an upper

32 CHAPTER 2. PARALLEL VECTOR MODELS

bound on the time complexity of the algorithm on the serial RAM model. As mentioned in

Section 2.5, in this book we only consider serially linear primitives.

We say that algorithms with an element complexity asymptotically equal to the optimal

serial algorithm is serially time optimal. This definition of optimality is similar to the

definitions of optimal parallel algorithms suggested by Schwartz [101] and Shiloach and

Vishkin [104].

2.6.2 Space Complexity

We define two space complexities: the vector-space complexity and the element-space

complexity. The vector-space complexity specifies the number of locations used in the

vector memory, and the element-space complexity specifies the sum of the vector lengths

over the locations used in the vector memory. These space complexities are analogous to

the two time complexities.

2.6.3 Equal Time Assumption

The step and element complexities rest on the assumption that all the vector primitives

require approximately equal time on equal-length vectors. We call this assumption the

equal-time assumption. This assumption is analogous to the equal-time assumption in the

P-RAM models (all primitives require equal time). These equal-time assumptions greatly

simplify the complexity analysis of algorithms, but on real machines only approximate the

truth.

2.6.4 Do We Need the Scalar Memory?

When we introduced the V-RAM in Section 2.1, the machines had two memories and two

processors, one for scalars and one for vectors. It turns out that the scalar memory and

processor are not necessary: a vector model can be defined with just a vector memory and

vector processor.

We can remove the scalar memory and processor as follows. To implement all the

arithmetical and logical scalar operations, we can just use vectors of length one and use

the vector arithmetic and logical operations. To implement a conditional-jump operation,

instead of jumping on the value of a flag in the scalar memory, the machine might jump

based on whether a vector is empty (of length 0) or not. Implementing indirect addressing

is awkward without a scalar memory. In indirect addressing, the address argument must be

a single integer value. We can use a vector argument and claim it is an error if the vector

is not of length 1, but this restriction is awkward. As discussed in Section 10.2, indirect

2.7. CONCLUSION 33

addressing is also a problem for other reasons and is not necessary if the model supplies

stacks. We might, therefore, consider not including indirect addressing.

By not having a separate scalar memory and scalar processor, we only need one set of

arithmetic and logical operations, thereby reducing the number of instructions necessary

by almost a factor of two. An original version of this chapter actually defined the vector

model with only the vector memory and processor. Adding scalar memory and processor,

however, made the vector models easier to describe and understand.

2.7 Conclusion

In this chapter we introduced a class of models for the design, analysis and implementa-

tion of parallel applications and algorithms. I contend that these models, the parallel vector

models, better separate the algorithmic issues from the architectural issues of parallel com-

puting than do the other parallel models, including the P-RAM models, the boolean-circuit

models, the hypercube models, and the grid models. The parallel vector models conceal

from the algorithm designer architecture-dependent issues such as synchronization, pro-

cessor allocation, and simulation of multiple elements on each processor.

This separation has some important benefits. First, it makes the models more durable.

As architectures change, models that rely the least on the specifics of the architectures

will best endure these changes. Second, it makes the models very good pedagogical tools.

A student learning about parallel computing can concentrate on the algorithmic issues

and the architectural issues separately. Third, it simplifies the description of algorithms.

The algorithms do not require any machine specific description. Finally, it more cleanly

separates the architectural and algorithmic research issues. The architectural issues, such

as simulating multiple elements on each processor, can be solved independently from the

algorithmic issues.

34 CHAPTER 2. PARALLEL VECTOR MODELS

Chapter 3

The Scan Primitives

This chapter suggests that certain scan operations be included as “unit time” primitives in

the parallel random access machine (P-RAM) models. The scan operations take a binary

operator ⊕ with identity i, and an ordered set [a0,a1, ...,an−1] of n elements, and returns

the ordered set [i,a0,(a0 ⊕ a1), ...,(a0 ⊕ a1 ⊕ ...⊕ an−2)].
1 In the P-RAM model, each

element is placed in a processor, and the scan executes over a fixed order of the processors.2

This chapter argues that certain scan operations can be implemented to execute as fast

as memory references to a shared memory, can improve the asymptotic performance of

many P-RAM algorithms by an O(lgn) factor, and can simplify the description of many

P-RAM algorithms. Table 3.1 summarizes the uses of the scan operations and the example

algorithms discussed in this chapter.

As well as introducing the scan operation, this chapter serves as motivation for the

parallel vector models. In its course, this chapter will build a parallel vector model on top

of the P-RAM model. It first presents a notation based on vectors. These vectors must

be of fixed length, since one element is placed on each processor. It later argues that the

programming environment should allow vectors of different lengths, including vectors with

more elements than processors, since many elements can be placed on each processor, and

a simulator can automatically loop over these elements without the programmer having to

worry about it. This will leave us with the scan-vector model, which is formally defined in

Chapter 4.

1Appendix A gives a short history of the scan operation.
2The prefix operation on a linked list (sometimes called the data dependent prefix operation [64]), and the

fetch-and-op type instructions [50, 49] are not included.

35

36 CHAPTER 3. THE SCAN PRIMITIVES

Uses of Scan Primitives Example Algorithms

Previous Maximum (3.3) Line-of-Sight

Enumerating (3.4) Splitting, Load Balancing

Copying (3.4) Quicksort, Line Drawing

Distributing Sums (3.4) Quicksort

Splitting (3.4.1) Split Radix Sort, Quicksort

Segmented Primitives (3.5) Quicksort, Line Drawing

Allocating (3.6) Line Drawing, Halving Merge

Load-Balancing (3.7.1) Halving Merge

Example Algorithms Uses of Scan Primitives

Line-of-Sight (3.3) Previous Maximum

Split Radix Sort (3.4.1) Splitting

Quicksort (3.5.1) Splitting, Distributing Sums, Copying,

Segmented Primitives

Line Drawing (3.6.1) Allocating, Copying,

Segmented Primitives

Halving Merge (3.7.2) Allocating, Load Balancing

Table 3.1: A cross reference of the various uses of scans introduced in this chapter with the

example algorithms discussed in this chapter. All the uses can be executed in a constant

number of steps.

3.1. WHY SCAN PRIMITIVES? 37

3.1 Why Scan Primitives?

Algorithmic models typically supply a simple abstraction of a computing device and a

set of primitive operations assumed to execute in a fixed “unit time”. The assumption

that primitives operate in unit time allows researchers to greatly simplify the analysis of

algorithms, but is never strictly valid on real machines: primitives often execute in time

dependent on machine and algorithm parameters. For example, in the serial random ac-

cess machine (RAM) model [40], we assume that memory references take unit time, even

though they must fan in and therefore take time that increases with the memory size. In

spite of this inaccuracy in the model, the unit time assumption has taken us a long way in

understanding serial algorithms.

In the parallel random access machine (P-RAM) models3 [42, 101, 104, 48, 49], mem-

ory references are again assumed to take unit time. In these parallel models, this “unit

time” is large since there is no practical hardware known that does better than determin-

istic O(lg2 n), or probabilistic O(lgn), bit times for an arbitrary memory reference from n

processors.4 Since unit time is based on the time taken by a memory reference, one should

ask if there are other useful primitives that could execute as fast.

We argue that certain scan operations are such primitives and that they should be

included as a “unit time” operation in the P-RAM models. We call the exclusive-read

exclusive-write (EREW) P-RAM model with the scan operations included as primitives,

the scan model. The justifications for the scan model can be summarized as follows:

Architectural Justification: Both in theory and in practice, certain scan operations can

execute in less time than references to a shared memory, and can be implemented with

less hardware. Our arguments are summarized in Table 3.3 and are discussed in detail in

Chapter 13.

Algorithmic Justification: The scan primitives improve the asymptotic running time of

many algorithms by an O(lgn) factor over the EREW model and some by an O(lgn) factor

over the CRCW model. Table 3.2 compares the asymptotic running times of many algo-

rithms. Most of these scan algorithms are described in this chapter and in Chapters 6, 7

and 8.

Linguistic Justification: The scan primitives simplify the description of many algorithms.

Since there are no concrete measures of simplicity, we unfortunately cannot illustrate a

concise table to prove this point. Much of the remainder of this chapter supports this point

through a series of illustrative examples.

3Appendix A contains a brief description of the P-RAM models.
4The AKS sorting network [5] takes O(lgn) time deterministically, but is not practical.

38 CHAPTER 3. THE SCAN PRIMITIVES

Model

Algorithm EREW CRCW Scan

Graph Algorithms

(n vertices, m edges, m processors)

Minimum Spanning Tree lg2 n lgn lgn

Connected Components lg2 n lgn lgn

Maximum Flow n2 lgn n2 lgn n2

Maximal Independent Set lg2 n lg2 n lgn

Biconnected Components lg2 n lgn lgn

Sorting and Merging

(n keys, n processors)

Sorting lgn lgn lgn

Merging lgn lg lgn lg lgn

Computational Geometry

(n points, n processors)

Convex Hull lg2 n lgn lgn

Building a K-D Tree lg2 n lg2 n lgn

Closest Pair in the Plane lg2 n lgn lg lgn lgn

Line of Sight lgn lgn 1

Matrix Manipulation

(n×n matrix, n2 processors)

Matrix × Matrix n n n

Vector × Matrix lgn lgn 1

Matrix Inversion n lgn n lgn n

Table 3.2: Algorithmic Justification. The scan primitives improves the asymptotic running

time of many algorithms by an O(lgn) factor over a EREW model and some by an O(lgn)
factor over the CRCW model.

3.2. NOTATION 39

Memory Reference Scan Operation

Theoretical

(VLSI models)

Time O(lgn) [67] O(lgn) [68]

Area O(n2/ lgn) O(n)

(Circuit models)

Depth O(lgn) [5] O(lgn) [41]

Size O(n lgn) O(n)

Actual

(64K processor CM-2)

Bit Cycles (Time) 600 550

Percent of Hardware

Dedicated to Operation 30 0

Table 3.3: Architectural Justification. Both in theory and in practice certain scan opera-

tions can execute in less time than references to a shared memory, and can be implemented

with less hardware.

Since the term unit time is misleading—both memory references and scan operations

take many clock cycles on a real machine—this book henceforth uses the term program

step or step instead. A step is a call to one of the primitive instructions of the model. The

number of program steps taken by an algorithm is the step complexity.

3.2 Notation

Before discussing the uses of the scan primitives, we introduce some conventions that will

simplify the descriptions of algorithms.

We will assume that the data used by the algorithms in this chapter is stored in vectors

(one dimensional arrays) in the shared memory and that each processor is assigned to one

element of the vector. When executing an operation, the ith processor operates on the ith

element of a vector. For example, in the operation:

A = [5 1 3 4 3 9 2 6]

B = [2 5 3 8 1 3 6 2]

C ← A + B = [7 6 6 12 4 12 8 8]

each processor reads its respective value from the vectors A and B, sums the values, and

40 CHAPTER 3. THE SCAN PRIMITIVES

writes the result into the destination vector C. For now, we assume that the P-RAM always

has as many processors as vector elements.

The scan primitives can be used to scan the elements of a vector. For example:

A = [2 1 2 3 5 8 13 21]

C ← +-scan(A) = [0 2 3 5 8 13 21 34]

In this book we only use five primitive scan operations: or-scan, and-scan, max-scan,

min-scan and +-scan. We also use backward versions of each of these scans operations—

versions that scan from the last element to the first.

To reorder the elements of a vector, we use the permute operation. The permute

operation, in the form permute(A, I), permutes the elements of A to the positions specified

by the indices of I. All indices of I must be unique. For example:

A (data vector) = [a0 a1 a2 a3 a4 a5 a6 a7]

I (index vector) = [2 5 4 3 1 6 0 7]

❅
❅

❅
❅❘

❍❍❍❍❍❍❍❍❥

❅
❅

❅
❅❘❄

✑
✑

✑
✑

✑
✑✰

❆
❆
❆
❆❯

✏✏✏✏✏✏✏✏✏✏✏✏✮ ❄
C ← permute(A, I) = [a6 a4 a0 a3 a2 a1 a5 a7]

To implement the permute operation on a EREW P-RAM, each processor reads its re-

spective value and index, and writes the value into the index position of the destination

vector.

3.3 Example: Line-of-Sight

As an example of the direct use of a scan operation, we consider a simple line-of-sight

problem. In the line-of-sight problem, we are given a terrain map in the form of a grid of

altitudes and an observation point X on the grid (see Figure 3.1). We want to find which

points are visible along a ray originating at the observation point.

A point on a ray is only visible if no other point between it and the observation point

has a greater vertical angle. To find if any previous point has a greater angle, the altitude of

each point along the ray is placed in a vector (the altitude vector). These altitudes are then

converted to angles and placed in the angle vector (see Figure 3.1). A max-scan is then

executed on the angle vector, which returns to each point the maximum previous angle. To

test for visibility each point only needs to compare its angle to the result of the max-scan.

Section 6.6 generalizes this problem to finding all visible points on the grid.

This solution has a step complexity (number of program steps) of O(1).

3.3. EXAMPLE: LINE-OF-SIGHT 41

Figure 3.1: The line-of-sight problem for a single ray. The X marks the observation point.

The visible points are shaded. A point on the ray is visible if no previous point has a greater

angle. The angle is calculated as arctan(altitude/distance).

42 CHAPTER 3. THE SCAN PRIMITIVES

Flag = [T F F T F T T F]

enumerate(Flag) = [0 1 1 1 2 2 3 4]

A = [5 1 3 4 3 9 2 6]

copy(A) = [5 5 5 5 5 5 5 5]

B = [1 1 2 1 1 2 1 1]

+-distribute(B) = [10 10 10 10 10 10 10 10]

Figure 3.2: The enumerate, copy, and +-distribute operations. The enumerate

numbers the flagged elements of a vector, the copy copies the first element across a vector,

and the +-distribute sums the elements of a vector.

3.4 Simple Operations

We now consider three simple operations that are based on the scan primitives: enumerat-

ing, copying and distributing sums (see Figure 3.2). These operations are used extensively

as part of the algorithms we discuss in this chapter and all have an step complexity ofO(1).

Enumerating: Return the integer i to the ith true element. This operation is implemented

by converting the flags to 0 or 1 and executing a +-scan. We call this the enumerate

operation.

Copying: Copy the first element over all elements. This operation is implemented by

placing the identity element in all but the first element of a vector and executing a scan.5

Since the scan is not inclusive, we must put the first element back after executing the scan.

The copy operation is useful for distributing information across a vector and often removes

the need for a concurrent-read capability.

Distributing Sums: Return to each element the sum of all the elements. This oper-

ation is implemented using a +-scan, a vector add, and a backward copy. We call

this a +-distribute. We can likewise define a max-distribute, min-distribute,

or-distribute and and-distribute. Distributing sums is useful for collecting infor-

mation from a vector and, as we will see, often removes the need for a concurrent-write

capability.

5One might think of defining a binary associative operator first which returns the first of its two arguments,

and use it to execute the copy operation. The problem is that the first operator does not have an identity—a

requirement for our definition of a scan.

3.4. SIMPLE OPERATIONS 43

define split-radix-sort(A, number-of-bits){
for i from 0 to (number-of-bits – 1)

A ← split(A, A〈i〉)}

A = [5 7 3 1 4 2 7 2]

A〈0〉 = [T T T T F F T F]

A ← split(A, A〈0〉) = [4 2 2 5 7 3 1 7]

A〈1〉 = [F T T F T T F T]

A ← split(A, A〈1〉) = [4 5 1 2 2 7 3 7]

A〈2〉 = [T T F F F T F T]

A ← split(A, A〈2〉) = [1 2 2 3 4 5 7 7]

Figure 3.3: An example of the split radix sort on a vector containing three bit values. The

A〈n〉 notation signifies extracting the nth bit of each element of the vector A and converting

it to a boolean value (T for 1, F for 0).

3.4.1 Example: Split Radix Sort

To illustrate the use of the scans for enumerating, consider a simple radix sorting algorithm.

The algorithm is a parallel version of the standard serial radix sort [63].

The algorithm loops over the bits of the keys, starting at the lowest bit, executing a

split operation on each iteration. The split operation packs the keys with a 0 in the

corresponding bit to the bottom of a vector, and packs the keys with a 1 in the bit to the top

of the same vector. It maintains the order within both groups. The sort works because each

split operation sorts the keys with respect to the current bit (0 down, 1 up) and maintains

the sorted order of all the lower bits—remember that we iterate from the bottom bit up.

Figure 3.3 shows an example of the sort along with code to implement it.

We now consider how the split operation can be implemented in the scan model.

The basic idea is to determine a new index for each element and permute the elements to

these new indices. To determine the new indices for elements with a 0 (F) in the bit, we

enumerate these elements as described in the last section. To determine the new indices of

elements with a 1 (T) in the bit, we enumerate the elements starting at the top of the vector

and subtract these from the length of the vector. Figure 3.4 shows an example of the split

operation along with code to implement it.

The split operation has a step complexity of O(1); so for d-bit keys, the split radix

sort has a step complexity of O(d). If we assume for n keys that the keys are O(lgn) bits

44 CHAPTER 3. THE SCAN PRIMITIVES

define split(A, Flags){
I-down ← enumerate(not(Flags));

I-up ← n – back-enumerate(Flags) – 1;

Index ← if Flags then I-up else I-down;

permute(A, Index)}

A = [5 7 3 1 4 2 7 2]

Flags = [T T T T F F T F]

I-down = [0 0 0 0 0 1 2 2]

I-up = [3 4 5 6 6 6 7 7]

Index = [3 4 5 6 0 1 7 2]

permute(A, Index) = [4 2 2 5 7 3 1 7]

Figure 3.4: The split operation packs the elements with an F in the corresponding flag

position to the bottom of a vector, and packs the elements with a T to the top of the same

vector.

long, a common assumption in models of computation [111], then the algorithm has a step

complexity of O(lgn). Although O(lgn) is the same asymptotic complexity as existing

EREW and CRCW algorithms [5, 34], the algorithm is much simpler and has a signifi-

cantly smaller constant. Note that since integers, characters, and floating-point numbers

can all be sorted with a radix sort, a radix sort suffices for almost all sorting of fixed-length

keys required in practice.

The split radix sort is fast in the scan model, but is it fast in practice? After all, our

architectural justification claimed that the scan primitives bring the P-RAM models closer

to reality. Table 3.4 compares implementations of the split radix sort and Batcher’s bitonic

sort [11] on the Connection Machine. We choose the bitonic sort for comparison because

it is commonly cited as the most practical parallel sorting algorithm. I have also looked

into implementing Cole’s merge sort [34], which is optimal on the P-RAM models, on the

Connection Machine. Based on predicted measures, it was determined that it would be at

least a factor of 4, and possibly a factor of 10, slower than the other two sorts. The split

radix sort is the sort currently supported by the parallel instruction set of the Connection

Machine [113].

3.5. SEGMENTS AND SEGMENTED SCANS 45

Split Radix Sort Bitonic Sort

Theoretical

(Bit Serial Circuit)

Bit Time O(d lgn) O(d+ lg2 n)

Actual

(64K processor CM-1)

Bit cycles (sorting 16 bits) 20,000 19,000

Table 3.4: Comparison of the times taken by the split radix sort and the bitonic sort (n keys

each with d bits). The constants in the theoretical times are very small for both algorithms.

On the Connection Machine, the bitonic sort is implemented in microcode whereas the

split radix sort is implemented in macrocode, giving the bitonic sort an edge.

A = [5 1 3 4 3 9 2 6]

Sb = [T F T F F F T F]

seg-+-scan(A, Sb) = [0 5 0 3 7 10 0 2]

seg-max-scan(A, Sb) = [0 5 0 3 4 4 0 2]

Figure 3.5: The segmented scan operations restart at the beginning of each segment. The

vector Sb contains flags that mark the beginning of the segments.

3.5 Segments and Segmented Scans

In many algorithms it is useful to break the linear ordering of the processors into segments

and have a scan operation start again at the beginning of each segment; we call such scan

operations, segmented scans. Segmented scans take two arguments: a set of values and a

set of segment flags. Each flag in the segment flags specifies the start of a new segment (see

Figure 3.5). Segmented scans were first suggested by Schwartz [101]. This book greatly

extends the ideas of segments; Section 4.3 discusses how segments are useful for other

operations, and Chapter 10 proves a general theorem based on segments.

The segmented scan operations are useful because they allow algorithms to execute

the scans independently over the elements of many sets. A graph, for example, can be

represented using a segment for each vertex and an element position within a segment for

each edge of the vertex. Using this representation, the segmented scans can be used to

find the minimum edge of each vertex or to number the edges of each vertex. This graph

representation is discussed in more detail in Section 5.1, and algorithms based on it are

discussed in Chapter 7.

46 CHAPTER 3. THE SCAN PRIMITIVES

Key = [24.6 48.1 5.8 3.1 37.8 9.5 48.1 5.8]

Segment-Flags = [T F F F F F F F]

Pivots = [24.6 24.6 24.6 24.6 24.6 24.6 24.6 24.6]

F = [= > < < > < > <]

Key ← split(Key, F) = [5.8 3.1 9.5 5.8 24.6 48.1 37.8 48.1]

Segment-Flags = [T F F F T T F F]

Pivots = [5.8 5.8 5.8 5.8 24.6 48.1 48.1 48.1]

F = [= < > = = = < =]

Key ← split(Key, F) = [3.1 5.8 5.8 9.5 24.6 37.8 48.1 48.1]

Segment-Flags = [T T F T T T T F]

Figure 3.6: Parallel quicksort. On each step, within each segment, we distribute the pivot,

test whether each element is equal-to, less-than or greater-than the pivot, split into three

groups, and generate a new set of segment flags.

It turns out that the segmented scan operations can all be implemented with at most

two calls to the unsegmented versions (see Section B.2.3). They can also be implemented

directly as described by Schwartz [101] and in more detail in Section 13.2.1.

3.5.1 Example: Quicksort

To illustrate the use of segments, we consider an example: a parallel version of Quicksort.

Similar to the standard serial version [56], the parallel version picks one of the keys as a

pivot value, splits the keys into three sets—keys lesser, equal and greater than the pivot—

and recurses on each set.6 The algorithm has an expected step complexity of O(lgn).

The basic intuition of the parallel version is to keep each subset in its own segment,

and to pick pivot values and split the keys independently within each segment. The steps

required by the sort are outlined as follows:

1. Check if the keys are sorted and exit the routine if they are.

Each processor checks to see if the previous processor has a lesser or equal value.

We execute an and-distribute (Section 3.4) on the result of the check so that each

processor knows whether all other processors are in order.

2. Within each segment, pick a pivot and distribute it to the others elements.

6We do not need to recursively sort the keys equal to the pivot, but the algorithm as described below does. We

later discuss how we can remove sets which are already sorted—such as the equal elements.

3.5. SEGMENTS AND SEGMENTED SCANS 47

If we pick the first element as a pivot, we can use a segmented version of the copy

(Section 3.4) operation implemented based on a segmented max-scan. The algo-

rithm could also pick a random element by generating a random number (less than

the length) in the first element of each segment and picking out the element with a

copy of the number, a test and a backwards max-scan.

3. Within each segment, compare each element with the pivot and split based on the

result of the comparison.

For the split, we can use a version of the split operation described in Section 3.4.1

which splits into three sets instead of two, and which is segmented. To implement

such a segmented split, we can use a segmented versions of the enumerate op-

eration (Section 3.4) to number relative to the beginning of each segment. We can

use a segmented version of the copy operation to copy the offset of the beginning

of each segment across the segment. We then add the offset to the numbers relative

to beginning of the segment to generate actual indices to which we permute each

element.

4. Within each segment, insert additional segment flags to separate the split values.

Each element can determine if its at the beginning of the segment by looking at the

previous element.

5. Return to step 1.

Each iteration of this sort requires a constant number of calls to the primitives. If we select

pivots randomly within each segment, quicksort is expected to complete in O(lgn) itera-

tions, and therefore has an expected step complexity of O(lgn). This version of quicksort

has been implemented on the Connection Machine and executes in about twice the time as

the split radix sort.

The technique of recursively breaking segments into subsegments and operating inde-

pendently within each segment can be used for many other divide-and-conquer algorithms.

The quickhull algorithm described in Section 6.4, and a binary-search routine described in

Section 6.1 both use the technique.

3.5.2 Notes on Segments

Although the quicksort algorithm we described is works fine, by building some general-

purpose mechanisms, the algorithm can be made simpler, cleaner and more model inde-

pendent. We mention some such mechanisms here, and later chapters will describe them

in detail. The issues discussed here are particularly important when designing and imple-

menting algorithms that are more complicated than the quicksort.

48 CHAPTER 3. THE SCAN PRIMITIVES

define quicksort(A){
if A is not sorted

then

pivot ← A[0];

lesser-elements ← quicksort(select A less than pivot);

equal-elements ← select A equal to pivot;

greater-elements ← quicksort(select A greater than pivot);

append(lesser-elements, equal-elements, greater-elements)

else A}

Figure 3.7: A recursive definition of quicksort. Ideally, we could use this definition and it

would compile into the segmented code described earlier.

We mention four simplifications. First, programmer’s job, could be greatly simplified

with a translator that took an unsegmented version of an operator and automatically gener-

ated the segmented version. Second, the programmer’s job could again be simplified if the

segment flags could somehow be hidden. Manipulating segment flags is difficult and can

lead to bugs that are hard to find. Third, the definition of quicksort could be made much

simpler and more model independent if the quicksort could be defined in a high-level re-

cursive form such as shown in Figure 3.7 and automatically translated into the iterative

form described above, or at least a form which has the same complexity. Finally, the per-

formance of the algorithm could be improved if segments are dropped out when they are

completed. This optimization is useful when there are more keys than processors.

In Chapter 9 we discuss a compiler for PARALATION LISP [96] which translates a re-

cursive definition of quicksort similar to that shown in Figure 3.7 into a form similar to

the iterative version described in the previous section, with the optimization of dropping

out sorted segments. All the operations necessary to implement the sort are defined unseg-

mented and the programmer never has to see a segment flag.

3.6 Allocating Elements

This section illustrates another use of the scan operations. Consider the problem of given

a set of processors each with an integer, allocating that integer number of new processors

to each initial processor. Such allocation is necessary in the parallel line-drawing routine

described in Section 3.6.1. In the line-drawing routine, each line calculates the number

of pixels in the line and dynamically allocates a processor for each pixel. Allocating new

3.6. ALLOCATING ELEMENTS 49

V = [v1 v2 v3]

A = [4 1 3]

Hpointers ← +-scan(A) = [0 4 5]

✟✟✟✟✟✟✟✙ ❄ ❄
Segment-flag = [1 0 0 0 1 1 0 0]

distribute(V, Hpointers) = [v1 v1 v1 v1 v2 v3 v3 v3]

Figure 3.8: Processor Allocation. The vector A specifies how many new elements each

position needs. We can allocate a segment to each position by applying a +-scan to A

and using the result as pointers to the beginning of each segment. We can then distribute

the values of V to the new elements with a permute to the beginning of the segment and a

segmented copy across the segment.

elements is also useful for the branching part of many branch-and-bound algorithms. Con-

sider, for example, a brute force chess-playing algorithm that executes a fixed-depth search

of possible moves to determine the best next move.7 We can execute the algorithms in

parallel by placing each possible move in a separate processor. Since the algorithm dy-

namically decides how many next moves to generate, depending on the position, we need

to dynamically allocate new elements. In Section 3.7.1 we discuss the bounding part of

branch-and-bound algorithms.

Defined more formally, allocation is the task of, given a vector of integers A with

elements ai and length l, creating a new vector B of length:

L=
l−1

∑
i=0

ai (3.1)

with ai elements of B assigned to each position i of A. By assigned to, we mean that there

must be some method for distributing a value at position i of a vector to the ai elements

which are assigned to that position. Since there is a one-to-one correspondence between

elements of a vector and processors, the original vector requires l processors and the new

vector requires L processors. Typically, an algorithm does not operate on the two vectors

at the same time, so the processors can overlap.

7This is how many chess playing algorithms work [16]. The search is called an minimax search since it

alternates moves between the two players, trying to minimize the benefit of one player and maximize the benefit

of the other.

50 CHAPTER 3. THE SCAN PRIMITIVES

Figure 3.9: The pixels generated by a line drawing routine. In this example the endpoints

are (11, 2)–(23, 14), (2, 13)–(13,8), and (16, 4)–(31, 4). The algorithm allocates 12, 11 and

16 pixels respectively for the three lines.

Allocation can be implemented by assigning a contiguous segment of elements to each

position i of A. To allocate segments we execute a +-scan on the vector A returning a

pointer to the start of each segment (see Figure 3.8). We can then generate the appropriate

segment flags by permuting a flag to the index specified by the pointer. To distribute values

from each position i to its segment, we permute the values to the beginning of the segments

and use a segmented copy operation to copy the values across the segment. Allocation and

distribution each require a small constant number of calls to the primitives of the scan

model.

Allocation requires O(lgn) time on a EREW P-RAM and O(lgn/ lg lgn) time on a

CREW P-RAM based on the prefix sum routine of Cole and Vishkin [36].

3.6.1 Example: Line Drawing

As a concrete example of how allocation is used, consider line drawing. Line drawing is

the problem of: given a set of pairs of points (each point is an (x,y) pair), generate all

the locations of pixels that lie between one of the pairs of points. Figure 3.9 illustrates an

example. The routine we discuss returns a vector of (x,y) pairs that specify the position

of each pixel along the line. It generates the same set of pixels as generated by the simple

digital differential analyzer (DDA) serial technique [79].

The basic idea of the routine is for each line to allocate a processor for each pixel in

the line, and then for each allocated pixel to determine in parallel its final position in the

3.7. LONG VECTORS AND LOAD BALANCING 51

grid. To allocate a processor for each pixel, each line must first determine the number of

pixels in the line. This number can be calculated by taking the maximum of the x and y

differences of the line’s endpoints. Each line now allocates a segment of processors for its

pixels, and distributes its endpoints across the segment as described earlier. We now have

one processor for each pixel and one segment for each line. We can view the position of a

processor in its segment as the position of a pixel in its line. Based on the endpoints of the

line and the position in the line (determined with a +-scan), each pixel can determine its

final (x,y) location in the grid. Since lines can overlap, some pixels might appear in more

than one segment. To actually place the points on a grid, we would need to permute a flag

to a position based on the location of the point. In general, this will require the simplest

form of concurrent-write (one of the values gets written) since a pixel might appear in more

than one line.

This routine has a step complexity of O(1) and requires as many processors as pix-

els in the lines. The routine has been implemented on the Connection Machine, has been

extended to render solid objects by Salem, and is part of a rendering package for the Con-

nection Machine [97].

3.6.2 Notes on Allocating

When an algorithm allocates processors, the number of processors required is usually de-

termined dynamically and will depend on the data. To account for this, we must do one

of three things: assume an infinite number of processors, put a bound on the number of

elements that can be allocated, or start simulating multiple elements on each processor.

The first is not practical, and the second restricting. Section 3.7 discusses the third.

3.7 Long Vectors and Load Balancing

Up to now we have assumed that a P-RAM always has as many processors as elements

in our data vectors. In this section we remove this assumption and discuss assigning mul-

tiple data elements to each processor. We also discuss how scans can be used for load

balancing—keeping the number of elements assigned to each processor balanced.

Simulating multiple elements on each processor is important for two reasons. First,

from a practical point of view, real machines have a fixed number of processors but prob-

lem sizes vary: we would rather not restrict ourselves to fixed, and perhaps small, sized

problems. Second, from both a practical and theoretical point of view, by placing multiple

elements on each processor we can often greatly reduce the number of processors needed

by an algorithm, without greatly increasing the step complexity. This makes more efficient

use of the processors. Table 3.5 illustrates some examples of such algorithms. Reducing

52 CHAPTER 3. THE SCAN PRIMITIVES

Processors Steps Processor-Step

Halving Merge O(n) O(lgn) O(n lgn)
O(n/ lgn) O(lgn) O(n)

List Ranking [35] O(n) O(lgn) O(n lgn)
O(n/ lgn) O(lgn) O(n)

Tree Contraction [45] O(n) O(lgn) O(n lgn)
O(n/ lgn) O(lgn) O(n)

Table 3.5: The processor-step complexity of many algorithms can be reduced by using

fewer processors and assigning many elements to each processor.

[4 7 1
︸ ︷︷ ︸

processor 0

0 5 2
︸ ︷︷ ︸

processor 1

6 4 8
︸ ︷︷ ︸

processor 2

1 9 5
︸ ︷︷ ︸

processor 3

]

Sum = [12 7 18 15]

+-scan(Sum) = [0 12 19 37]

[0 4 11
︸ ︷︷ ︸

processor 0

12 12 17
︸ ︷︷ ︸

processor 1

19 25 29
︸ ︷︷ ︸

processor 2

37 38 47
︸ ︷︷ ︸

processor 3

]

Figure 3.10: When operating on long vectors, each processor is assigned to a contiguous

block of elements. To execute a scan, we sum within processors, execute a scan across

processors, and use the result as an offset to scan within processors.

the number of processors is important because processors are likely to have a cost associ-

ated with them: we either need a larger machine or need to use processors that someone

else could be using. This idea of getting better processor utilization by placing multiple

elements in each processor dates back at least to [44].

To operate on vectors with more data elements than P-RAM processors—henceforth

called long vectors—each processor is assigned to a contiguous block of elements (see

Figure 3.10). To execute an arithmetic operation or the permute operation on a long

vector, each processor loops over the element positions for which it is responsible and

executes the operation. To execute a scan operation across all the elements, each processor

first sums8 the elements it is assigned to (see Figure 3.10). Using the results, we execute a

8Here sum means with respect to the scan operator ⊕.

3.7. LONG VECTORS AND LOAD BALANCING 53

F = [T F F F T T F T T T T T]

A = [a0 a1 a2
︸ ︷︷ ︸

processor 0

a3 a4 a5
︸ ︷︷ ︸

processor 1

a6 a7 a8
︸ ︷︷ ︸

processor 2

a9 a10 a11
︸ ︷︷ ︸

processor 3

]

A = [a0 a4
︸ ︷︷ ︸

proc 0

a5 a7
︸ ︷︷ ︸

proc 1

a8 a9
︸ ︷︷ ︸

proc 2

a10 a11
︸ ︷︷ ︸

proc 3

]

Figure 3.11: Load Balancing. In load balancing, certain marked elements are dropped and

the remaining elements need to be balanced across the processors. Load balancing can be

executed by packing the remaining elements into a smaller vector using an enumerate and

a permute, and assigning each processor to a smaller block.

single scan across the processors. Finally, using the result of the single scan as an offset,

each processor scans the elements it is assigned to.

With p processors, all the vector operations can, therefore, be executed on vectors of

length n in

⌈n/p⌉ (3.2)

steps.

3.7.1 Load Balancing

We now turn to the problem of load balancing the number of elements assigned to each

processor. Load balancing is required in algorithms in which data elements drop out during

the execution of a routine. There are three common reasons why elements might drop out.

First, some elements might have completed their desired calculations. For example, in the

quicksort algorithm described in Section 3.5.1, segments which are already sorted might

drop out. Second, the algorithm might be subselecting elements. Subselection is used

in the halving merge algorithm discussed in Section 3.7.2. Third, an algorithm might be

pruning some sort of search. Pruning might be used in the bounding part of branch-and-

bound algorithms such as the chess-playing algorithm we mentioned in Section 3.6. In all

three cases, when the elements drop out, the number of elements left on each processor

might be unbalanced.

When elements drop out, we can reduce the maximum number of elements a processor

is responsible for by balancing the remaining elements across the processors; we call such

54 CHAPTER 3. THE SCAN PRIMITIVES

balancing, load balancing. For m remaining elements, load balancing can be implemented

by enumerating the remaining elements, permuting them into a vector of length m, and

assigning each processor to m/p elements of the new vector (see Figure 3.11). We call

the operation of packing elements into a smaller vector, the pack operation. Once a vector

is packed, a processor can determine how many and which elements it is responsible for

simply by knowing its processor number and m; m can be distributed to all the processors

with a +-distribute.

3.7.2 Example: Halving Merge

To illustrate the importance of simulating multiple elements on each processor and load

balancing, this section describes an algorithm for merging two sorted vectors. We call

the algorithm, the halving merge. When applied to vectors of length n and m (n ≥ m) on

the scan model with p processors, the halving merge algorithm has an step complexity of

O(n/p+ lgn). When the p < n/ lgn, the algorithm is optimal. The merging algorithm of

Shiloach and Vishkin for the CRCW P-RAM model [44, 104] has the same complexity but

is quite different. Their algorithm is not recursive. Although the split radix sort and the

quicksort algorithms are variations of well-known algorithms translated to a new model,

the merging algorithm described here is original.

The basic idea of the algorithm is to extract the odd-indexed elements from each of

the two vectors by packing them into smaller vectors, to recursively merge the half-length

vectors, and then to use the result of the halving merge to determine the positions of the

even-indexed elements. The number of elements halves on each recursive call, and the

recursion completes when one of the merge vectors contains a single element. We call the

operation of taking the result of the recursive merge on the odd-indexed elements and using

it to determine the position of the even-indexed elements, even-insertion. We first analyze

the complexity of the halving merge assuming that the even-insertion requires a constant

number of scan and permute operations, and then discuss the algorithm in more detail.

The complexity of the algorithm is calculated as follows. Since the number of ele-

ments halves at each level, there are at most lgn levels and at level i, n/2i elements must

be merged. With p processors, if we load balance, the most elements any processor is

responsible for is

⌈n/2ip⌉ . (3.3)

If the even-insertion requires a constant number of calls to the primitives per element, level

i has a step complexity of

O(⌈n/2ip⌉) . (3.4)

3.7. LONG VECTORS AND LOAD BALANCING 55

A = [1 7 10 13 15 20]

B = [3 4 9 22 23 26]

A′ = [1 10 15]

B′ = [3 9 23]

merge(A′, B′) = [1 3 9 10 15 23]

near-merge = [1 7 3 4 9 22 10 13 15 20 23 26]

result = [1 3 4 7 9 10 13 15 20 22 23 26]

Figure 3.12: The halving merge involves selecting the odd-indexed elements of each vector

to be merged, recursively merging these elements and then using the result to merge the

even-indexed elements (even-insertion). To execute the even-insertion, we place the even-

indexed elements in the merged odd-indexed elements after their original predecessor. This

vector, the near-merge vector, is almost sorted. As shown in the figure, nonoverlapping

blocks might need to be rotated: the first element moved to the end.

The total step complexity is therefore

O

(
lgn−1

∑
i=0

⌈
n

2ip

⌉)

= O

(
lgn−1

∑
i=0

(
n

2ip
+1

))

= O(n/p+ lgn) . (3.5)

The merging algorithm of Shiloach and Vishkin for the CRCW P-RAM model [44, 104]

has the same complexity but is quite different. Their algorithm is not recursive. When

p ≤ n/ lgn both algorithms have an asymptotically optimal processor-step complexity—

O(n).

We now discuss the algorithm in more detail. Picking every other element before call-

ing the algorithm recursively can be implemented by marking the odd-indexed elements

and packing them (load balancing them).

After the recursive call returns, the even-insertion is executed as follows. We expand

the merged odd-indexed vector by a factor of two by placing each unmerged even-indexed

element directly after the element it originally followed (see Figure 3.12). We call this

vector the near-merge vector. The near-merge vector has an interesting property: elements

can only be out of order by single nonoverlapping rotations. An element might appear

56 CHAPTER 3. THE SCAN PRIMITIVES

before a block of elements it belongs after. We call such an element a block-head. A

near-merge vector can be converted into a true merged vector by moving the block-head

to the end of the block and sliding the other elements down by one: rotating the block by

one. The rotation of the blocks can be implemented with two scans and two arithmetic

operations:

define fix-near-merge(near-merge){
head-copy ← max(max-scan(near-merge), near-merge)

result ← min(min-backscan(near-merge), head-copy)}

The even-insertion therefore requires a constant number of calls to the vector operations.

To place the even-indexed elements following the odd-indexed elements after returning

from the recursive call, we must somehow know the original position of each merged odd-

indexed element. To specify these positions, the merge routine could instead of returning

the actual merged values, return a vector of flags: each F flag represents an element of A

and each T flag represents an element of B. For example:

A′ = [1 10 15]

B′ = [3 9 23]

halving-merge(A′, B′) = [F T T F F T]

which corresponds to the merged values:

[1 3 9 10 15 23]

The vector of flags—henceforth the merge-flag vector—both uniquely specifies how the

elements should be merged and specifies in which position each element belongs.

3.7.3 Notes on Simulating Long Vectors

Simulating multiple elements on each processor can be a major inconvenience to the pro-

grammer. The programmer needs to worry about keeping track of how many elements are

assigned to each processor, about reassigning the processors after load balancing, about

looping over the elements when executing an arithmetic operation or a permutation, and

about executing the scan operations as described in Section 3.7. It would be very conve-

nient if the simulation could be hidden. One way to do this is to always operate on vectors,

and have a simulator automatically execute the looping when the vectors are longer than

the number of processors. The time complexity of an operation on a vector of length n is

simply ⌈n/p⌉.

3.7. LONG VECTORS AND LOAD BALANCING 57

This simulation can also simplify complexity analysis. We can define two complexities

based on the vector operations, the first we call s and is the number of operations on a

vector, the second we call e and is the sum over the vector lengths during the algorithm

execution. For example, for the halving merge algorithm

s= O(lgn)

and

e= O(n+n/2+n/4 · · ·) = O(n) .

In Section 12.2, based on Brent’s scheduling principle [28], we show that given these two

complexities, the complexity on a P-RAM is:

O(e/p+ s) (3.6)

giving the desired O(n/p+ lgn) for the halving merge. Determining the complexities s

and e and using equation 3.6 is easier than doing the analysis given in equations 3.3–3.5.

Yes, we have just reinvented the parallel vector models!!

58 CHAPTER 3. THE SCAN PRIMITIVES

Chapter 4

The Scan Vector Model

This chapter brings together the contributions of the previous two chapters: the parallel

vector models and the scan primitives. It formally defines the scan vector model in terms

of a set of primitive instructions. The primitive instructions are broken into three classes:

scalar, vector and vector-scalar instructions. The vector instructions are further broken into

three subclasses: elementwise, scan, and permutation instructions. The scan vector model

is introduced both to illustrate a concrete example of a parallel vector model and because

its particular primitives are very useful for a wide variety of algorithms and are practical to

implement.

As well as defining the scan vector model, this chapter describes a set of vector opera-

tions that can be implemented with the primitive instructions of the scan vector model, such

as a pack operation and an append operation (Section 4.2); a set of segmented versions of

the primitive instructions, such as a segmented permute instruction and segmented scan

instructions (Section 4.3); and discusses a set of other primitive instructions which are not

included in the scan vector model, but might be included in other parallel vector models,

such as a merge instruction and a set of combine instructions (Section 4.5).

4.1 The Scan Vector Instruction Set

This section defines a set of vector primitives. These primitives can be thought of as

defining the instruction set of an abstract machine—a scan vector machine. The described

instruction set is complete and is sufficient to implement all the algorithms discussed in

this book. The particular instruction set was chosen for several reasons. It is small, making

it easy to define, implement and understand; it can be implemented on a wide variety

of architectures; it is useful for a wide variety of algorithms; and its instructions require

59

60 CHAPTER 4. THE SCAN VECTOR MODEL

Scalar Instructions:

Arithmetic and Logical Instructions:

+, −, and, or, = , <, ...

Conditional Instruction:

cond-jump

Indirect-Access Instructions:

move-scalar, move-vector

Vector Instructions:

Elementwise Instructions:

p+, p−, p-and, p-or, p= , p<, p-select, ...

Permutation Instructions:

permute, select-permute

Scan Instructions:

+-scan, max-scan, min-scan, or-scan, and-scan

Vector-Scalar Instructions:

insert, extract, distribute, length

Figure 4.1: The scan vector instruction set. Input and output instructions are not included

because, for the purposes of the book, we consider a scan vector machine as self contained.

approximately equal time on equal-length vectors. All the instructions of the scan vector

model have been implemented on the Connection Machine (see Chapter 12).

Figure 4.1 summarizes the instructions of the scan vector model. The instructions

are categorized based on which processor of a V-RAM they use—the scalar or the vector

processor. Before describing the instructions, we discuss two general issues about the

instructions, types and addressing.

So far this book has mentioned nothing about the types of values that can be placed in

each element of a vector. To understand why types are important, consider the following

questions. Does the operation p+, which pairwise adds the elements of two equal-length

vectors, add integer values or floating-point values? Can it add integer values in some

locations and floating-point values in others? In the scan vector model every instruction

assumes that the elements of a vector are all of the same type—we say that the vectors are

homogeneous—and the instruction set includes two versions of the arithmetic instructions,

one for integer values and one for floating-point values.

The book has also mentioned nothing about the types of addressing available to the

instruction of a parallel vector machine. In the scan vector model, all but two of the in-

structions require fixed, absolute addresses. The two exceptions are two move instructions

4.1. THE SCAN VECTOR INSTRUCTION SET 61

that use indirect-addressing based on addresses in the scalar memory to move a vector or

a scalar. The instructions that allow indirect addressing are separated out because indirect

addressing presents a problem when trying to prove the replicating theorem in Chapter 10.

By only allowing two instructions to use indirect addressing, we can localize this problem.

In many cases it is possible to replace a subset of the instructions with another set of

instructions which are equivalent—we will discuss some interesting cases where this is

possible.

4.1.1 Scalar Instructions

The scalar instructions are basically the instructions of a standard serial RAM. They in-

clude a set of arithmetic and logical operations, a conditional-jump instruction, and the two

indirect-addressing instructions. The conditional-jump instruction, cond-jump, jumps to

a new location in the program memory if a flag in the scalar memory is true. The scalar

indirect-addressing instruction, move-scalar, copies a scalar value from a source location

to a destination location. The vector indirect-addressing primitive, move-vector, copies

a vector from a source location to a destination location. The move-vector instruction is

considered a scalar instruction because both of its arguments are scalars—the source and

destination locations.

4.1.2 Elementwise Instructions

Each elementwise instruction operates on equal-length vectors, producing a result vector

of the same length. The element i of the result is an elementary arithmetic or logical

primitive—such as +,−,∗, or or not—applied to element i of each of the input vectors.

For example:

A = [5 1 3 4 3 9 2 6]

B = [2 5 3 8 1 3 6 2]

A p+ B = [7 6 6 12 4 12 8 8]

A p× B = [10 5 9 32 3 27 12 12]

In addition to the standard elementary operations, the elementwise instructions include

an operator p-select. Based on a boolean argument, the p-select function returns

either the first or second of its other two arguments. For example:

A = [5 1 3 4 3 9 2 6]

B = [2 5 3 8 1 3 6 2]

F = [T F F F T T F T]

p-select(F, A, B) = [5 5 3 8 3 9 6 6]

62 CHAPTER 4. THE SCAN VECTOR MODEL

As we shall see, this instruction is very useful for implementing simple conditional state-

ments.

4.1.3 Permute Instructions

The permute instruction takes two vector arguments—a data vector and an index vector—

and permutes each element in the data vector to the location specified in the index vector.

For example:

A (data vector) = [a0 a1 a2 a3 a4 a5 a6 a7]

I (index vector) = [2 5 4 3 1 6 0 7]

❅
❅

❅
❅❘

❍❍❍❍❍❍❍❍❥

❅
❅

❅
❅❘❄

✑
✑

✑
✑

✑
✑✰

❆
❆
❆
❆❯

✏✏✏✏✏✏✏✏✏✏✏✏✮ ❄
C ← permute(A, I) = [a6 a4 a0 a3 a2 a1 a5 a7]

It is an error for more than one element to contain the same index—a permutation is a

one-to-one mapping. This restriction is similar to the restriction made in the exclusive-

read exclusive-write (EREW) P-RAM model, in which it is an error to write more than one

value to a particular memory location at a time.

The permute instruction can rearrange elements within a vector of fixed size but cannot

rearrange elements into a vector of a different size. The select-permute instruction is

included for this purpose. It requires two extra arguments, a default vector and a selection

vector. The default vector specifies the length of the destination vector and puts default

values in positions that do not receive any value. The selection vector masks out certain

elements so they do not get placed anywhere in the destination vector. For example:

A (data vector) = [a0 a1 a2 a3 a4 a5 a6 a7]

D (default vector) = [d0 d1 d2 d3]

S (selection vector) = [T F F F F T F F]

I (index vector) = [1 5 4 6 2 3 7 0]

❅
❅❘

✟✟✟✟✙
select-permute(A, I, S, D) = [d0 a0 d2 a5]

The pack operation defined in Section 4.2 along with an analogous unpack operation

can be used instead of the select-permute operation as instructions for moving values

between vectors of different sizes.

4.1. THE SCAN VECTOR INSTRUCTION SET 63

4.1.4 Scan Instructions

A scan instruction executes a scan operation on a vector. As defined in Chapter 3, the

scan operation takes a binary associative operator ⊕ with identity 0, and an ordered set

[a0,a1, ...,an−1] of n elements, and returns the ordered set [0,a0,(a0 ⊕ a1), ...,(a0 ⊕ a1 ⊕
...⊕an−2)]. For example:

A = [5 1 3 4 3 9 2 6]

+-scan(A) = [0 5 6 9 13 16 25 27]

max-scan(A) = [0 5 5 5 5 5 9 9]

This book only uses +, maximum, minimum, or and and as operators for the scan in-

structions since these operators are adequate for all the algorithms discussed in the book.

We henceforth refer to these scan operations as +-scan, max-scan, min-scan, or-scan

and and-scan respectively. Chapter 13 discusses how all these instructions, including the

floating-point versions, can be implemented with just an integer +-scan and max-scan.

4.1.5 Vector-Scalar Instructions

The scan vector model includes four instructions that take both scalar and vector argu-

ments. The extract instruction extracts a scalar value from a vector based on a scalar

index. The insert instruction inserts a scalar value into a vector based on a scalar in-

dex. The distribute instruction generates a vector with a scalar copied across the whole

vector. The length instruction returns the length of a vector. For example:

A = [a0 a1 a2 a3 a4 a5]

V = v

I = 3

L = 5

insert(A, I, V) = [a0 a1 a2 v a4 a5]

extract(A, I) = a3

distribute(V, L) = [v v v v v]

length(A) = 6

The vector-scalar instructions are important since they are the only instructions that can

move a value between a vector and a scalar, or that generate a vector of a new length (the

select-permute instruction rearranges elements between vectors of different lengths but

cannot generate a vector of a new length). The insert instruction is actually redundant—it

can be defined using the other instructions (see Section B.3)—but is included for symmetry.

64 CHAPTER 4. THE SCAN VECTOR MODEL

Operation Other Names Reference

index index PARALATION LISP [96]

iota APL [59]

⊕-reduce reduce APL, COMMON LISP [107]

vref PARALATION LISP

⊕-distribute

append catenate APL

concatenate COMMON LISP

pack pack Schwartz [101]

compress APL

irregular compression Batcher [12]

split

flag-merge

inverse-permute

enumerate enumerate Christman [31]

max-index

Table 4.1: A summary of the simple operations and some of the places they have appeared

in the past.

4.2 Simple Operations

This section lists a set of simple operations that can all be implemented using a constant

number of calls to the scan vector instructions. Many of these operations were introduced

in Chapter 3, and many have appeared in various languages and other contexts (see Ta-

ble 4.1). An attempt was made here to select the clearest name for each operation. The

operations are put together in this section partially for reference purposes, but also to show

the reader some simple uses of the scan vector instruction set. They are used extensively

in this book, and Appendix B shows the implementation of each operations using the scan

vector instructions. In practice, where constant factors are important, many of these simple

operations might be implemented directly at a lower level rather than implementing them

using the scan vector instructions.

index length

The index operation takes a scalar length and returns a vector of that length with sequential

4.2. SIMPLE OPERATIONS 65

indices. For example:

L = 8

index(L) = [0 1 2 3 4 5 6 7]

⊕-reduce values
The reduce operations take a vector of values and combine all the elements of the vector

using one of five binary operators: +, maximum, minimum, or or and. They return a

scalar value. For example:

A = [5 1 3 4 3 9 2 6]

+-reduce(A) = 33

max-reduce(A) = 9

⊕-distribute values
The ⊕-distribute operations take a vector of values, combine all the elements of the vector

using one of five binary operators: +, maximum, minimum, or or and, and distribute the

values back across the vector. For example:

A = [5 1 3 4 3 9 2 6]

+-distribute(A) = [33 33 33 33 33 33 33 33]

max-distribute(A) = [9 9 9 9 9 9 9 9]

append values1 values2

The append operation takes two vectors and appends them. For example:

A = [a0 a1 a2]

B = [b0 b1]

append(A, B) = [a0 a1 a2 b0 b1]

pack values flags

The pack operation takes a vector of values, and a boolean vector of flags, and packs all

the elements with a T in their flag into consecutive elements, deleting elements with an F

in their flag. For example:

66 CHAPTER 4. THE SCAN VECTOR MODEL

A = [a0 a1 a2 a3 a4 a5 a6 a7]

F = [T F T F F T T T]

pack(A, F) = [a0 a2 a5 a6 a7]

split values flags

The split operation takes a vector of values and a boolean vector of flags, and packs all

the elements with an F in their flag to the bottom of a vector and elements with a T in their

flag to the top of the vector. For example:

A = [a0 a1 a2 a3 a4 a5 a6 a7]

F = [T F T F F T T T]

split(A, F) = [a1 a3 a4 a0 a2 a5 a6 a7]

flag-merge flags values1 values2

The flag-merge operation takes two vectors of values and a boolean vector of flags, and

merges the values according to the flags. Positions with a T in their flag will get values from

the values2 vector, and positions with an F in their flag will get values from the values1

vector. The ordering is maintained. For example:

A = [a0 a1 a2]

B = [b0 b1 b2 b3 b4]

F = [T F T F F T T T]

flag-merge(F, A, B) = [b0 a0 b1 a1 a2 b2 b3 b4]

inverse-permute values indices

The inverse-permute operation is similar to the permute instruction but the indices

instead of specifying the positions to which the values are written, specify the positions

from which the values are taken. The values vector must be equal or longer than the

indices vector. As with the permute instruction, all indices must be unique. For example:

A = [a0 a1 a2 a3 a4 a5 a6 a7]

I = [3 0 7 2 6]

inverse-permute(A, I) = [a3 a0 a7 a2 a6]

enumerate flags

4.3. SEGMENTS AND SEGMENTED INSTRUCTIONS 67

The enumerate operation takes a vector of flags and returns unique sequential integers to

the elements with T in their flag. We do not care what is returned to elements with an F in

their flag. For example:

F = [T F T F F T T T]

enumerate(F) = [0 1 1 2 2 2 3 4]

max-index values

The max-index operation takes a vector of values and returns the index of the maximum

value. If several values are equal, it returns the leftmost index. For example:

A = [2 11 4 7 14 6 9 14]

max-index(A) = 4

The min-index operation uses minimum instead of maximum.

4.3 Segments and Segmented Instructions

This section formalizes the notion of a segmented vector, and introduces segmented ver-

sions of most of the scan vector instructions. Segments and the segmented versions of the

instructions are used extensively in the algorithms discussed in Part II of this book. They

are also used to prove the replicating theorem in Chapter 10.

Definition: A segmented vector is an ordered set S of n segments, and an ordered set A of

m atomic values (a vector). Each segment si (0 ≤ i< n) of S is mapped onto a consecutive

block, possibly empty, of A. The blocks are all adjacent and are in the same order as the

segments to which they are assigned.

The number of segments in a segmented vector is called the segment count.

The segments of a segmented vector are defined separately over each vector. For example,

the third segment of one vector might be much longer than the third segment of another

vector.

We call any structure that describes the segmentation of a vector, a segment-descriptor.

Figure 4.2 shows three possible segment descriptors: the head-flags marks the beginning

of each segment, the lengths specifies the length of each segment, and the head-pointers

points to the beginning of each segment. The head-flags were introduced in Chapter 3 and

are inadequate for describing segments in general because they cannot be used to represent

empty segments (empty segments are important for the replicating theorem described in

68 CHAPTER 4. THE SCAN VECTOR MODEL

S= [[s00 s01 s02] [] [s20 s21] [s30 s31 s32 s33]]

vector elements = [s00 s01 s02 s20 s21 s30 s31 s32 s33]

head-flags = [1 0 0 1 0 1 0 0 0]

lengths = [3 0 2 4]

head-pointers = [0 3 3 5]

head-pointer-flag = [T F T T]

Figure 4.2: A segmented vector and three ways of describing the segmentation. The

head-flags marks the beginning of each segment and cannot be used to represent empty

segments. The lengths specifies the length of each segment. The head-pointers point to the

beginning of each segment—the head-pointer-flag marks the nonempty segments.

Chapter 10). In this chapter we use the lengths vector as a segment descriptor. Appendix B

shows that any of the segment-descriptors can be generated from any other with a step

complexity of O(1).

We now introduce segmented versions of all but three of the instructions of the scan

vector model (the cond-jump, move-scalar and move-vector instructions do not have

segmented versions). The segmented versions of the instructions execute the original in-

struction independently within each segment. Figure 4.3 illustrates several examples. Each

vector argument in the unsegmented version of an instruction is replaced by a segmented

vector in the segmented version, and each scalar argument in the unsegmented version is

replaced by a vector in the segmented version. When using a segmented instruction, the

segment count of each vector argument must be equal and must equal the vector length of

each scalar argument.

All the segmented instructions can be implemented with a constant number of calls to

the unsegmented instructions (see Appendix B) and therefore have an step complexity of

O(1). Likewise, the element complexity of each segmented instruction is only a constant

factor greater than the element complexity of the unsegmented version.

4.4 Segmented Operations

Using the segmented versions of the instructions, we can implement segmented versions

of all the operations defined in Section 4.2. Here we mention two additional operations

which can be implemented with a constant number of calls to the primitives and which are

4.4. SEGMENTED OPERATIONS 69

C = [3 4 7]

D = [6 2 3]

C + D = [9 6 10]

Scalar Instructions

A = [[5 1] [3 4 3 9] [2 6]]

B = [[1 0] [2 0 3 1] [0 1]]

+-scan(A) = [[0 5] [0 3 7 10] [0 2]]

permute(A, B) = [[1 5] [4 9 3 3] [2 6]]

Vector Instructions

A = [[5 1] [3 4 3 9] [2 6]]

B = [[1 3] [2 0 3 1] [0 1]]

F = [[T T] [T T F T] [T T]]

D = [[6 9 2 3] [3 2 2] [7 1]]

select-permute(A, B, F, D)

= [[6 5 2 1] [4 9 3] [2 6]]

Vector Instructions (different size arguments)

A = [[5 1 6] [3 3 9] [2 6]]

L = [4 1 2]

I = [0 2 1]

V = [3 4 7]

distribute(V, L) = [[3 3 3 3] [4] [7 7]]

extract(A, I) = [5 9 6]

insert(A, V, I) = [[3 1 6] [3 3 4] [2 7]]

Vector-Scalar Instructions

Figure 4.3: Examples of the segmented versions of the instructions of the scan vector

model.

70 CHAPTER 4. THE SCAN VECTOR MODEL

useful when using segments.

split-and-segment values flags

The split-and-segment operation is similar to the split operation defined in Sec-

tion 4.2. It takes a vector of values and a boolean vector of flags, and returns a segmented

vector with two segments: one containing the elements with an F in their flag and the other

containing the elements with a T in their flag. For example:

A = [5 1 3 4 3 9 2 6]

F = [T F T F F T T T]

split-and-segment(A, F) = [[1 4 3] [5 3 9 2 6]]

c-rank-split ranks flags

The rank-split operation is similar to the split-and-segment operation except that

the ranks argument must be a valid set of indices for the permutation instruction. In ad-

dition to splitting these indices, the rank-split operation renumbers the indices so they

are valid within the new segments but maintain the same order. For example:

A = [5 1 3 4 0 7 2 6]

F = [T F T F F T T T]

split-and-segment(A, F) = [[1 4 0] [5 3 7 2 6]]

rank-split(A, F) = [[1 2 0] [2 1 4 0 3]]

The rank-split operation is used to update pointers when splitting a set of pointers.

4.5 Additional Instructions

In this section we consider the effects of including other primitive instructions in a par-

allel vector model. The instructions we consider are, a merge-mask instruction, a set of

⊕-combine instructions, a multi-extract instruction, and a set of ⊕-keyed-scan in-

structions. For each instruction introduced, we briefly discuss how practical the instruction

is to implement on a parallel machine, and how the addition of the instruction effects the

complexity of various algorithms.

4.5.1 Merge Instruction

The merge-mask instruction takes two sorted vectors of lengths l1 and l2, merges them,

and returns a boolean vector of length l1 + l2 with F set in positions in which elements of

4.5. ADDITIONAL INSTRUCTIONS 71

the first vector belong and T set in positions in which elements of the second vector belong.

For example:

A = [3 7 8]

B = [1 4 5 9 11]

C ← merge-mask(A, B) = [T F T T F F T T]

flag-merge(C, A, B) = [1 3 4 5 7 8 9 11]

We suggest the merge-mask instruction instead of a direct merge instruction because

a merge operation can be built easily out of the merge-mask instruction by using the

flag-merge operation (Section 4.2), but the opposite is not true. From a practical point

of view, it is worth having both instructions.

The merge-mask instruction can be implemented on a parallel machine using Batcher’s

bitonic merge [11]. This operation can be executed deterministically using a single pass of

a butterfly network; for n values, the merge-mask instruction executes inO(lgn) time—no

more than a permute or scan instruction.

Algorithms to construct and manipulate the plane-sweep tree data structure [7, 3, 9, 94]

are greatly simplified with a merge instruction. The merge instruction is also useful for

manipulating sets.

4.5.2 Combine Instructions

The combine instructions are similar to the select-permute instruction but permit many-

to-one mappings: the indices need not be unique. Values with equal indices are combined

using a binary associative operator. As with the scan operations, we might restrict the com-

bining operators to some simple set such as, +, maximum, minimum, and and or. The

combine instructions takes a default argument, whose elements get combined and which

determines the length of the result vector. For example:

Index = [0 1 2 3 4 5 6 7]

Data = [5 1 3 4 3 9 2 6]

I = [2 5 3 3 1 0 3 5]

❅
❅

❅
❅❘

❍❍❍❍❍❍❍❍❥

❆
❆
❆
❆❯❄

✑
✑

✑
✑

✑
✑✰

✁
✁

✁
✁☛

✑
✑

✑
✑

✑
✑✰

�
�

�
�✠

D = [0 0 0 0 0 0]

+-combine(Data, I, D) = [0 3 5 9 9 7]

max-combine(Data, I, D) = [0 3 5 4 9 6]

72 CHAPTER 4. THE SCAN VECTOR MODEL

The combine instructions are similar to the concurrent-write (CW) instruction of the P-

RAM model. The combine instructions are more powerful, however, since as well as

permitting many values to be written to a single location, they allow those values to be

combined.

For many uses of the combine instructions, the data can be organized so that the

reduce operations (based on the scan instructions) can be used instead. This is, for ex-

ample, the case with the graph data structure described in Section 5.1.

One use of the combine instructions that cannot be replaced with the reduce oper-

ations is in histogramming a vector of small integers. In histogramming we are given a

vector V of values and we want to determine how many of each value appear in the vector.

To implement this, for small integers, we create a vector as long as the largest integer with

the integer 0 in each element, create another vector of the same length as V with the inte-

ger 1 in each element, and then use the +-combine instruction with the vector V as the

index, the 1 vector as the data and the 0 vector as the default. Each element of the result

will contain the number of elements of V with that key. Such an implementation of integer

histogramming is only efficient if the number of buckets (the largest integer) is on the same

order as the length of V . If the number of buckets is significantly larger than V , sorting

the values so that equal values are adjacent, and reducing within each segment of values is

more efficient.

The hardware implementation of the combine instructions is discussed along with the

implementation of the keyed-scan instructions.

4.5.3 Multi-Extract Instruction

The multi-extract instruction takes two vectors, an index vector and a data vector, of

potentially different lengths, and for each index, extracts the corresponding element from

the data vector. The indices need not be unique. For example:

Index = [0 1 2 3 4 5]

Data = [5 1 3 4 11 9]

I = [2 5 4 3 1 2 3 5]

multi-extract(Data, I) = [3 9 11 4 1 3 4 9]

The multi-extract instruction is analogous to the concurrent-read (CR) instruction of

the P-RAM model.

For many uses of the multi-extract instruction, the data structure can be orga-

nized so that the distribute operation (based on the scan instructions) can be used

instead. This is analogous to the use of the reduce operations instead of the combine

4.5. ADDITIONAL INSTRUCTIONS 73

instructions mentioned in the previous section. In some applications, such as dictionary

lookup using small integer keys, the distribute operation cannot be used to replace the

multi-extract instruction. Dictionary lookup is the problem of given a “dictionary” of

words each with a definition in a vector D, and a vector V of words without definitions,

we would like to find the definition for each word in V . Each word may appear multiple

times in V , and we assume nothing about the ordering of the words. If each word can be

indexed by its position in D, then we can use the multi-extract instruction to extract

each definition in D. If the words are long, it might be possible to hash the characters of

each word into a small integer and used the hashed value as a key into the dictionary. This

requires that we keep multiple dictionary vectors since more than one word might hash to

the same location.

The reduce operations cannot be used in histogramming nor the distribute opera-

tion in dictionary lookup are for similar reasons. In both cases we are dynamically translat-

ing some data into pointers. In histogramming we translate integer values into pointers to

locations in the histogram vector, and in dictionary lookup, we translate words into pointers

to locations in the dictionary vector. Because of this translation, we know nothing about

the organization of the pointers and cannot organize them into segments.

The implementation of the multi-extract instruction is discussed along with the

implementation of the keyed-scan instructions.

4.5.4 Keyed-Scan Instructions

The keyed-scan instructions are similar to the combine instructions but return an addi-

tional vector: the scan vector. The scan vector contains the results of executing an inde-

pendent scan operation for the elements with each index (key). We include a keyed-scan

operation for the standard binary associative operators: +, max, min, or and and. For

example:

Data = [1 1 1 1 1 1 1 1]

Keys = [3 2 3 2 0 3 3 2]

Default = [0 0 0 0]

+-keyed-scan(Data, Keys)

sum = [1 0 3 4]

scan = [0 0 1 1 0 2 3 2]

This is analogous to a stable version of the Fetch-and-Op instruction suggested for the

Ultracomputer [49], and to the multi-prefix operation suggested by Ranade [93]. By stable,

we mean that the scan for each key is executed in the vector order rather than in an arbitrary

order.

74 CHAPTER 4. THE SCAN VECTOR MODEL

The +-keyed-scan instruction can be used in a radix sort [19, 93]. For n keys each

with d bits, the algorithm requires O(d/ lgn) steps. The algorithm is similar to the split

radix sort described in Section 3.4.1 but sorts lgn bits on each step instead of a single bit.

As with the split radix sort, we start by sorting the lowest order bits of the key, and work

our way up. Because each step is stable, the keys remain sorted with respect to the lower

ordered bits. Each step of the sort works as follows:

define radix-sort-step(Subkeys, Keys){
ones ← distribute(1, length(Keys));

intrakey-offset, subkey-sum ← +-keyed-scan(ones, Subkeys);

key-offset ← multi-extract(+-scan(subkey-sum), Subkeys);

permute(Keys, key-offset + intrakey-offset)}

The Subkeys argument refers to the lgn extracted bits of the keys. The basic idea is for each

subkey to find its offset within the elements with an equal subkey, we call this the intrakey-

offset. Each subkey also determines how many elements contain a smaller subkey, we call

this the key-offset. The position of the subkey in the final ordering is then simply the sum

of the key-offset and the intrakey-offset.

The combine instructions, the multi-extract instruction, and the keyed-scan in-

structions can all be implemented using the routing algorithm suggested by Ranade [92].

This algorithm runs on a butterfly network and for n values, requiresO(lgn) time with very

high probability. Each node of the butterfly only requires a constant number of buffers. The

implementation of the three types of instructions differ in what is needed in each switch

of the network. For the combine and keyed-scan instructions, each switch requires an

arithmetic unit to execute the binary associative operator. For the multi-extract and

keyed-scan instructions the switches are required to store state from a forward pass of

the network, to be used during a backward pass of the network (see [106, 93]).

Part II

Algorithms

75

Introduction: Algorithms

This part describes a broad variety of data structures and algorithms based on the scan

vector model. It contains four chapters. Chapter 5, data structures, describes how trees,

graphs and multidimensional arrays can be represented using vectors and illustrates how

some operations on these data structures can be implemented. Many of these operations

have an asymptotic step complexity that is a factor of O(lgn) less than equivalent opera-

tions on either a CRCW or EREW P-RAM model. The next three chapters—computational

geometry algorithms, graph algorithms and numerical algorithms—describe a variety of

algorithms. These algorithms make extensive use of the data structures and operations

defined in Chapter 5.

77

78

Chapter 5

Data Structures

This chapter describes data structures for mapping trees, graphs and multidimensional ar-

rays onto a small number of vectors such that the instructions of the scan vector model can

be applied to efficiently manipulate the objects. It also describes the implementation of

several operations on the data structures, including finding the maximum value of a neigh-

bor in a graph, finding the depth of each vertex in a tree, or summing the rows in a grid.

Many of these operations have an asymptotic step complexity that is a factor ofO(lgn) less

than equivalent operations on either a CRCW or EREW P-RAM.1 The representations and

operations described in this chapter are used extensively in Chapters 7 and 8.

5.1 Graphs

This section describes representations of graphs, both directed and undirected, and a set of

useful operations that take advantage of the representations. The representations discussed

in this section will be called v-graph (vector graph) representations. These representations

are used in all the algorithms described in the chapter on graph algorithms (Chapter 7).

The v-graph representations are based on segmented vectors in which each segment corre-

sponds to a vertex of the graph, and each element within a segment corresponds to an edge

of that vertex. By using segmented operations to operate over the edges of each vertex, the

step complexity of many useful operations on graphs can be reduced. For example, each

vertex summing a value from all neighbors, is reduced from O(lgd) in the P-RAM models

to O(1) (d is the greatest degree of any vertex). The general idea of the representation is

1Using the O(lgn/ lg lgn) prefix sum routine of Cole and Vishkin [36] and our data structures, some of the

operations can execute on a CRCW P-RAM with a step complexity which is O(lgn/ lg lgn), instead of O(lgn),
greater than on the scan vector model.

79

80 CHAPTER 5. DATA STRUCTURES

Graphs:

Summing Neighbors, Finding the Maximum of Neighbors,

Distributing an Excess,

Deleting Edges, Deleting Vertices, Merging Vertices.

Trees:

Depth of Each Vertex, Size of Each Subtree,

Passing Flag Down Tree, Passing Flag Up Tree,

Merging Trees, Deleting Vertices, Splitting Trees.

Multidimensional Arrays:

Reducing Across Subdimensions, Expanding Across a Dimension,

Extracting a Subplane, Appending Grids.

Table 5.1: Examples of operations on trees, graphs and multidimensional arrays. All these

operations have a step complexity of O(1) in the scan vector model.

that by keeping a graph in a particular form, we can minimize the cost of operations on that

graph. Section 5.2 will show that by keeping trees in a particular form, we can similarly

reduce the step complexity of many tree operations on trees with n vertices by O(lgn).

We now consider more precisely how undirected and directed graphs are represented

and then illustrate how the representation is used to implement two example operations:

neighbor reducing and distributing an excess.

5.1.1 Vector Graph Representations

Undirected Graphs: To represent an undirected graph, we use a single segmented vector.

Each segment corresponds to a vertex and each element within a segment corresponds to

one of the edges of that vertex. Since each edge is incident on two vertices, it appears in

two segments. The actual values kept in the elements of the segmented vector are pointers

to the other end of the edge (see Figure 5.1). To include weights on the edges of the graphs,

we can use an additional vector that contains the weights of the edges.

Directed Graphs: To represent a directed graph, we use two segmented vectors: one for

the incoming edges, and one for the outgoing edges. Each element in the outgoing edges

vector is a pointer to a position in the incoming edges vector (see Figure 5.2). As with

undirected graphs, we can represent a weighted directed graph with an additional weight

vector.

5.1. GRAPHS 81

w
3

vertex 2

vertex 1 vertex 4

vertex 5

w

w
2

w

w

1

5

6

w
4

vertex 3

Index = [0 1 2 3 4 5 6 7 8 9 10 11]

vertex = [1 2 3 4 5]

segment-descriptor = [1 3 3 2 3]

cross-pointers = [1 0 4 9 2 7 10 5 11 3 6 8]

weights = [w1 w1 w2 w3 w2 w4 w5 w4 w6 w3 w5 w6]

Figure 5.1: An example of the undirected v-graph representation. Each pointer points to

the other end of the edge. So, for example, edge w3 in vertex 2 contains a pointer (in this

case 9) to its other end in vertex 5. The segment-descriptor specifies the number of edges

incident on each vertex.

82 CHAPTER 5. DATA STRUCTURES

Outgoing

segment-descriptor = [2 1 1 2 0]

cross-pointers = [0 2 4 1 3 5]

weights = [w1 w2 w4 w3 w5 w6]

Incoming

index = [0 1 2 3 4 5]

segment-descriptor = [0 2 2 1 1]

weights = [w1 w3 w2 w5 w4 w6]

Figure 5.2: An example of the v-graph representation of a directed graph.

5.1. GRAPHS 83

The operations on graphs discussed in this section assume the graph is already in the

v-graph representation. For the representation to be useful, either there must be an efficient

routine to generate the representation from another representation, or it must be possible to

do all manipulations on graphs using the v-graph representation. A graph can be converted

from most other representations into the v-graph representation by creating two elements

per edge (one for each end) and sorting the edges according to their vertex number. The

split radix sort (Section 3.4.1) can be used since the vertex numbers are all integers less

than n. The sort places all edges that belong to the same vertex in a contiguous segment.

We suggest that in the scan vector model graphs always be kept in the v-graph rep-

resentation. In this representation, most useful manipulations on graphs, such as deleting

edges or vertices, or merging vertices (see Section 7.1), can be implemented with an step

complexity of O(1).

5.1.2 Neighbor Reducing

We now consider a commonly used operation on graphs: neighbor reducing. In neighbor

reducing, each vertex applies a binary associative operator over some variable in all of its

neighbors. For example, it can be used to determine if any neighbor has a flag set, or to find

the maximum of some variable of all neighbors. Neighbor reducing can be executed by (1)

distributing the value from each vertex over its edges using the segmented distribute

operation, (2) permuting these values using the cross-pointers, and (3) “summing” the

values on the edges back into the vertices using a segmented reduce operation. This

routine can be applied to both undirected and directed graphs. For the binary associative

operators, +, or, and, maximum and minimum, neighbor reducing has a step complexity of

O(1). The code needed to implement a +-neighbor-reduce on an undirected graph is:

define +-neighbor-reduce(A, Graph){
values ← seg-distribute(A, Graph.segment-descriptor);

neighbors ← permute(values, Graph.cross-pointers);

seg-+-reduce(neighbors, Graph.segment-descriptor)}

On a P-RAM, in general, neighbor reducing requires O(lgd) time.

5.1.3 Distributing an Excess Across Edges

As another example of the use of the v-graph representations, consider the problem of

taking a value (an excess) at each vertex of a directed graph and spreading it across the

outgoing edges of that vertex. Each edge has a maximum capacity it can accept, and as

long as no edge gets more than its maximum capacity, the excess can be distributed in

84 CHAPTER 5. DATA STRUCTURES

any way. For example, if a vertex had an excess of 20, and the edges of that vertex had

capacities 7, 11, 6 and 14, a valid distribution is to distribute 7, 11, 2 and 0 across the four

edges. The maximum-flow algorithm described in Section 7.2, and in [47], uses such a

technique.

The distribution of excess can be implemented on the v-graph representation using a

segmented +-scan and a segmented distribute as shown below.

define distribute-excess(Excess, Capacity, Graph){
A ← seg-distribute(Excess, Graph.out-segment-descriptor);

B ← seg-+-scan(Capacity, Graph.out-segment-descriptor);

C ← p-maximum(A p− B, 0);

p-minimum(Capacity, C)}

Here is an example for two vertices of a graph:

Capacity = [13 5 7 11 6 14]

Excess = [15 20]

A = [15 15 20 20 20 20]

B = [0 13 0 7 18 24]

C = [15 2 20 13 2 0]

Result = [13 2 7 11 2 0]

5.2 Trees

This section describes a flexible representation of trees, and a set of useful operations that

take advantage of this representation. The representation is based on the Euler-tour order

as described by Tarjan and Vishkin [112], but instead of using linked lists, it uses vectors.

By using the scan instructions on the vectors, instead of the prefix operations on linked

lists, the step complexity for many operations is reduced from O(lgn) to O(1).

5.2.1 Vector Tree Representation

The Euler-tour order is generated by traversing the tree counter-clockwise, starting at the

root, and sequentially numbering each edge passed (see Figure 5.3). Each edge is num-

bered twice, once on the way down and once on the way up. The Euler-tour ordering can be

pictured in a parenthetical form as shown in Figure 5.3. Each matching pair of parentheses

corresponds to an edge of the tree and the vertex below it.2 Our vector representation of a

tree is based on this parenthetical form. We use two vectors: one contains the index of the

2Note that we include an edge out of the root.

5.2. TREES 85

Index = [0 1 2 3 4 5 6 7 8 9 10 11]

Vertex Number = [0 1 2 2 3 3 4 4 1 5 5 0]

((() () ()) ())

Vertex Number = [0 1 2 3 4 5]

left-paren = [0 1 2 4 6 9]

right-paren = [11 8 3 5 7 10]

Figure 5.3: An example of the v-tree representation of a tree. This representation is based

on the Euler-tour ordering [112].

left parenthesis of each vertex, the left-paren vector, and the other contains the index of the

right parenthesis of each vertex, the right-paren vector (see Figure 5.3). The vertices are

kept in the preorder numbering. We will refer to this representation of a tree as the v-tree

(vector tree) representation.

In the remainder of this section, we discuss several operations on trees. We describe

how the leaffix and rootfix operations [70] can be implemented efficiently using the v-tree

representation. The leaffix and rootfix operations can, in turn, be used to determine many

important properties of a tree, such as the depth of each vertex. We also describe how

to delete vertices from a tree, how to split a tree, and how to join trees. For trees with n

vertices, all these operations have a step complexity of O(1) and an element complexity of

O(n).

Before discussing the operations, we briefly discuss how to generate the v-tree repre-

sentation from other representations of trees. If a tree is given in the v-graph represen-

tation (Section 5.1), perhaps as a result of a graph operations, the tree can be converted

86 CHAPTER 5. DATA STRUCTURES

to the v-tree representations by hooking the vertices into a linked list and executing a +-

list-scan on the list.3 The list-scan assigns sequential indices to the elements. These

indices are then used to permute the tree into the correct order. In the scan vector model,

the list-scan operations have a step complexity of O(lgn) and an element complexity

of O(n). Often O(lgn) operations are required on the tree, therefore, amortizing the cost.

If a tree is given in a representation in which each child has a pointer to its parent, a sort

might be required to convert it into the v-tree representation—this is also true to get it into

a linked list. The sort is used to place all the children who point to the same parent into a

contiguous segment.

5.2.2 Leaffix and Rootfix Operations

The leaffix operation takes a binary associative operator ⊕, and a tree of values A, and

returns to each vertex the result of applying the operator ⊕ to all of its descendants. Sim-

ilarly, the rootfix operation returns to each vertex the result of applying the operator ⊕ to

all of its ancestors. These operations were introduced by Leiserson and Maggs [70].

Using the v-tree representation, the leaffix and rootfix operations for the operators +,

or and and can be implemented with a step complexity of O(1). The implementation of

the + version relies on + having an inverse. The implementation of the or and and version

is based on the + version4. Since maximum or minimum do not have an inverse, and cannot

be implemented with the + version, the implementation we describe is not applicable.

Using the leaffix and rootfix computations with the operators +, or and and, we can

execute the following useful operations on a tree:

• Determining the depth of each vertex. This is executed by applying a +-rootfix

operation on a tree with the value 1 at every vertex.

• Determining how many descendants each vertex has. This is executed by applying a

+-leaffix operation on a tree with the value 1 at every vertex.

• Passing a flag down from a set of vertices to all their descendants. This is executed

with an or-rootfix operation on a tree with a flag set to T in vertices that want

their descendants marked.

• Passing a flag up from a set of leaves to all their ancestors. This is executed with

an or-leaffix operation on a tree with a flag set to T in vertices that want their

ancestors marked.

3Also called a prefix sum on a linked list or list ranking.
4To implement an or with a +, we convert the boolean values T and F to the numbers 1 and 0, execute a +,

and if a result is greater than 0, we convert it to T.

5.2. TREES 87

The basic idea of the +-rootfix is to permute the value in A to the left-paren, permute the

inverse to the right-paren, execute a +-scan and get the result from the left-paren. Since

the inverse of the value cancels out the value, the sum over any subtree is 0. Figure 5.4

illustrates an example. The +-rootfix and +-leaffix operations can be implemented

as follows.

define +-rootfix(A, Tr){
I ← distribute(0, 2 × length(Tr));

L ← select-permute(A, Tr.left-paren, I));

R ← select-permute(–A, Tr.right-paren, L);

S ← +-scan(R);

inverse-permute(S, Tr.left-paren)}

define +-leaffix(A, Tr){
I ← distribute(0, 2 × length(Tr));

L ← select-permute(A, Tr.left-paren, I);

S ← +-scan(L);

R-value ← inverse-permute(S, Tr.right-paren);

L-value ← inverse-permute(S, Tr.left-paren);

R-value p− L-value}

The leaffix and rootfix operations for operators without an inverse, such as maximum,

can be implemented with a step complexity of O(lgn) and an element complexity of

O(n lgn). The method involves finding the sum (relative to the operator) over n over-

lapping intervals by recursively splitting the vector in halves, finding the sum of the half,

and each interval which spans a whole half, adds this sum in. It turns out that this technique

requires no permutations; it only requires O(lgn) scans.

5.2.3 Tree Manipulations

In this section we discuss how to delete vertices from a tree, how to split a tree into a set of

trees, and how to merge a set of trees. With a total of n vertices, all these operations have

a step complexity of O(1) and an element complexity of O(n).

Deleting Vertices: Given a tree, and a boolean vector which marks certain vertices for

deletion, we can remove these vertices from the tree by packing the left-paren and right-

paren vectors. We must, however, first renumber the positions. To renumber the positions,

we permute the delete flag to both the right and left parenthesis of each vertex. We then

enumerate this array giving each element which is not being deleted, a unique index. We

permute these indices back to the left-paren and right-paren, and pack them. Figure 5.5

88 CHAPTER 5. DATA STRUCTURES

A = [1 1 1 1 1 1]

left-paren = [0 1 2 4 6 9]

right-paren = [11 8 3 5 7 10]

I = [0 0 0 0 0 0 0 0 0 0 0 0]

L = [1 1 1 0 1 0 1 0 0 1 0 0]

R = [1 1 1 –1 1 –1 1 –1 –1 1 –1 –1]

+-scan(R) = [0 1 2 3 2 3 2 3 2 1 2 1]

Result (Depth) = [0 1 2 2 2 1]

Figure 5.4: An example of a +-rootfix. In this example, since the vector A is all ones,

the operation calculates the depth of each vertex.

5.2. TREES 89

F = [T F T T F T]

left-paren = [0 1 2 4 6 9]

right-paren = [11 8 3 5 7 10]

Fl = [T F T T T T F F F T T T]

enumerate(Fl) = [0 1 1 2❧ 3 4❧ 5 5 5 5 6❧ 7❧]

new left index = [0 x 1 3 x 5]

new right index = [7 x 2 4 x 6]

new left-paren = [0 1 3 5]

new right-paren = [7 2 4 6]

Figure 5.5: An example of deleting vertices of a tree.

90 CHAPTER 5. DATA STRUCTURES

shows an example. We can use this delete operation to delete all descendants of a set of

vertices by marking the descendants with an or-rootfix and then deleting the marked

vertices.

Splitting a Tree: Using a similar method as used for deleting vertices, we can split a tree

into a set of trees. Given a tree and a boolean vector which marks the roots of a set of

independent subtrees, the tree split returns each branch, and what remains of the tree, as

independent trees each within its own segment.

This tree-split operation can be implemented as follows. We distribute the index of

the left parenthesis of each root of a branch to all vertices of a branch. Since branches

are disjoint, this distribution can be executed with a +-rootfix by placing the index in

the root of each branch and 0 everywhere else. Every branch vertex subtracts the left

parenthesis index of its root from its left and right parenthesis. This returns new indices

relative to each vertex’s new root rather than the old root. We can reindex the vertices that

remain in the original tree using the same method as used for the delete operation. We now

use the split-and-segment operation (Section 4.4) to split branch vertices from vertices

that remain in the original tree. Since the branches are disjoint, the vertices of each branch

will be in a contiguous set of elements of the branch segment. We can, therefore, place each

branch in its own segment by determining the boundary and generating the appropriate

segment descriptor.

Merging Trees: Using almost the inverse of the tree-split operation, we can implement

a tree-merge operation. The tree-merge problem is: given a set of trees each in its own

segment, and one tree whose vertices contain pointers (segment indices) to the other trees,

merge the trees into a single tree. The tree-merge is similar to the star-merge operation that

will be described in Section 7.1. The principal difference is that in addition to merging the

child trees into the parent trees (child vertices into the parent vertices in the case of the

star-merge), we must reindex the resulting left-paren and right-paren vectors so that they

correctly describe the tree.

As with the star-merge, each vertex of the parent tree must open enough space to fit

its child tree: this is executed with a +-scan. We now place each child tree (both its

left-paren and right-paren vectors) in the opened space after its root vertex in the parent

tree. To reindex, each vertex of the parent tree determines how many new child vertices

will be added below it. This can be calculated with a +-leaffix. Each vertex of the

parent tree also determines how many new children vertices appear to the left of it using

a +-scan. The new left-paren value of each vertex is the old one plus twice the number

of new vertices to the right. The new right-paren value of each vertex is the old one plus

twice the number of new vertices to the right, plus twice the number of new children. To

reindex the children, we distribute the left parenthesis offset of the root of each child tree

5.3. MULTIDIMENSIONAL ARRAYS 91

C =

[
5 1 3 4

3 9 2 6

]

C = [5 1 3 4 3 9 2 6]

size = 4, 2

Figure 5.6: An example of the representation of a two dimensional. The array is mapped

onto the vector in row major order.

across the vertices of the child tree and add this offset to the left-paren and right-paren

values of each child vertex.

This operation, as the others, has a step complexity of O(1).

5.3 Multidimensional Arrays

This section describes how multidimensional arrays can be represented with vectors and

how several useful array operations, including extracting subdimensions, reducing across

subdimensions, and distributing across subdimensions, can be implemented using this rep-

resentation. These operations have a step complexity of O(1) and an element complexity

of O(n)—n is the total number of elements. These array operations are important enough

that they might be implemented directly rather than being built on the primitives of the

scan model [4]. A problem with the direct implementation is that the replicating theorem

Chapter 10 does not apply; a segmented version of the array scans would be required.

We represent multidimensional arrays in the scan model in the standard way—by plac-

ing all the elements of the array in a single vector, and by keeping a set of scalars which

specify the size of each dimension. By using a convention on how elements of the matrix

are mapped onto the vector, we can easily determine the location in the vector of a matrix

element. So, for example, a two dimensional m1×m2 array could be mapped onto a vector

of length m1m2 in row-major order (see Figure 5.6).

Based on the array ordering, we can define array versions of the scan primitives (see

Figure 5.7). These can be implemented with a constant number of calls to the vector

versions by simply permuting the elements before and after the scan operation, and using

a segmented scan to separate each row, or each column. With the array versions of the

scan primitives, we can implement array versions of all the simple operations defined in

Section 4.2. The operations which are particularly useful are the reduce, distribute,

extract and insert operations. Figure 5.8 shows some examples of these operations.

92 CHAPTER 5. DATA STRUCTURES

C =

[
5 1 3 4

3 9 2 6

]

+-scan-row(C) =

[
0 5 6 9

0 3 12 14

]

Figure 5.7: Example of a +-scan on a two dimensional array.

C =

[
5 1 3 4

3 9 2 6

]

+-reduce-rows(C) =

[
13

20

]

extract-row(C,1) = [3 9 2 6]

Figure 5.8: Examples of the simple operations +-reduce and extract on a two dimen-

sional array.

Chapter 6

Computational-Geometry

Algorithms

This chapter describes four computational-geometry algorithms: a closest-pair algorithm,

two convex-hull algorithms and a line-of-sight algorithm. It first describes two techniques

used by these algorithms, a binary-search technique, used in one of the convex-hull algo-

rithms, and a k-D-tree technique, used in the closest-pair algorithm. The algorithms in this

chapter are joint work with Jim Little [22]. Table 6.1 summarizes the complexities of the

algorithms.

Complexity

Step Element

n points

Closest Pair lgn n lgn

Quickhull (n points, m hull points) lgm, m n, nm√
n Merge Hull lgn n lgn

Line of Sight 1 n

Table 6.1: The complexities of the algorithms discussed in this chapter. In the case of the

quickhull, the two complexities are the best and worst case complexities.

93

94 CHAPTER 6. COMPUTATIONAL-GEOMETRY ALGORITHMS

6.1 Generalized Binary Search

In this section we consider the problem of n elements of a set A each executing a binary

search on a binary tree T withm vertices. We first consider a simple binary search in which

we start with all the elements at the root and on each step each element either goes to the

right or left child. We then consider a generalized binary search in which we can insert

new elements at the root on each step, and elements are permitted to remain at a vertex of

the binary tree at any step. We assume that the tree T is organized in a vector using the

standard heap ordering: the root value is stored at T [1] and the two children of a vertex

stored at T [i] are stored at T [2i] and T [2i + 1].

We use a simple routine based on recursive splitting to implement the simple binary

search on the scan vector model. We start with all the elements of A in a single segment

and then split that segment using a split-and-segment based on whether an element is

going to the right or to the left child of the root of T . We then recursively split within each

of these segments, based on data from the next level of the tree. Since all the elements

of A that are accessing the same vertex of T are in a contiguous segment, we can use a

segmented distribute operation to distribute the value from each vertex of the tree to

the elements that need it.

We now consider a generalization on the simple binary search. In this generalized

binary search, we can insert new elements at the root on each step. This capability might

be used to pipeline a search. We also permit elements to remain at a vertex of the binary

tree on any step. This capability is required for the
√
n-merge-hull algorithm discussed

in Section 6.5. Unlike the simple binary search, in this generalized version there might be

elements at every level of the tree on any given step. Figure 6.1 illustrates how the elements

of A are stored for this generalized search and shows an example of a step of the search.

To execute a step, we must somehow append the elements at a vertex v that remain

with the elements being passed down from the parent of v. To append the elements, we can

use a segmented version of the append operation discussed in Section 4.2. The basic idea

is first to separate the elements that remain from those that go to a child into two separate

vectors using two segmented pack operations. For the example of Figure 6.1 this returns:

remain = [a0] [] [a4] [] [a5 a6] [] [a7]

not-remain = [a1] [a2] [a3] [] [] [] []

We then split the elements going to a child based on whether they are going to the left or

right child using a segmented split operation. This returns:

split(not-remain) = [] [a1] [a2] [] [a3] [] [] [] [] [] [] [] [] []

6.1. GENERALIZED BINARY SEARCH 95

T = [t0 t1 t2 t3 t4 t5 t6]

A = [a0 a1] [a2] [a3 a4] [] [a5 a6] [] [a7]

F = [x r] [l] [l x] [] [x x] [] [x]

N = [a8 a9]

A = [a8 a9 a0] [] [a1 a4] [a2] [a5 a6] [a3] [a7]

Figure 6.1: An example of a step of the general binary-search technique. We keep a

segment in A for each vertex of the tree T such that segment i corresponds to vertex i

(remember that the tree is in standard heap order). Each segment contains all elements at

the corresponding vertex. The vector F specifies where each element needs to go during

a step of the search (r for right, l for left, and x for remain). The vector N contains new

elements entering at the root of the search at that step.

96 CHAPTER 6. COMPUTATIONAL-GEOMETRY ALGORITHMS

We now shift the segments of the split vector right by one and insert the new elements on

the left (segments are shifted by shifting the segment descriptor). Because of the heap order

of T , this causes each segment to go to its child segment. We also truncate the segments

that correspond to children of the leaf vertices. These calculations return:

children = [a8 a9] [] [a1] [a2] [] [a3] []

We now append the shifted vector (children) to the vector of elements that remained (re-

main) using the append operation giving the result:

[a8 a9 a0] [] [a1 a4] [a2] [a5 a6] [a3] [a7]

The following routine can be used to execute a step of the binary search. The remain?

flag specifies elements that stay at the current vertex, and the right? flag specifies elements

that go to the right branch. The vector N contains the new elements to be inserted at the

root.

define search-step(A, T , N, remain?, right?){
remain ← pack(A, remain?);

not-remain ← pack(A, not(remain?));

children ← shift-segments-right(N, split(not-remain, right?));

append(remain, children)}

Binary search illustrates an important difference between the general programming

style used for concurrent-read P-RAM models and for vector models. In the P-RAM

model, the problem is best thought of as n independent processes each executing its own

search on the tree T . In the scan model, we must think of the n elements as a set and break

that set into subsets according to which vertex of T each element is accessing. This might

just be a philosophical point, but we believe it is important.

6.2 Building a k-D Tree

A k-D tree is a technique for splitting n points in a k dimensional space into n regions each

with a single point [13]. It starts by splitting the space in two along one of the coordinates

using a k− 1 dimensional hyperplane. It then recursively splits each of the subspaces in

two. Figure 6.2 illustrates an example of a 2-D tree. At each step the algorithm must select

which dimension to split within each subspace; the criterion for selection depends on how

the tree will be used. A common criterion is to select the dimension along which the spread

of points is greatest.

6.2. BUILDING A K-D TREE 97

point = [a b c d e f g h i j k l m n o p]

x-rank = [0 6 15 10 7 2 4 12 14 8 13 3 1 5 11 9]

y-rank = [13 7 4 3 15 6 11 0 9 8 14 1 10 2 5 12]

above-split-line? [F F T T F F F T T T T F F F T T]

rank-split(x-rank) = [0 6 7 2 4 3 1 5] [7 2 4 6 0 5 3 1]

rank-split(y-rank) = [6 3 7 2 5 0 4 1] [2 1 0 5 4 7 3 6]

Figure 6.2: An example of a 2-D tree. The top diagram shows the final splitting. The

vectors below are generated during the first step—when splitting along the line Lx.

98 CHAPTER 6. COMPUTATIONAL-GEOMETRY ALGORITHMS

The k-D tree is often used as a step in other algorithms. 3-D trees are used in ray tracing

algorithms for rendering solid objects. In such algorithms, objects need only be stored in

the regions they penetrate and rays need only examine regions they cross. This can greatly

reduce the number of objects each ray needs to examine. k-D trees are also used in many

proximity algorithms such as the all-closest-pairs problem [43] or the closest-pair problem

(see Section 6.3). k-D trees have also been suggested for use in some machine-learning

algorithms [81].

The algorithm we describe here is a parallel version of a standard serial algorithm [88].

For n points, our algorithm has a step complexity of O(k lgn) and an element complexity

of O(nk lgn). The algorithm is serially time optimal.

Our algorithm consists of one step per split. Each step has a step complexity of O(k).

Before executing any steps, the algorithm sorts the set of points according to each of the k

dimensions. The sorting can be executed with the quicksort or split radix sort discussed in

Chapter 3 or a version of Cole’s sorting algorithm [34]. Instead of keeping the actual values

in sorted order for each dimension, we keep the rank of each point along each dimension.

The rank of a point is the position the point would be located at if the vector were sorted.

We call the vectors that hold these ranks, rank-vectors—there is one rank-vector for each

dimension. Figure 6.2 illustrates an example for a 2-D tree, the initial rank-vectors, and

the result of the first step.

At each step of the algorithm the rank-vectors contain a segment for each subspace,

and the ranks within each segment are the correct ranks for that subspace. It suffices

to demonstrate that we can execute a split along any dimension and generate new ranks

within the two subspaces. The algorithm is then correct by induction.

To split along a given dimension the algorithm distributes the cut line and determines

for each point whether it is above or below the line1. The algorithm now uses the rank-split

operation defined in Section 4.2 to split each rank-vector based on whether a point is below

or above the split line. The rank-split operation as defined correctly generates the rank

within each subspace. Each step therefore requires O(k) calls to the instructions: some

operations to determine whether each point is below or above the split, and k rank-split

operations. Since there are O(lgn) steps, the whole algorithm has a step complexity of

O(k lgn). Since the vectors are always of length O(n), the algorithm has an element com-

plexity of O(nk lgn)

1As stated earlier, the method for choosing a cut line depends on the particular use of the k-D tree.

6.3. CLOSEST PAIR 99

6.3 Closest Pair

In a two dimensional closest-pair problem, we want to find the pair of points in a plane

that are closest to each other (Euclidean distance). The algorithm we describe is a parallel

version of an algorithm described by Bentley and Shamos [14]. For n points, it has a

step complexity of O(lgn) and an element complexity of O(n lgn). The algorithm has

an element-space complexity of O(n lgn) (lgn vectors of length n)2 but can be modified to

run with a step complexity ofO(lgn lg lgn) and element-space complexity ofO(n). Atallah

and Goodrich have described an O(lgn lg lgn) time O(n) processor algorithm to solve the

closest-pair problem in the concurrent-read exclusive-write (CREW) P-RAM model [8].

Our algorithm consists of building a 2-D tree as defined in Section 6.23, and then

merging rectangles back to the original region. Given two adjacent rectangles and their

closest pairs, a merge step can determine the closest pair of the merged rectangle with an

step complexity of O(1). Because of segments, we can merge many pairs of rectangles in

parallel.

The 2-D splitting was described in Section 6.2 and the merging phase is described here.

The merging works on the same principle as described by Bentley and Shamos [14]. We

first review the principle and then show how it is implemented on the scan vector model.

We will denote the separation of the closest pair in a rectangle R by δR.

At each merging step, we know the closest pair within each of a pair of merging rect-

angles A and B and want to find the closest pair in the rectangle A∪B. The closest pair is

either the pair in A, the pair in B, or a pair with one point in A and the other in B. In the last

case, the two end points must each lie within δmin= min(δA,δB) of the boundary between

the two rectangles. We call this region AB′ (see Figure 6.3).

If we look at a point p in AB′, no more than 11 other points in AB′ can be less than δmin
away from p. Figure 6.3 shows the tightest possible packing. If the points in AB′ are sorted

along the merge line, each point can determine the minimum distance to another point in

AB′ by looking at a fixed number of neighbors in the sorted order (at most 11). Once all

points in AB′ have determined their closest neighbor in AB′, we take the minimum of these

distances to determine δAB′ and then calculate the desired result: δAB= min(δmin,δAB′).

We now show how this technique is applied in the scan vector model. The merge

consists of the following steps (each step has a step complexity of O(1)):

1. Derive the vector of points in A∪B sorted along the direction of the split line. To

get this vector, we need only keep the appropriate split-flags when executing the 2-D

2These vectors are all boolean vectors.
3In this algorithm it does not matter in what order we pick the dimensions—in fact, we could always split on

the same dimension.

100 CHAPTER 6. COMPUTATIONAL-GEOMETRY ALGORITHMS

Figure 6.3: Merging two rectangles to determine closest pair. Only 12 points can fit in the

2δmin × 2δmin dashed box such that no two points in either A or B are closer than δmin.

splitting—remember that when building a k-D splitting tree we had the sorted order

for all dimensions for all rectangles.

2. Determine δmin by taking the minimum of δA and δB. Distribute δmin to all points in

the sorted vector of A∪B.

3. Pack elements which are within δmin of the merge line using the pack operation into

a new sorted vector AB′.

4. Shift this vector to the right by one and calculate the distance from each point to its

neighbor. Repeat this six times to get the six neighbors on each side.

5. Determine δAB′ by taking the minimum distance found in the previous step using a

min-reduce. Take the minimum of δmin and δAB′ to get δAB.

The algorithm runs with a step complexity of O(lgn) because the k-D splitting has a

step complexity of O(lgn) (see Section 6.2) and there are lgn merge steps each with a step

complexity of O(1). To execute the merges with a step complexity of O(1), we must store

the split-flags when executing the 2-D splitting. Since there are lgn levels, this requires

that we store lgn boolean vectors each of length n. If allocating this space is a problem,

6.4. QUICKHULL 101

we can derive the sorted vector for A∪B on the fly by merging the sorted vectors of A

and B. This merge can be implemented as described in Section 3.7.2. If we include a

merge instruction in the model, as suggested in Section 4.5.1, the closest-pair algorithm

will run with a step complexity of O(lgn), an element complexity of O(n lgn), and an

element-space complexity of O(n).

6.4 Quickhull

In this section we describe a parallel version of the quickhull algorithm [88]. This algorithm

is used to solve the planar convex hull problem: given n points in the plane, find which of

these points lie on the perimeter of the smallest convex region that contains all points.

The quickhull algorithm was given its name because of its similarity with the quicksort

algorithm. As with quicksort, the quickhull algorithm picks a “pivot” element, splits the

data based on the pivot, and is recursively applied to each of the split sets. Also, as with

quicksort, the pivot element is not guaranteed to split the data into equal sized sets, and in

the worst case the algorithm can require n steps.

Figure 6.4 shows an example of the quickhull algorithm. The algorithm first splits

the points into two sets with a line that passes between the two x extrema—lets call these

points l and r. In the scan vector model, this is executed with a few reduce and distribute

operations, some elementwise arithmetic calculations, and a split operation.

The algorithm now recursively splits each of the two subspaces into two using the

following step. It determines for each point p in the subspace the perpendicular distance

from the point to the line lr. This can be calculated with a cross product of the lines lr and

l p. The algorithm selects the furthest point from the line lr and distributes it to all other

elements in the subspace—lets call this point t. It should be clear that t lies on the convex

hull. Points within the triangle ltr cannot be on the convex hull and are eliminated with a

pack operation. The point t is now used to further split each segment based on which of

the two sides of the triangle, lt or rt, they fall. The algorithm is now applied to the new

segments recursively. The algorithm is completed when all segments are empty.

Each step has a step complexity of O(1) and an element complexity of at most O(n):

since many points might be deleted on each step, the element complexity could be signifi-

cantly less. For m hull points, the algorithm runs in O(lgm) steps for well-distributed hull

points, and has a worst case running time of O(m) steps.

102 CHAPTER 6. COMPUTATIONAL-GEOMETRY ALGORITHMS

Figure 6.4: An example of the quickhull algorithm. Each vector shows one step of the

algorithm. Since A and P are the two x extrema, the line AP is the original split line. J and

N are the furthest points in each subspace from AP and are, therefore, used for the next

level of splits. The values outside the brackets are hull points that have already been found.

6.5.
√
n MERGE HULL 103

Figure 6.5: An example of the
√
n merge hull algorithm. The horizontal dashed lines

show the division of the points into
√
n groups of

√
n elements each. The subhulls within

each group are marked with solid lines. The upper chain is the chain A B J O P.

6.5
√
nMerge Hull

In this section we describe a variation of a parallel algorithm by Aggarwal et. al. [3] and

independently by Atallah and Goodrich [8] for solving the convex-hull problem. Their

algorithm is based on the concurrent-read exclusive-write (CREW) P-RAM model. We

cannot use their algorithm directly because the scan vector model does not permit concur-

rent access to a single value, a necessary part of their algorithm. The variation we describe

keeps all elements that require the same data in a contiguous segment so the data can be

distributed using a distribute operation. The contribution of our version is showing how

the concurrent-read operation can be replaced by the distribute operation and involves

the binary search method described in Section 6.1. Our variation has a step complexity of

O(lgn) and an element complexity of O(n lgn). The algorithm is, therefore, serially time

optimal. Miller and Stout have shown an exclusive-read exclusive-write (EREW) convex-

hull algorithm with an O(lgn) complexity [76]. Our algorithm, however, is simpler, and

the binary search technique it uses in interesting on its own.

We begin by reviewing the CREW algorithm. The algorithm sorts the points according

to their x coordinate. It slices this ordering into
√
n equal sized sets of points and recur-

sively solves the convex hull for each set. It then merges the
√
n subhulls (see Figure 6.5).

104 CHAPTER 6. COMPUTATIONAL-GEOMETRY ALGORITHMS

The sort and the merge both take O(lgn) time4. The running time of the algorithm thus has

the recurrence relation T (n) = T (
√
n)+O(lgn) which yields O(lgn) time.

Since the elements can be sorted using existing algorithms, we concentrate on the merg-

ing step. The merge is executed in two parts: one part finds the upper chain of the convex

hull and the other part finds the lower chain. The upper chain is the section of the convex

hull that runs across the top between the two x extrema. In the CREW algorithm the merge

of each chain works as follows.

The algorithm assigns an element (a processor) for each pair of subhulls. Since there

are
√
n subhulls, O(n) elements are sufficient. Each of these pairs independently finds

the upper tangent line-segment5 between its two subhulls using a serial method of Over-

mars [82]. This method executes a binary search alternating between the two subhulls, and

requires O(lgn) time. At the kth step of the binary search, an element either goes down the

left branch, the right branch, or remains in place.

Once the upper tangent lines have been found, the algorithm determines the bridges

among the
√
n subhulls. The bridges are the upper tangent line-segments that belong to the

upper chain. To find which of the upper tangent lines are bridges, each subhull finds the

highest sloped line in both directions (to a point on the right and to a point on the left). If

the joint formed by these lines is convex, then both lines are bridges. If the joint formed by

the lines is concave, neither are bridges. All edges on a subhull that lie between bridges of

that subhull also belong to the convex hull.

This algorithm cannot be implemented directly on the scan vector model since each

pair of subhulls independently finds the upper tangent-line segments using the algorithm

of Overmars, and , therefore, requires concurrent reads: several pairs, while executing the

binary search, will require access to the same elements. To avoid the concurrent read, we

place each of the sets of
√
n points that belong to the same subhull in its own segment.

We then use a binary-search method described in Section 6.1. This search requires O(lgn)

time and involves no concurrent-reads.

Our variation of the CREW algorithm runs with the same number of calls to the primi-

tives as the original since, as with the original, the sort runs in O(lgn) time, and, as shown

above, the merge also runs in O(lgn) time. This variation trades the concurrent-read capa-

bility for the scan capability.

6.6. LINE OF SIGHT 105

Figure 6.6: An example of a line-of-sight problem. The X marks the observation point.

The numbers represent the altitude of each contour line. The elements visible from the

observation point are shaded.

6.6 Line of Sight

Given an
√
n-by-

√
n grid of altitudes and an observation point on or above the surface,

a line-of-sight algorithm finds all points on the grid visible from the observation point.

Figure 6.6 shows an example. A line-of-sight algorithm can be applied to help determine

where to locate potential eyesores. For example, when designing a building, a highway or

a city dump, it is often informative to know from where the “eyesore” will be visible. The

algorithm is also useful for real time vision applications.

The algorithm we describe in this section has a step complexity ofO(1) and an element

complexity of O(n). The basic idea is to allocate a segment in a vector for every ray

that propagates in the plane from the observation point, henceforth referred to as X , to a

boundary position (see Figure 6.7). Based on some calculations on the points in each ray,

we can determine if the point is visible.

The algorithm consists of four basic steps.

1. Each point p in the grid calculates the vertical angle between the horizontal plane

that passes through X (the observation point) and the line from p to X . This is

4The algorithm of Cole [34] can be used for sorting in the CREW model.
5An upper tangent line-segment of two sets of points is the line that passes through at least one point from

each set so that all other points in the two sets are below the line.

106 CHAPTER 6. COMPUTATIONAL-GEOMETRY ALGORITHMS

Figure 6.7: Example of some rays propagating from the observation point.

executed by distributing the location of X over all points and calculating the arctan

of the horizontal difference over the vertical difference.

2. The algorithms allocates a set of rays—one for each boundary grid point—and dis-

tributes the angles from each point p in the grid to all the rays it belongs to. Let us

call the segmented vector that contains these rays the ray structure.

3. Following a ray from X to the boundary, a point p is visible if its angle is greater

than all the angles that precede it in the ray. This can be determined for all points in

all rays with a single segmented max-scan, and a comparison.

4. Visibility information is returned back to the grid points. Since a grid point may

belong to many rays, the visibility flags are combined using or.

Since steps 1 and 3 should be clear, and step 4 is basically the reverse of step 2, we

only describe step 2. To allocate the ray structure the algorithm draws a line from the

observation point to each boundary element using the routine discussed in Section 3.6.1.

Each grid point might belong to several of these rays (points near X belong to more rays

than points near the edges). To distribute the angle from a grid point to all the rays it

belongs to, the algorithm creates another segmented vector structure—the copy structure.

In the copy structure, the algorithm allocates a segment for each grid point p. The size

of the segment for a point p is equal to the number of rays p belongs to—this can be

6.6. LINE OF SIGHT 107

determined from the relative positions of p, X and the boundary. Each point p distributes

its angle to its segment in the copy structure using the distribute operation.

There is now a 1-to-1 mapping between positions in the copy structure and positions

in the ray structure. The algorithm can calculate the permutation indices needed to execute

this mapping based on the location of X . Once the angles are permuted to the ray struc-

ture, the algorithm executes step 3. To return the information back to the grid structure

after step 3, the algorithm uses the same copy structure but instead of distributing, it re-

duces using an or-reduce. At completion, all points visible from any ray are marked and

returned.

The longest vectors required by the algorithm are the vectors of the copy and ray struc-

tures. It is not hard to show that for a
√
n-by-

√
n grid, independent of the location of X ,

these vectors have length 2n.

108 CHAPTER 6. COMPUTATIONAL-GEOMETRY ALGORITHMS

Chapter 7

Graph Algorithms

This chapter describes four graph algorithms: a minimum-spanning-tree algorithm, a biconnected-

components algorithm, a maximum-flow algorithm and a maximal-independent-set algo-

rithm. The minimum-spanning-tree algorithm is new. The maximum-flow algorithm is an

algorithm of Goldberg’s [46]. The maximal-independent-set algorithm and the biconnected-

components algorithm are small changes to parallel algorithms designed for the P-RAM

models [73, 112].

All the algorithms use the v-graph representation described in Section 5.1 and make

frequent use of the operations described in that section. Although most of the algorithms

have an optimal step complexity, they are typically not serially time optimal. Table 7.1

summarizes the complexities of the algorithms.

Complexity

Step Element

Graph Algorithms

n vertices, m edges

Minimum Spanning Tree lgn m lgn

Maximum Flow n2 n2m

Maximal Independent Set lgn m lgn

Biconnected Components lgn m lgn

Table 7.1: The complexities of the algorithms we discuss in this chapter. Some of the

algorithms are probabilistic.

109

110 CHAPTER 7. GRAPH ALGORITHMS

7.1 Minimum Spanning Tree and Connectivity

This section describes a probabilistic minimum-spanning-tree (MST) algorithm. For n

vertices and m edges, it has a step complexity of O(lgn) and an element complexity of

O(m lgn). The best algorithm known for the EREW P-RAM model requires O(lg2 n)

time [55, 98]. The best algorithm known for the CRCW P-RAM model requires O(lgn)

time [10], but this algorithms requires that the generic CRCW P-RAM model be extended

so that if several processors write to the same location, either the value from the lowest

numbered processor is written, or the minimum value is written.

All these algorithms are based on the algorithm of Sollin [15], which is similar to the

algorithm of Boru̇vka [27]. The algorithms start with a forest of trees in which each tree is

a single vertex. These trees are merged during the algorithm, and the algorithm terminates

when a single tree remains. At each step, every tree T finds its minimum-weight edge

joining a vertex in T to a vertex of a distinct tree T ′. Trees connected by one of these edges

merge. To reduce the forest to a single tree, O(lgn) such steps are required.

In the EREW P-RAM algorithm, each step requires Ω(lgn) time because finding the

minimum edge in a tree and distributing connectivity information over merging trees might

require Ω(lgn) time. In the extended CRCW P-RAM model, each step only requires con-

stant time because each minimum edge can be found with a single write operation. In our

algorithm, we keep the graph in the graph representation discussed in Section 5.1 so that

we can use the min-reduce operation to find the minimum edge for each tree and the

distribute operation to distribute connectivity information among merging trees with a

constant number of calls to the primitives.

As with the Shiloach and Vishkin CRCW P-RAM algorithm [105], trees are selected

for merging by forming stars. We define a star as a set of vertices within a graph with

one of the set marked as the parent, the others marked as children, and an edge that leads

from each child vertex to its parent vertex1. A graph might contain many stars. The star-

merge operation takes a graph with a set of disjoint stars, and returns a graph with each star

merged into a single vertex. Figure 7.1 shows an example of a star-merge for a graph with

a single star.

The minimum-spanning-tree algorithm thus consists of repeatedly finding starts and

merging them. To find stars, each vertex flips a coin to decide whether they are a child or

parent. All children check their minimum edge to see if it is connected to a parent. All

these edges which are connected to a parent are marked as star edges. Since, on average,

half the trees are children and half of the trees on the other end of the minimum edge of a

child are parents, 1/4 of the trees are merged on each star-merge step. This random mate

technique is similar to the method discussed by Miller and Reif [75]. Since on average 1/4

1This definition of a star is slightly different from the definition of Shiloach and Vishkin [105].

7.1. MINIMUM SPANNING TREE AND CONNECTIVITY 111

of the trees are deleted on each step, O(lgn) steps are required to reduce the forest to a

single tree.

We now describe how a star-merge operation can be implemented in the scan model,

such that for m edges, the operation has a step complexity of O(1) and an element com-

plexity of O(m). We define a star edge as an edge that connects a child to its parent. The

input to the star-merge operation is a graph in the v-graph representation, with two addi-

tional vectors: one contains flags that mark every star edge, and the other contains a flag

that marks every parent.

To implement a star-merge in the v-graph, each child segment must be moved into its

parent segment. The technique we use can be partitioned into four steps: (1) each parent

opens enough space in its segment to fit its children, (2) the children are permuted into

this space, (3) the cross-pointers vector is updated to reflect the change in structure of the

graph, and (4) edges which point within a segment are deleted, therefore deleting edges

that point within a tree. Figure 7.2 shows an example of the various intermediate results

during a star-merge; we will refer to the figure in the following discussion.

(1) To open space in the parent segments, each child passes its length (number of edges)

across its star edge to its parent, so each parent knows how much space it needs to open up

for each of its children. Let us call the vector that contains the needed space of each child

the needed-space vector. A 1 is placed in all the nonstar edges of this vector. We can now

use a segmented +-reduce on the needed-space vector to determine the new size of each

parent and a segmented distribute (Section 4.1.5) to allocate this new space for each

parent. We also execute a segmented +-scan on the needed-space vector to determine the

offset of each child within its parent segment and the new position of each non star edge

of the parent. We call this vector the child-offset vector.

(2) We now need to permute the children into the parent segments. To determine the

new position of the edges in the child vertices, we permute the child-offset back to each

child and distribute it across the edges of the child. Each child adds its index to this offset

giving each child edge a unique address within the segment of its parent. We now permute

all the edges, children and parents, to their new positions.

(3) To update the pointers, we simply pass the new position of each end of an edge to

the other end of the edge.

(4) To delete edges that point within a segment, we check if each edge points within the

segment by distributing the ends of the segment, and pack all elements that point outside

each segment deleting elements pointing within each segment. We must update the pointers

again.

112 CHAPTER 7. GRAPH ALGORITHMS

Before Star-Merge

Index = [0 1 2 3 4 5 6 7 8 9 10 11]

segment-descriptor = [1 3 3 2 3]

weights = [w1 w1 w2 w3 w2 w4 w5 w4 w6 w3 w5 w6]

Star-Edge = [F F T F T T F T F F F F]

Parent = [T F T F T]

After Star-Merge

Index = [0 1 2 3 4 5 6 7]

segment-descriptor = [1 4 3]

weights = [w1 w1 w3 w5 w6 w3 w5 w6]

cross-pointers = [1 0 5 6 7 2 3 4]

Figure 7.1: An example of star merging. In this example, two parents have no children (1

and 5) and the third (3) has two children (2 and 4). The second diagram shows the graph

after the star is merged.

7.1. MINIMUM SPANNING TREE AND CONNECTIVITY 113

Index = [0 1 2 3 4 5 6 7 8 9 10 11]

segment-descriptor = [1 3 3 2 3]

weights = [w1 w1 w2 w3 w2 w4 w5 w4 w6 w3 w5 w6]

Star-Edge = [F F T F T T F T F F F F]

Parent = [T F T F T]

Child-Length = [0 0 0 0 3 0 2 0 0 0 0 0]

needed-space = [1 0 0 0 2 1 1 0 0 1 1 1]

New-Lengths = [1 x 4 x 3]

child-offset = [0 x x x 1 4 5 x x 7 8 9]

C = [x 1 1 1 x x x 5 5 x x x]

child-position = [x 1 2 3 x x x 5 6 x x x]

Figure 7.2: The values of the various intermediate results during a star-merge operation.

114 CHAPTER 7. GRAPH ALGORITHMS

7.2 Maximum Flow

Goldberg showed [46] that his maximum-flow algorithm could be improved from a step

complexity of O(n2 lgn) on the EREW and CRCW P-RAM models to a step complexity

of O(n2) with the scan primitives. We review the algorithm here.

Goldberg’s algorithm is based on a preflow push method [62] that requires no more

than O(n2) push steps. At each step, every vertex holds an excess value which corresponds

to how much more flow is coming in than is leaving (at the end this must be 0), and an

effective distance to the sink. Each step works as follows. All edges try to get rid of their

excess by passing it off on edges that have residual capacity (the capacity is not used to

the maximum) and that are connected to vertices that have a lower effective distance. The

edges then reset their effective distance by finding the minimum effective distance of their

neighbors that are reachable through a link with positive residual capacity and adding 1 to

this value. The new effective distance is passed to the neighbors. This step is repeated until

the network settles—the excess is zero at all vertices.

In the scan vector model, each step requires a constant number of calls to the primitive

instructions. The distribution of excess is executed as described in Section 5.1.3. The new

effective distance calculation can use a min-reduce. The passing of the new effective

distance requires a distribute and permute. In the EREW P-RAM model, the effective

distance calculation and the distribution of the excess requires O(lgn) time. In the CREW

P-RAM model, the distribution of the excess requires O(lgn/ lg lgn) time.

7.3 Maximal Independent Set and Biconnectivity

Luby’s maximal-independent-set (MIS) algorithm [73] can be implemented on the scan

model. For n vertices and m edges the algorithm has a probabilistic step complexity of

O(lgn) and element complexity of O(m lgn). His original version for the EREW P-RAM

model ran in probabilistic O(lg2 n) time.

The algorithm consists of O(lgn) steps. At each step the algorithm adds some vertices

to an initially empty set M, and after O(lgn) steps, with high probability, M is the MIS.

In each step, every vertex not already in M and not a neighbor of a vertex in M, randomly

selects itself based on the inverse of its degree. Each such selected vertex then adds itself to

M if none of its neighbors of greater degree are also selected. Both determining if a vertex

is a neighbor of a vertex in M, and finding if a neighbor of greater degree is selected can

be executed with a neighbor reduce (see Section 5.1.2). Each step thus requires a constant

number of calls to the primitive instructions.

Tarjan and Vishkin [112] show how the biconnectivity problem reduces to the spanning

tree (connected components) problem and some tree manipulations. On the scan model,

7.3. MAXIMAL INDEPENDENT SET AND BICONNECTIVITY 115

the tree manipulations can be executed using the techniques discussed in Section 5.2. The

connected components can use the minimum-spanning-tree algorithm discussed earlier.

The step complexity is, therefore, O(lgn) and the element complexity is O(n lgn).

116 CHAPTER 7. GRAPH ALGORITHMS

Chapter 8

Numerical Algorithms

This chapter describes five numerical algorithms: a matrix-vector multiply, a linear-systems

solver, a simplex algorithm for linear programming, an outer-product, and a sparse-matrix

multiply. The first four algorithms assume dense matrices and use the grid versions of the

scan vector instructions (see Section 5.3). The linear-systems solver and the simplex algo-

rithms were developed jointly with Ajit Agrawal, Robert Krawitz and Cynthia Phillips [4]

and have been run on the Connection Machine giving very high performance. Table 8.1

summarizes the complexities of the algorithms.

8.1 Matrix-Vector Multiplication

To Multiply a matrix by a vector we distribute the vector across the columns of the matrix

using a grid distribute, execute a elementwise multiply, and then sum across the rows

using grid +-reduce (see Figure 8.1). Since both the distribute and +-reduce require

a constant number of calls to the scan vector instructions, for an n×m matrix, the step

Complexity

Step Element

n×m Dense Matrices

Matrix-Vector Multiply 1 nm

Linear-Systems Solver (n= m) n n2

Simplex For Linear Programming 1 (per step) nm

Table 8.1: The complexities of the algorithms discussed in this chapter.

117

118 CHAPTER 8. NUMERICAL ALGORITHMS

Figure 8.1: An example of a matrix-vector multiply.

complexity isO(1) and the element complexity is nm. A matrix-vector multiply is therefore

serially time optimal.

8.2 Linear-Systems Solver

This section describes an implementation on the scan model of a linear-system solver

which uses LU-decomposition with partial pivoting and back solving. For an n× n ma-

trix, the algorithm has a step complexity of O(n) and an element complexity of O(n3).

Before describing the algorithm, we review LU-decomposition.

Starting from the basic formula Ax = b, we compute two matrices L and U such that

A = LU , where L is lower triangular and U is upper triangular (hence the name LU de-

composition). Now we have LUx = b, which we rewrite as Ly = b and Ux = y. Solving

for y is simple since L is triangular [90]; this step is called forward solution. Likewise,

given y, solving for x is simple, as U is also triangular; this step is called back solution.

Since for a given system A we may wish to solve x for multiple b vectors, we split the

linear-systems solver into two algorithms: LU-decomposition and solution. As the L and

U matrices do not share any non-zero elements, we can conveniently store both matrices

in a single matrix, known as the LU matrix.

8.2. LINEAR-SYSTEMS SOLVER 119

When performing LU-decomposition by Gaussian elimination, we select a row and

column at each step to eliminate. The process of selecting a row is called pivoting. It is

needed to improve numerical stability. The partial pivoting technique selects the columns

in left-to-right order, and selects the element of the column with the greatest absolute

value. Rather than physically exchanging the two rows, which would yield a true lower

and upper triangular matrix, we record in a separate vector which row was eliminated in

which iteration. This defines a “logical” diagonal to the left and right of which reside the

L andU matrices respectively. For example, the following permutation vector corresponds

to the following permuted LU-decomposition, where elements labeled L are part of the L

matrix, those labeledU are part of theU matrix, and those labeled D are on the diagonal:

P=

⎡

⎢
⎢
⎢
⎣

2

4

1

3

⎤

⎥
⎥
⎥
⎦

, LU =

⎡

⎢
⎢
⎢
⎣

L12 D22 U32 U42

L14 L24 L34 D44

D11 U21 U31 U41

L13 L23 D33 U43

⎤

⎥
⎥
⎥
⎦

The unpermuted LU-decomposition looks like this:

LU =

⎡

⎢
⎢
⎢
⎣

D11 U21 U31 U41

L12 D22 U32 U42

L13 L23 D33 U43

L14 L24 L34 D44

⎤

⎥
⎥
⎥
⎦

The parallel algorithm for LU-decomposition is straightforward. For an m×m matrix,

we execute m steps of Gaussian elimination. Moving left to right through the matrix, we

extract the columns in sequence. We find the element with the greatest absolute value, and

extract its row. We then divide the pivot column by the pivot element itself, and distribute

the pivot row and column across the matrix. We replace the part of the pivot column

logically below the pivot element, where it will serve as a column of L. Finally, we execute

Gaussian elimination on the part of the matrix logically below and to the right of the pivot

row and column. Figure 8.2 illustrates the code for the LU-decomposition.

The forward and back solution phase is also straightforward. We first solve Ly = b,

divide y and U through by the logical diagonal such that the system has a unit diagonal,

and then solve Ux = y. A solution step consists of extracting a column, multiplying it

by the diagonal element, and subtracting from b. Note that to find the pivot element we

compare the permutation vector against the loop index. Figure 8.3 illustrates the required

routine.

120 CHAPTER 8. NUMERICAL ALGORITHMS

define LU-decomposition(A, P){
;A is the original matrix

;P is the permutation vector

for i from 1 to column-length(m) do

Selecting the rows and columns of A that have not

been pivoted on

column ← extract-column(A, i);

pivot-row ← max-index(column);

row ← extract-row(A, pivot-row);

pivot-element ← extract(row, i);

P ← insert(P, pivot-row, i);

column ← column p÷ pivot-element;

column-matrix ← distribute-column(column);

row-matrix ← distribute-row(row);

A ← insert-column(A, i, column);

selecting processors in A that are not in the pivot

row or column

A ← A p− row-matrix p× column-matrix;}

Figure 8.2: Code for generating the LU-decomposition of a matrix. The results are returned

in the matrix A and the vector P.

8.2. LINEAR-SYSTEMS SOLVER 121

define solve(B, LU, P){
For i from 1 to m Do

column ← extract-column(LU, i);

pivot ← the element of B such that i == P;

selecting the elements B[j] and column[j] such that P[j] > i

B ← B p− column p× copy(pivot);

send the logical diagonal of LU to the first column of temp;

diag ← extract-column(temp, 1);

;At this point B contains y from Ly= b

;Divide U and B by the diagonal.

B ← B p÷ diag;

temp ← distribute-column(diag);

Selecting all processors in the logical upper triangle of LU

LU ← LU p÷ diag;

For i from m downto 1 Do

column ← extract-column(LU, i);

pivot ← the elements of B such that i== P;

selecting the elements B[j] and column[j] such that P[j] ≤ i

B ← B p− column p× copy(pivot);

unpermute B}

Figure 8.3: Code for the solving LUx = B, given LU , B and the permutation vector P for

LU .

122 CHAPTER 8. NUMERICAL ALGORITHMS

8.3 Simplex

We now describe a scan model implementation of a simplex method for solving linear

programming problems. The standard form of a linear programming problem is as follows:

minimize cT x such that

{

Ax = b

x ≥ 0

where c is an m2-dimensional integer objective function vector, A is an m1 ×m2 integer

constraint matrix, b is an m1-vector of integers, and x is a real m2-vector of unknowns.

Generally we have m1 < m2.

A vector x such that Ax= b and x≥ 0 is called a feasible solution because it satisfies all

the constraints. If a linear program has an optimal solution, we can always find one such

that m1 of the entries in vector x are equal to 0 [83]. Such vectors, called basic feasible

solutions, correspond geometrically to corners of the convex (m2 −m1)-dimensional poly-

tope of all feasible solutions. The simplex method for solving linear programs starts at a

basic feasible solution and pivots to a new basic feasible solution which improves the ob-

jective function. Algebraically, we increase one of the zero-valued nonbasic variables (the

entering variable) until one of the non-zero basic variables becomes zero. In the Dantzig

method of pivoting, the entering variable is the one that will decrease the objective function

by the most (per unit increase in the variable).

All the information necessary to perform the pivoting is kept in a tableau where the ob-

jective function and all nonbasic variables are represented in terms of the basic variables.

At the start, the tableau is the constraint matrix A augmented by the column vector b and

the row vector c. We then use Gaussian elimination to eliminate all columns corresponding

to basic variables. We do not represent these columns in the tableau since they always form

an identity matrix. Since all the nonbasic variables are zero at the basic feasible solution

represented by the tableau, the b vector represents values of the basic variables and objec-

tive function at the basic feasible solution and the objective function vector c represents the

unit change in the objective function per unit increase in each nonbasic variable. To form

the tableau for which one basic variable is replaced by a nonbasic variable then involves

one step of Gaussian elimination.

The tableau representation is used primarily for linear programs for which the con-

straint matrix A is dense. In practice many linear programs from real applications are

sparse. Implementations on sequential computers use special techniques to avoid comput-

ing on the whole matrix when only a few elements are non-zero. When the matrix is dense,

however, the tableau method (or the revised method which is more numerically stable) can

be practical.

8.4. OUTER PRODUCT 123

The implementation of simplex with Dantzig’s rule is fairly straightforward. We first

find the index of the most negative coefficient of the objective function; pivoting on this

variable will give us the most rapid improvement in the solution per unit increase in the

entering nonbasic variable. If there are no negative coefficients, then we cannot make any

improvement, and thus have finished successfully. We then extract the indexed column,

and select the processors corresponding to real constraints, i. e. only positive coefficients

correspond to basic variables that decrease as the entering variable increases. If there are no

positive coefficients in the column, then the system is unbounded; we can increase the value

of variable without limit and never violate a constraint. To find the limiting constraint, we

divide the b vector by the positive elements of the pivot column elementwise and find the

index of the smallest ratio. The two indices define the pivot element. We then perform a

Gaussian elimination step. We must update the pivot row and column separately since we

do not represent the full tableau. Figure 8.4 illustrates the necessary code.

8.4 Outer Product

For a vector v1 of length m1, a vector v2 of length m2, and a function f of two arguments,

the outer product returns a two dimensional array of size m1 ×m2 with f applied to every

pairing of the elements of v1 and v2. The outer product is used as a substep in many

applications. Some examples include sparse matrix multiplication (see Section 8.5), and

finding all closest pairs in a high-dimensional space. We can implement an outer product

trivially with a distribute-row, distribute-column and then executing the function

f (see Figure 8.5). If the function f has a step complexity of O(1), the outer product has

a step complexity of O(1) and an element complexity of O(m1 ×m2). The necessary code

for a ×-outer-product is:

define ×-outer-product(A, B){
Ad ← distribute-column(A, length(B));

Bd ← distribute-row(B, length(A));

Ad p× Bd}

8.5 Sparse-Matrix Multiplication

We now consider sparse matrix multiplication of two matrices A and B. We assume that

A is ordered in row major order such that each row is in its own segment (we use empty

segments for empty rows). We assume that B is ordered in column major order. We now

execute an outer-product on each row-column pair. So, for example, each element of row

124 CHAPTER 8. NUMERICAL ALGORITHMS

define simplex(A, B, C){
;tableau A ((m1)+1× (m2 +1))
;constraint vector B

;objective function vector C

repeat forever:

pivot-column-index ←
index of element in C with most negative value;

(if no negative processor, exit simplex successfully)

pivot-column ← extract-column(A, pivot-column-index);

selecting processors in Pivotcolumn with positive values

(if no positive processor, exit simplex unsuccessfully)

ratio ← pivot-column p÷ B;

pivot-row-index ←
index of element in ratio with smallest value;

pivot-row ← extract-row(A, pivot-row-index);

;update pivot row and column

pivot-element ← A[pivot-column-index][pivot-row-index];

pivot-row ← pivot-row p÷ copy(pivot-element);

row-matrix ← distribute-row(pivot-row);

column-matrix ←distribute-column(pivot-column);

;update the constraint vector and objective function

;on their own, even though they get updated later

value ← A[m, n];

B ← B p− pivot-column p× copy(value);

C ← C p− pivot-column p× value;

;update the tableau

A ← insert-row(A, pivot-row, pivot-row-index);

selecting processors of A that are not part of the pivot row

or column

A ← A p− pivot-row p× pivot-column;}

Figure 8.4: Code for the simplex method for solving linear programming problems.

8.5. SPARSE-MATRIX MULTIPLICATION 125

A = [1 2 3]

B = [1 2]

Ad =

[
1 2 3

1 2 3

]

Bd =

[
1 1 1

2 2 2

]

Result =

[
1 2 3

2 4 6

]

Figure 8.5: An example of a ×-outer-product.

0 of matrix A is matched with each element of column 0 of matrix B. We use a segmented

version of the outer-product routine described in Section 8.4. The algorithm now runs a

sort using the row number appended to the column number as the key. This places elements

with the same row and column destination next to each other. In the final step, elements

with the same row and column destination are added using a +-reduce. Because of the

previous sort, the result is in row major order.

For two n× n matrices with m1 and m2 nonzero elements, respectively, the step com-

plexity of the algorithm is the O(lgn) required for the sorts (we can use the radix sort

described in Section 3.4.1). If e elements are produced by the outer-product step, the ele-

ment complexity is O((e+n) lgn).

126 CHAPTER 8. NUMERICAL ALGORITHMS

Part III

Languages and Compilers

127

Introduction: Languages and

Compilers

This part demonstrates that some very-high-level languages are naturally mapped onto

the parallel vector models. It contains three chapters. Chapter 9, collection-oriented lan-

guages, describes a class of high-level languages that map very well onto parallel vector

models. These languages include SETL (the Set Theoretic Language) which has been

touted as a very high-level programming language which can greatly simplify coding over

conventional von Neumann languages. Chapter 10, flattening nested parallelism, describes

techniques for taking nested parallel routines and mapping them onto a flat homogeneous

machine. These techniques are very useful for compiling the high-level collection-oriented

languages. These first two chapters are independent and can be read in any order.

Chapter 11, a compiler for Paralation-Lisp, describes a compiler for a particular collection-

oriented language, PARALATION LISP, that compiles into the scan vector instruction set.

The chapter brings together ideas from the previous two chapters. Appendix C, Paralation-

Lisp code, illustrates many algorithms and a relatively large application, Quinlan’s ID3

learning algorithm [91], written in PARALATION LISP. All of these algorithms uses nested

parallelism.

129

130

Chapter 9

Collection-Oriented Languages

This chapter presents a framework for comparing a class of high-level computer languages

we call collection-oriented languages. From a programming standpoint, these languages

are excellent languages for cleanly and concisely implementing a broad set of applications.

From an implementation standpoint, these languages can be implemented on a broad vari-

ety of machines—in particular, as concerns this book, they are naturally implemented on

the parallel vector models.

Collection-oriented languages, such as APL [59, 60], APL2 [58], CM-LISP [108],

NIAL [77, 99], PARALATION LISP [96], SETL [100], and SQL [39], are centered around

data structures which represent collections of elements, and operations for manipulating

the collections. Conventional von Neumann languages, such as Pascal and FORTRAN,

also support collections, usually in the form of an array data type. Collection-oriented

languages, however, differ because their operators focus on manipulating collections as a

whole. For example, multiplying all elements of a collection by some constant, sorting

the elements of a collection, or summing the elements of a collection are basic collection-

oriented operations.

Because the operations of collection-oriented languages operate on whole collections

of elements, these languages tend to be much higher level than conventional languages. As

argued by the proponents of the collection-oriented languages, the high-level constructs

can lead to code that is clearer, easier to write and more concise1. Also, the high-level

description allows code to be mapped onto a much broader set of architectures—fewer

details about the implementation are included in the code, giving more flexibility to a

1Unfortunately, APL has given much of the computer community the impression that collection-oriented

languages are difficult to understand. This is not the fault of the semantics of the language, but rather of the

cryptic syntax.

131

132 CHAPTER 9. COLLECTION-ORIENTED LANGUAGES

Collections

Types of Elements Atomic, Structure, Collection

Homogeneity Homogeneous, Heterogeneous

Ordering Unordered, Linear-Ordered,

Grid-Ordered, Key-Ordered

Collection Operations

Apply-to-Each Implicit, Explicit

Collection Operations Sorting, Summing, Intersecting, ...

Table 9.1: The various dimensions along which to compare the various collection-oriented

languages.

compiler. On the other hand, collection-oriented languages have historically been hard

to compile to run as efficiently on serial machines as conventional languages, and have

therefore never gained great acceptance.

Collection-oriented languages are interesting in the context of this book because most

collections are naturally mapped onto vectors and most of the collection-oriented opera-

tions are efficiently implemented with vector operations. This chapter compares the vari-

ous collection-oriented languages based on the types of collections they support and on the

types of operations they provide. Table 9.1 illustrates the framework on which we base this

comparison. The chapter also illustrates how many of the collection types can be mapped

onto simple homogeneous vectors (homogeneous vectors of atomic values).

9.1 Collections

A collection is a group of elements viewed as a whole.2 This section categorizes such col-

lections according to three criteria: the types of elements allowed in a collection, whether

the elements of a collection must be of the same type, and the ordering of the elements in a

collection. Table 9.2 shows how the collections of various languages fit into the categories.

Types of Elements: We consider three classes of types that can be allowed in a collection:

atomic types, structure types, and collection types. If a language allows collection types

as elements, we say that the language supports nested collections. The languages SETL,

CM-LISP, and PARALATION LISP all support nested collections, and although APL does

not, some of its follow-ups, such as APL2 and NIAL, do. Nested collections are very im-

portant for applications with structures more complicated than simple vectors or arrays. If

2The term collection, in this context, is taken from a paper by Trenchard More [78].

9.1. COLLECTIONS 133

Language Relation Among Elements Types

heterogeneous homogeneous

CM-LISP
√

SETL
√

PARALATION LISP
√

APL
√

APL2
√

NIAL
√

SQL
√

Language Types of Element

atomic structure collection

CM-LISP
√ √ √

SETL
√ √

PARALATION LISP
√ √ √

APL
√

APL2
√ √

NIAL
√ √

SQL
√ √

Language Ordering

unordered linear-ordered grid-ordered key-ordered

CM-LISP xet xector — xapping

SETL set tuple — map

PARALATION LISP — field — —

APL — — array —

APL2 — — array —

NIAL — — array —

SQL — — — relation

Table 9.2: The collection types available in various collection-oriented languages. A

linear-ordered collection is a vector. In CM-LISP, xets and xectors are considered special

cases of xappings. In SETL, maps are considered special cases of sets: a map is a set of

two element tuples.

134 CHAPTER 9. COLLECTION-ORIENTED LANGUAGES

a language only allows atomic types as elements, we say it only supports simple collec-

tions. APL and SQL both only support simple collections. If a language allows structure

types as elements, we say it supports structure collections. A structure type is a struc-

ture with a fixed number of slots and the only operations allowed on it are removing and

inserting elements. We separate structure types from collections because the collection op-

erations cannot be applied to structure types. Relational database languages, such as SQL,

and the two lisp based languages, CM-LISP and PARALATION LISP, all support structure

collections.

Homogeneity: A homogeneous collection is a collection whose elements are all of the

same type, and a heterogeneous collection is a collection whose elements are of different

types. Exactly what constitutes homogeneity depends on how type is defined. For example,

if the length of a collection is included in its type, then a collection with subcollections of

different sizes is heterogeneous. In this chapter we do not include the length in the type.

So, for example, a collection of collections of integers, such as

[[3 4 2] [2 8] [4 5 7 1]],

is considered homogeneous regardless of the size of the subcollections. All the collection-

oriented languages mentioned other than APL and SQL support heterogeneous collections.

By only allowing homogeneous collections, we can give every collection a concise type

name (for example, collection of collection of integers) and therefore greatly simplify a

strongly typed language.

Ordering: We consider four classes of orderings of the elements of a collection: unordered,

linear-ordered, grid-ordered and key-ordered. Unordered collections are basically sets, al-

though for sets we also need to guarantee that no two elements contain the same value. The

linear-ordered collections are vectors. The grid-ordered collections are dense arrays—each

element is associated with a tuple of integers, one for each dimension of the array. Such

grid-ordered arrays form the heart of APL. The key-ordered collections are ordered by a

set of keys. A key-ordered collection can be thought of as a mapping in which the keys

are the domain and the values the range. The key-ordered collections are clearly the most

general of the orderings since the keys can themselves be consecutive integers (making

a linear-ordered collection), or tuples of integers (making a grid-ordered collection). Ta-

ble 9.2 shows the orderings that various different languages support along with the names

that the languages give those orderings.

9.2. COLLECTION OPERATIONS 135

9.2 Collection Operations

All the collection-oriented languages supply a set of collection-oriented operations that

operate on collections as a whole, and an apply-to-each form that applies a function, oper-

ation, or body to each element of a collection.

Collection-Oriented Operations: Many of the collection-oriented operations can be asso-

ciated with a particular ordering. Operations for unordered collections typically include set

intersection, set union, and set difference. Operations for linear-ordered collections include

sorting, and appending. Operations for grid-ordered collections typically include extrac-

tions and insertions of subdimensions, and reductions along subdimensions. Operations

on key-ordered collections typically include some form of join operation [33]. Certain

operations, such as summing the elements of a collection, can be applied to all classes of

collections regardless of their ordering. Figure 9.1 shows how two example operations—

summing, and removing elements less than 5—are expressed in various collection-oriented

languages.

Apply-to-Each: All the collection-oriented languages supply some way of applying a

function, operation or body to each element of a collection. Such an apply-to-each form

is similar to a loop construct in a conventional Von Neumann languages, but is not neces-

sarily iterated sequentially. Also, in the conventional Von Neumann languages, users must

supply a start and an end count for a loop, whereas in the collection apply-to-each form,

users need only specify that they want to apply the operation to each element of a collec-

tion. Figure 9.2 illustrates how apply-to-each is expressed in various collection-oriented

languages.

The operations that can be used by an apply-to-each form will depend on the types

of collections a language supports. In languages which only support simple collections,

such as APL and SQL, all the operations used by an apply-to-each form must be scalar.

In languages that support nested collections, the operations can typically be any operation

including a collection-oriented operation or another apply-to-each. Since these languages

can nest the apply-to-each forms, we say that the languages support nested collection oper-

ations.3 Figure 9.3 illustrates examples of a collection-oriented operation inside an apply-

to-each form. Nested collection operations are very useful for expressing a wide variety of

algorithms—they allow a user to apply any existing function over a collection of elements.

Languages that do not support nested collection operations typically use an implicit

apply-to-each form—when a scalar operation is placed between two collections it im-

plicitly implies that the operation should be applied to each position of the vectors (see

3Supporting nested collection operations and nested collections go hand in hand—supporting one without the

other makes little sense.

136 CHAPTER 9. COLLECTION-ORIENTED LANGUAGES

A = [4 5 2 11 7]

⇓
APL: +/A

SETL: +/A

CM-LISP: (β+ A)

PARALATION LISP: (vref ’+ A)

SQL: select sum(A) from R

⇓
29

Summing the elements of a collection.

A = [4 5 2 11 7]

⇓
APL: (A ≥ 5)/A

SETL: [A| A ≥ 5]

CM-LISP: (remove-if ’(lambda (a) (a < 5)) A)

PARALATION LISP: (<- a :by (choose (elwise ((a A)) (>= a 5))))

or

(remove-if ’(lambda (a) (a < 5)) A)

SQL: select A from R where A ≥ 5

⇓
[5 11 7]

Removing all numbers less than 5 from a collection.

Figure 9.1: Example operations for various collection-oriented languages. In SQL, R is

the relation from which A is taken.

9.2. COLLECTION OPERATIONS 137

A = [4 5 2 11 7]

⇓
APL: A ← A + 2

SETL: (for a in A)

a := a + 2;

end;

CM-LISP: (αsetq A (α+ A α2))

or

α(setq •A (+ •A 2))

PARALATION LISP: (elwise ((a A))

(setq a (+ a 2)))

SQL: update R

set A = 2 + A

⇓
A = [6 7 4 13 9]

Figure 9.2: An example of the apply-to-each form for various collection-oriented lan-

guages. In the example, we are adding 2 to each element of a collection A.

138 CHAPTER 9. COLLECTION-ORIENTED LANGUAGES

A = [[3 4 2] [2 8] [4 5 7 1]]

⇓
SETL: (for a in A)

+/a;

end;

CM-LISP: (αβ+ A)

PARALATION LISP: (elwise ((a A))

(vref ’+ a))

⇓
[9 10 17]

Figure 9.3: An example of an operation on nested collections. This operation sums the

elements of each subcollection of A.

Figure 9.1 for the languages APL and SQL). Languages that support nested collection op-

erations, however, must supply an explicit apply-to-each form otherwise the apply-to-each

can be ambiguous. For example, consider the statement:

A = [[3 4 2] [2 8] [4 5 7 1]]

B = [[7 5 3] [1 9] [6 5 8 2]]

A foo B

Does this statement apply foo to each of the three subcollections, or does it apply it to

each of the nine integers at the bottom level?

9.3 Mapping Collections onto Vectors

This section describes how the various collection types can be mapped onto the vectors

supplied by a parallel vector model (simple homogeneous vectors). It describes how to

map nested and structure collections, heterogeneous collections, and the four orderings of

collections onto vectors. The PARALATION LISP compiler discussed in Chapter 11 will

use many of the representations discussed in this section.

Types of Elements: Segments can be used to represent collections with other collections

9.3. MAPPING COLLECTIONS ONTO VECTORS 139

Figure 9.4: Representing a homogeneous vector of structures with a record of simple

homogeneous vectors.

as elements (nested collections). To represent a collection of depth two, we can use a value

vector along with its segment descriptor—each segment is one of the subcollections (see

Section 4.3). For example, the nested collection

[[2 3] [] [4 0 1]]

can be represented with the two vectors:

[2 3 4 0 1]

[2 0 3]

The first contains the data and the second is the segment descriptor. To represent collections

of depth three we can use a segment descriptor to describe the segmentation of the original

segment descriptor. For example, the nested collection

[[[2 6] [9 7 1]] [] [[3 8 7 2] [] [5]]]

can be represented with the three vectors:

[2 6 9 7 1 3 8 7 2 5]

[2 3 4 0 1]

[2 0 3]

The first is the actual values, the second is the segment descriptor of the first, and the third

is the segment descriptor of the second. Using this technique, a collection of depth d can

be represented with d vectors.

140 CHAPTER 9. COLLECTION-ORIENTED LANGUAGES

Figure 9.5: Representing a simple heterogeneous vector with a record of simple homoge-

neous vectors.

A structure of simple vectors can be used to represent structured homogeneous col-

lections. For example, we can represent a collection of structures each with three slots

containing an atomic type, with a single structure with three slots each containing a vector

(see Figure 9.4). We call the manipulation of taking structures from inside a collection and

dragging them out, drag-out.

Homogeneity: To represent heterogeneous collections, we can use a value vector for every

type that appears in the collection, and a tag vector which specifies which elements are of

which types. All the elements of a given type are packed into one of the value vectors.

Figure 9.5 illustrates an example. For unordered collections we do not need a tag vector:

the tag vector is only used to specify the ordering. For a collection with d different types,

this representation requires d+ 1 vectors, and when operating on the collection, the run-

time code must loop over all the vectors. This is likely not to be a problem in practice since

typically only a few types are placed in a single collection.

Ordering: A linear-ordered collection can be mapped directly onto a vector. An unordered

collection can also be mapped directly onto a vector if the implementation hides the order-

ing of the elements. The implementation can take advantage of the unspecified ordering to

improve the performance of certain operations. For example, the implementation can keep

the elements sorted so that union or intersection operations on sets can be executed

with a merge instead of a sort. A grid-ordered collection can be represented by keeping

the length along each dimension and having a convention of how grids are laid out on a

vector (see using the representation described in Section 5.3). A key-ordered collection

can be represented using a pair of vectors, one for the keys (the domain) and one for the

values (the range). As with the unordered collections, the keys can be kept in sorted order

to improve the performance of certain operations.

9.3. MAPPING COLLECTIONS ONTO VECTORS 141

Figure 9.6: An example of the representation of a nested structure. In this example we

have a collection with three elements. Each element is a structure with three slots; the first

two contain atomic values, and the third contains a collection.

The mappings for nested and structure collections, for heterogeneous collections, and

for the various orderings of collections can be combined. Figure 9.6 illustrates an example.

142 CHAPTER 9. COLLECTION-ORIENTED LANGUAGES

Chapter 10

Flattening Nested Parallelism

Chapter 3 introduced the notion of segments and illustrated how segments can be used

to execute the scan operation over multiple sets of data independently and in parallel.

Chapter 4 then defined segmented versions of almost all the scan vector instructions, and

the algorithms in Part II made extensive use of these instructions. This chapter extracts

the important aspect of segments—the application of an operation (perhaps itself parallel)

over multiple sets of data independently and in parallel—and separates this aspect from its

implementation using segments.

The chapter introduces the notions of code replicating—translating a parallel routine

that executes an operation on a single set of data into another routine that executes the same

operation over many sets of data in parallel—and flattening nested parallelism—translating

a nested parallel construct into a flat parallel construct. Code replicating (henceforth repli-

cating) is used in flattening nested parallelism. Flattening nested parallelism is important

for the implementation of high-level languages since they allow a compiler to translate the

high-level description of nested operations onto its low-level implementation on a flat real

machine.

The chapter also proves an important theorem: the access-restricted replicating the-

orem. This theorem states that any scan-vector routine that abides by some restrictions

on conditional control, can be replicated, and the theorem places important bounds on the

element and step complexities of the replicated routine. In particular, it states that the step

complexity of a replicated routine is within a constant factor of the original routine applied

to the slowest of the inputs, and that the element complexity is within a constant factor of

the sum of the element complexities of the original routine applied to each input. The proof

of the access-restricted replicating theorem is based on segments and is constructive—

it actually defines a replicating translator. This replicating translator generates efficient

143

144 CHAPTER 10. FLATTENING NESTED PARALLELISM

Figure 10.1: Replicating translates a parallel routine that executes an operation on one set

of data into another parallel routine that executes the same operation on many sets of data

independently but in parallel. The replicated routine runs on the same class of machine as

the original routine and effectively simulates multiple machines.

replicated code, and is simple to implement; it forms the heart of the PARALATION LISP

compiler discussed in Chapter 11. An important part of the translator is a technique called

branch-packing. The chapter also introduces the notion of contained programs.

It is important to realize that although the proof of the access-restricted replicating

theorem is based on segments, the theorem itself is independent of segments. The theorem,

as well as the notions of replicating and flattening nested parallelism, have abstracted the

important benefits of segments away from the actual implementation. The results of this

chapter are particularly important for models with serial control, since we cannot simply

spawn off separate control streams for each subproblem, but are also important for models

with parallel control since they can greatly simplify scheduling of subproblems.

10.1 Nested Parallelism and Replicating

Replicating is a technique for automatically translating a parallel routine that executes an

operation on a set of data, into another routine that executes the same operation over many

sets of data in parallel. Both the original routine and the replicated routine run on the same

10.1. NESTED PARALLELISM AND REPLICATING 145

Application Outer Parallelism Inner Parallelism

Sum of Neighbors in Graph For each vertex Sum neighbors

of graph of vertex

Figure Drawing For each line Draw pixels

of image of line

Compiling For each procedure Compile code

of program of procedure

Text Formatting For each paragraph Justify lines

of document of paragraph

Table 10.1: Routines with nested parallelism. Both the inner part and the outer part can

be executed in parallel.

machine model. For example, replicating can translate a parallel sorting algorithm that

sorts a vector of keys, into a routine that sorts many vectors of keys in parallel—both can

run on a V-RAM (see Figure 10.1). The replicated algorithm effectively simulates multiple

machines and takes advantage of two sources of parallelism: sorting for each vector runs

in parallel, and the sorts on the different vectors run in parallel.

Why is replicating useful? Replicating can be used to help implement any application

or algorithm with nested parallelism—code with an inner parallel routine nested inside an

outer parallel routine (Table 10.1 lists several examples). To implement a nested parallel

application given a parallel routine for the inner parallel part, we can use a replicator to

generate another routine that can execute the inner parallel part over multiple sets of data

in parallel. We can then use the replicated routine to execute the nested parallelism. For

example, to implement a figure drawing algorithm that is based on drawing multiple lines,

a user could define a parallel routine that draws a single line given its endpoints and then

apply it to multiple lines:

For each endpoint-pair in endpoint-pairs

draw-line(endpoint-pair);

The replicator would automatically replicate the draw-line routine so that it could run in

parallel over all the lines. Note that the line lengths could vary greatly, so just allocating

each line to a separate processor could be horribly inefficient—this would also only take

advantage of the outer parallelism. The whole process of taking a nested parallel routine

and mapping onto a flat parallel model so as to take advantage of both the inner and outer

parallelism is called flattening nested parallelism. Replicating is the main step of flattening

nested parallelism.

146 CHAPTER 10. FLATTENING NESTED PARALLELISM

Algorithm Outer Parallelism Inner Parallelism

Quicksort For lesser and greater Quicksort

(Section 3.5.1) elements

Mergesort For first and second Mergesort

half

Closest Pair For each half of Closest Pair

(Section 6.3) space

Strassen’s For each of the 7 Strassen’s

Matrix Multiply sub multiplications Matrix Multiply

Fast For two sets of Fast

Fourier Transform interleaved points Fourier Transform

Table 10.2: Some divide and conquer algorithms.

Nested parallelism also appears in almost all divide-and-conquer algorithms (Table 10.2

shows several examples). A divide-and-conquer algorithm breaks the original data into

smaller parts, applies the same algorithm on the subparts, and then merges the results.

If the subparts can be executed in parallel, as is usually the case, the application of the

subparts involves nested parallelism. As an example, consider quicksort. Quicksort splits

a vector into the elements less than, equal to, and greater than the pivot, and forks off a

separate quicksort for each set (see Figure 10.2). By flattening the nested parallelism of

the quicksort, the quicksort becomes a fully parallel routine. If we only took advantage

of parallelism within each quicksort (finding which elements are less than, equal to, and

greater than the pivot) and serially looped over the separate invocations of quicksort, we

would have a large amount of parallelism at the root but almost none at the leaves of the

quicksort. On the other hand, if we only took advantage of parallelism of the separate invo-

cations of quicksort but implemented the internals serially, we would have a large amount

of parallelism at the leaves but almost none at the root.

Replicating is interesting from both programming and theoretical standpoints. From

a programming standpoint, it permits the separation of the high-level notion of nested

parallelism from its low-level implementation (typically on a flat uniform machine), and

supplies an automatic translation from the prior to the latter. From a theoretical standpoint,

the notion of replicating introduces some important questions, such as: Can a parallel

routine programmed for some machine always be replicated without a significant increase

in complexity? Are any restrictions necessary on the code to allow an efficient replication?

Both the programming and theoretical aspects of replicating are examined in the re-

10.2. THE REPLICATING THEOREM 147

Figure 10.2: In quicksort, after packing the elements less than the pivot to the bottom,

the elements equal to the pivot to the middle and the elements greater than the pivot to

the top, we need to fork off a quicksort for each set. This involves splitting the original

vector into three groups and using a replicated version of quicksort to simulate two separate

quicksorts. (The equal elements don’t need to be sorted, and the test for completion has

been excluded from the diagram.)

mainder of this chapter. The approach will be to state a theory of what can be replicated

along with complexity bounds, and then to build a replicator that constructively proves the

theory. This replicator is very practical, and a variation is used in the PARALATION LISP

compiler described in Chapter 11. The chapter will show that restrictions are necessary to

replicate algorithms implemented on the scan vector instruction set.

10.2 The Replicating Theorem

Ideally, we would like to prove that any program written in the scan vector model can be

replicated without unduly increasing the step and element complexities. Unfortunately,

because of difficulties with conditionals and indirect addressing, we cannot demonstrate

this for the general case. We will, however, prove that we can go quite far.

We shall prove the following theorem:

148 CHAPTER 10. FLATTENING NESTED PARALLELISM

Theorem 1 (Access-Restricted Replicating Theorem) For any access-restricted routine

R, with a set of inputs A, an access-restricted routine Rs exists with n sets of inputs

A0,A1, · · · ,An−1 that executes R independently on each set; and the routine Rs obeys the

following relations:

e(Rs,{A0,A1, · · · ,An−1}) < k1

n−1

∑
i=0

e(R,Ai) (10.1)

and

s(Rs,{A0, · · · ,An−1}) < k2 max(s(R,A0), · · · ,s(R,An−1)) (10.2)

for some constants k1 and k2.

For a routine R with input A, s(R,A) denotes the step complexity and e(R,A) denotes

the element complexity. An access-restricted routine is a routine implemented on the

scan vector model with some restrictions on the use of indirect addressing and conditional

branching; these restrictions will be described in Section 10.3.

The access-restricted replicating theorem basically states that for every routine there

is a replicated version that can execute the original routine in parallel over many inputs

(the number of steps required is within a constant factor of the original routine applied to

the slowest of the inputs), without wasting more than a constant quantity of computation

(the number of scalar operations executed, the element complexity, is at most a constant

factor greater than if the original routine serially looped over the inputs). For example,

consider the halving merge described in Section 3.7.2, which for two vectors of length n

has an element complexity of O(n) and a step complexity of O(lgn). The access-restricted

replicating theorem states that another access-restricted routine exists that can merge m

pairs of vectors each of length ni (0 ≤ i< m) with an element complexity of

O(
m−1

∑
i=0

ni) ,

and a step complexity of

O(
m−1
max
i=0

lgni) .

If the vectors where all of equal length m, the complexities would be O(m2) and O(lgm)

respectively.

The remainder of this chapter is dedicated to proving this theorem. It first defines

access-restricted code and discuss how general it is. It then proves a weaker version of the

access-restricted replicating theorem, the access-fixed replicating theorem, which is only

useful for straight-line code with no indirect addressing. It finally shows how this can be

10.3. ACCESS-RESTRICTED CODE 149

extended to include the restricted forms of conditional branching and indirect addressing

allowed by access-restricted code, thus proving the theorem. The proof is constructive and

in practice the constants in equations 10.1 and 10.2 are quite small.

Although the proof of the theorem is based on segments, the statement of the theorem

says nothing about segments. There might be other methods to prove the theory.

10.3 Access-Restricted Code

This section defines access-restricted code. Every algorithm discussed in this book obeys

the restrictions of access-restricted code.

Definition: A scan vector routine (a routine implemented using the scan vector instruction

set) R is access restricted if it obeys the following restrictions:

1. All conditional control must be of the fork-and-join type and each fork must have a

constant number of branches. That is to say, all the branches of a conditional fork

(where control takes one of a fixed number of paths based on some data), must join

at a single point.

2. It is contained. This is defined in Section 10.6.2.

3. The only forms of memory access permitted must be either (a) absolute, (b) from or

to a stack, or (c) absolute relative to a stack.

4. All stack pointers must be at the same position at the join point of all branches of a

conditional fork-and-join. This means that (pushes − pops) for each stack for each

branch must be equal.

We now consider the applicability of code with these restrictions.

Restriction 1: What sorts of conditionals is the fork-and-join useful for? It can clearly be

used for if-then-else statements and for case statements. It can also be used for while and

do loops by using a two branch fork-and-join with a recursive call in one of the branches to

a routine that implements the body of the loop, and with the other branch empty. It cannot,

however, be used for a general goto statement.

Restriction 2: This restriction will be discussed in detail in Section 10.6.2.

Restrictions 3 and 4: Restricting memory access to absolute addressing and stacks would

be a severe drawback for the serial RAM model since it would greatly complicate pointer

150 CHAPTER 10. FLATTENING NESTED PARALLELISM

based algorithms (the machine could no longer access elements via a pointer). It is not,

however, a severe problem on a parallel vector machine because pointer based operations

are executed within a vector with the permute instruction.

The restrictions on access-restricted code are sufficient but not necessary; more lenient

and general conditions are possible. The restrictions, however, permit an easy proof, an

efficient implementation and are sufficient for most algorithms. Section 10.6.3 shows that

every algorithm in this book is contained. Finding the most lenient set of restrictions is an

interesting topic for future research.

10.4 Access-Fixed Replicating Theorem

This section proves a special case of the access-restricted replicating theorem, the access-

fixed replicating theorem. This theorem is valid for any code that does not contain condi-

tionals or indirect addressing (any straight-line code with only absolute addressing). The

access-fixed replicating theorem is applicable to all the simple operations defined in Sec-

tion 4.2, and to some of the example algorithms described in Chapter 3, such as the line-

drawing routine, the line-of-sight routine and the split radix sort (assuming a fixed number

of bits in each key). The proof of the access-fixed replicating theorem is constructive and

is a major part of the proof for the access-restricted replicating theorem.

Definition: A scan vector routine R is access fixed if it does not contain any of the three

scan vector instructions cond-jump, move-scalar, or move-vector.

Since an access-fixed routine is just straight-line code (contains no conditional jumps), the

step complexity of an access-fixed routine is fixed regardless of the input. We can therefore

denote the step complexity of an access-fixed routine R as s(R) instead of s(R,A).

Theorem 2 (Access-Fixed Replicating Theorem) For any access-fixed routine R, with a

set of inputs A, an access-fixed routine Rs exists with n sets of inputs A0,A1, · · · ,An−1 that

executes R independently on each set; and the routine Rs obeys the following complexity

relations:

e(Rs,{A0,A1, · · · ,An−1}) < k1

n−1

∑
i=0

e(R,Ai) (10.3)

and

s(Rs) < k2s(R) (10.4)

for some constants k1 and k2.

Proof: The proof is constructive. We will demonstrate how to build a simulating machine

10.4. ACCESS-FIXED REPLICATING THEOREM 151

Figure 10.3: A simulating machine simulating three simulated machines. The scalar mem-

ory is expanded into vectors of length 3. The vector memory is expanded into a vector

memory of variable width for the values and a vector memory of width 3 for the segment

descriptors.

152 CHAPTER 10. FLATTENING NESTED PARALLELISM

out of a V-RAM that can simulate n simulated machines. Figure 10.3 illustrates the simu-

lating machine. We make the following changes to the original routine R to have it act as

the simulating machine. We replace all calls to the access-fixed instructions with their seg-

mented versions, replace all vectors with segmented vectors, and replace all scalars with

vectors. In our simulating machine the original scalar memory becomes a vector memory,

and the original vector memory becomes two vector memories, one for the value vectors

and one for the segment descriptors (see Figure 10.3). We must somehow accommodate

these extra vector memories in our simulating machine. To do this we triple all of the ad-

dresses in the following way. Each vector memory location Mv[j] used in R is replaced by

the locations Mv[3 j] and Mv[3 j+ 1]—one for the value vector and one for the segment-

descriptor. Each scalar memory location Ms[j] is replaced by the vector memory location

Mv[3 j+2] in Rs. This memory address translation relies on the addresses being absolute.

Now to execute Rs over the inputs Ai, we place each input Ai in segment i of a seg-

mented vector and assign segment i of each vector to the ith simulated machine. Since all

the segmented instructions work independently within each segment, each input gets oper-

ated on independently. Equation 10.4 holds because each segmented instruction requires

at most a constant number of calls to the unsegmented instructions. To show that equa-

tion 10.3 holds, we need only show that it holds for each step since we know the number

of steps is the same order. As stated in Section 4.3, the element complexity of a call to a

segmented instruction is at most a constant factor greater than the total length of the seg-

mented vector. Since the data for each input Ai is in a contiguous segment, the total length

of any segmented vector is the sum of the lengths of the values in each segment. �

To prove the access-restricted replicating theorem, the above proof must be extended

to include the restricted forms of indirect addressing and conditional jumps. This is done

in the following two sections.

10.5 Indirect Addressing

This section illustrates how segmented versions of stack operations can be implemented,

but it first exposes the problem with general indirect addressing. In a scan vector machine,

the indirect addressing primitives (move-scalar and move-vector) are used to access a

location of the scalar or vector memory based on a pointer (index) in the scalar memory.

The simulation described in the previous section (Section 10.4), relies on the fact that each

simulated machine is accessing the same memory location at the same time, while with

indirect addressing each simulated machine might access different memory locations at

the same time (see Figure 10.4). To simulate the indirect addressing the simulating ma-

chine must, therefore, serially loop over all the locations that appear in different simulated

10.5. INDIRECT ADDRESSING 153

Figure 10.4: A simulating machine executing indirect addressing for 3 simulated machines.

Each simulated machine is accessing a different vector memory location specified in the

scalar memory (the values 1, 3 and 2 are addresses). The segment each machine is access-

ing is shaded. Accessing the three locations will require at least three steps.

machines. This would clearly ruin our bounds on the step complexity. When indirectly

accessing a vector, the simulating machine would also have to pack and merge the appro-

priate segments from each vector (patch them together). This would ruin our bounds on

the element complexity.

Unlike general indirect addressing, with stacks all machines always access the same

location, since they push and pop at the same time and therefore contain the same stack

pointer. We can include any fixed number of stacks as long as all machines are pushing

or popping from the same stack. We can also include absolute access relative to a stack

because, again, all machines would access the same location. The one problem with a

stack is in its interaction with conditionals. If two branches of a conditional fork-and-join

include different numbers of pushes to and pops from a stack, then the stack pointers will be

different at the join point. This is the motivation for condition 4 of access-restricted code.

So with restrictions 3 and 4 the simulating machine still works with constant slow-down.

154 CHAPTER 10. FLATTENING NESTED PARALLELISM

10.6 Conditional Control

This section illustrates how a segmented version of the conditional fork-and-join can be

implemented, but, again, it first exposes the problem with conditional control in general.

The problem with implementing a segmented version of a conditional control instruction,

is that different simulated machines will want to jump to different instructions, while the

simulating machine can only execute a single stream of control. This is the standard prob-

lem of implementing functions with conditionals on SIMD computers: even though all

processors might start executing the same code, because of data-dependent branches they

might all end up taking different paths and executing different code.

This section illustrates how by placing restrictions 1 and 2 of access-restricted code

we can prove the desired complexity bounds for the access-restricted replicating theorem.

The element complexity is bounded by branch-packing: packing all the variables used in a

branch of a conditional fork-and-join, so that only the segments of the simulated machines

that take that branch remain (other segments are deleted). The step complexity is bounded

by only considering “contained programs” (restriction 2). We first discuss branch packing

and then discuss containment.

10.6.1 Branch-Packing

The following discussion is based on the if-then-else statement; all other conditional fork-

and-joins can be implemented by nesting the if-then-else statement. The basic idea of

branch-packing is that all variables accessed in a branch are packed so they only include

values for the simulated machines that take that branch. This means that each branch does

no more element computations than it must. The if-then-else statement is implemented

with branch-packing as follows (the description will refer to the example code shown in

Figure 10.5).

• Evaluate the condition, returning a T or F to each simulated machine.

We call machines with a T, T-machines, and machines with an F, F-machines.

In the example, we have three T-machines and one F-machine.

• If there are any T-machines, go through all the variables used in the then-expression

and pack the segments corresponding to T-machines deleting the other segments. If

there are no T-machines, skip this step.

If the variable is a scalar, we use the pack operation defined in Section 4.2 for the

packing. If the variable is a vector, we need to use a pack that packs whole segments.

We call this version a pack-segments operation; its implementation is given in

10.6. CONDITIONAL CONTROL 155

if Flag

then +-reduce(B);

else A – 5;

input:

Flag = T T F T

A = 3 4 9 6

B = [4 6 1] [2 1] [7 2 8 3] [6]

then-expression:

pack-segments(B, Flag) = [4 6 1] [2 1] [6]

+-reduce(B) = 11 3 6

else-expression:

pack(A, not(Flag)) = 9

A – 5 = 4

result:

flag-merge(then, else, Flag) = 11 3 4 6

Figure 10.5: An example of an if-then-else statement and the values during its execu-

tion. The statement is being executed on four simulated machines. Three of the simulated

machines execute the then part and one of them executes the else part.

156 CHAPTER 10. FLATTENING NESTED PARALLELISM

Section B.2.4. Both have a step complexity of O(1) and an element complexity

proportional to the total length of the original vector.

In the example, B is packed using the pack-segments operation.

• Execute the then-expression using the packed variables.

In the example, this consists of a +-reduce.

• Execute the analogous operations used on the then-expression on the else-expression:

go through all the variables used in the else-expression and pack the segments cor-

responding to F-machines deleting the other segments.

In the example, A is packed using the pack operation.

• Execute the else-expression using the packed variables.

In the example, this subtracts 5 in the single F-machine.

• Merge the results of the then-expression and else-expression.

If a result is a scalar, we use the flag-merge operation defined in Section 4.2. If the

result is a vector, we use a version that merges whole segments. We call this version

the flag-merge-segments operation; its implementation is given in Section B.2.4.

Both have a step complexity of O(1) and an element complexity proportional to the

total length of the result vector.

In the example, we use the flag-merge operation to merge the results.

Since the vectors used in both the then-expression and the else-expression are packed, both

expressions only execute their body on the simulated machines that follow their branch.

The element complexity for each branch therefore only includes the sum of the element

complexities for the simulated machines taking that branch, thus enforcing equation 10.3.

The only problem might be the cost of the packing itself. We, however, make the

following argument that the cost of packing causes at most a constant-factor slow-down.

We claim that any vector only needs to be packed a constant number of times. This is

because the only way of getting more than constant depth nesting of conditionals is through

recursive calls, and then the packing happens in the recursive call itself when passing in

the variables. With a fixed-depth nesting, the number of branches is constant and therefore

the number of packs is constant. If we assume that every vector was created at some point,

a reasonable assumption, the element complexity of packing is no more than a constant

factor greater than the element complexity of creating the vector.

10.6. CONDITIONAL CONTROL 157

10.6.2 Contained Programs

This section defines a class of programs, contained programs, and for this class proves the

second part of the replicating theorem (10.2), the bound on the step complexity. All algo-

rithms in book are contained and can therefore be replicated efficiently (see Section 10.6.3).

To discuss containment, we must first have a notion of the path taken by a program p. For

this purpose, we define an evaluation tree.

Definition: An evaluation tree T (p,a) is the ordered tree generated by applying the pro-

gram p to the data a. By this we mean that we draw a tree with each vertex being a function

and the children being all the functions it calls, in the order it calls them. The leaves of

such a tree are primitive operations.

Figure 10.6 shows examples of evaluation trees for three programs, each for two sets of

data. For the definition of containment, we only consider deterministic programs. For

probabilistic algorithms, any random bits must be passed in as arguments to the programs.

Any deterministic program has a many to one correspondence from its input to evaluation

trees—every possible input has exactly one evaluation tree, but one evaluation tree could

correspond to many different inputs.

We now return to the notion of containment. If we look at the examples in Figure 10.6,

we notice that in the first program, gloop, every evaluation tree for this program must

always be either a subtree or supertree of all other evaluation trees. As the argument n

gets larger, the evaluation tree grows and subsumes all evaluation trees for lesser n. This is

not true with the second program, hloop, since some trees will have an f function while

others will have the g function depending on the outcome of (p v). It is also not true with

the last example, floop, since the evaluation tree of (floop 2 1 v) is neither a subtree

nor a supertree of (floop 1 2 v). We say that gloop is contained while the other two

are not. We now define containment formally, but must first define what it means for one

invocation of a program to be contained within another.

Definition: We define p(a) to mean the application of the program p to the data a with

the following relation:

p(a) ⊑ p(b) (10.5)

if and only if T (p,a) is a subtree of, or the same tree as, T (p,b). The relation ⊑ is

called the containment relation, and p(a) ⊑ p(b) can be read, the application of p to a is

contained within the application of p to b.

The application p(a) is homomorphic with T (p,a) and is used to abstract away from the

trees.

158 CHAPTER 10. FLATTENING NESTED PARALLELISM

(defun gloop (n v)

(if (zerop n)

v

(gloop

(- n 1)

(g v))))

(gloop 2 v)

❝
❝❝

❆
❆�

�

�
�❆

❆
❝

❝❝

�
�

g-

gloop

zerop

zerop

gloop

- g

gloop

zerop

(gloop 3 v)

❝
❝❝

❆
❆�

�

�
�❆

❆
❝

❝❝
❝

❝❝
❆
❆�

�

g-

gloop

zerop
�

�

gloop

zerop

zerop

gloop

- g

g-

gloop

zerop

(defun hloop (n v)

(if (zerop n)

v

(hloop

(- n 1)

(if (p v)

(f v)

(g v)))))

(hloop 2 v1)

✑
✑

✑

✑
✑

✑
✁

✁
❆
❆

◗
◗

◗

◗
◗

◗
❆
❆

✁
✁
✑

✑
✑

zerop

hloop

hloop

zerop - p f

fp-zerop

hloop

(hloop 2 v2)

✑
✑

✑

✑
✑

✑
✁

✁
❆
❆

◗
◗

◗

◗
◗

◗
❆
❆

✁
✁
✑

✑
✑

zerop

hloop

hloop

zerop - p g

gp-zerop

hloop

(defun floop (k l v)

(if (zerop k)

(gloop l)

(floop

(- k 1)

l

(f v))))

(floop 2 1 v)

❝
❝❝

❆
❆�

�

f-

floop

zerop
�

�❆
❆

❝
❝❝

zerop

floop

- f
�

�

zerop

floop

�
�❝

❝❝
❆
❆

gloop

zerop g-
�

�

zerop

gloop

(floop 1 2 v)

❝
❝❝

❆
❆�

�
floop

f-zerop
�

�

zerop

floop

�
�❆

❆
❝

❝❝

gloop

- gzerop ❝
❝❝

❆
❆�

�
gloop

g-zerop
�

�
gloop

zerop

Figure 10.6: A set of Common Lisp programs along with their evaluation trees. The

function gloop is contained while the other two functions are not. An evaluation tree

can be generated by tracing the program p running on the data a.

10.6. CONDITIONAL CONTROL 159

Lemma 1 For every program p the relation ⊑ places a partial order on its inputs.

Proof: For a relation over a set to satisfy a partial order, the relation must be reflexive and

transitive.

1. (reflexive) p(a) ⊑ p(a) is true since p is deterministic and will generate the same

tree for the same data.

2. (transitive) p(a)⊑ p(b) and p(b)⊑ p(c) implies p(a)⊑ p(c) since tree containment

is transitive: if tree 1 is a subtree of tree 2, and tree 2 is a subtree of tree 3, then tree

1 must be a subtree of tree 3.

�

We now define the containment of a program.

Definition: A program p is contained whenever the relation ⊑ places a total order on its

inputs, that is, for any inputs a and b, either p(a) ⊑ p(b) or p(b) ⊑ p(a).

This definition corresponds to the notion of any evaluation tree being either a subtree

or a supertree of every other evaluation tree for the program. Returning to Figure 10.6, the

program gloop is contained by this definition, but the other two programs in the figure are

not.

We now show that contained functions satisfy the second part of the replicating theorem

(10.2), in particular:

Lemma 2 For any access-restricted routine R, with a set of inputs A, an access-restricted

routine Rs exists with n sets of inputs A0,A1, · · · ,An−1 that executes R independently on

each set; and the routine Rs obeys the relation:

s(Rs,{A0, · · · ,An−1}) < kmax(s(R,A0), · · · ,s(R,An−1)) (10.6)

for some constant k.

Proof: If R is access restricted it is contained (by definition). This means that there is an

ordering on the R(Ai) and that for some j and for all i, R(Ai) ⊑ R(A j). All the execution

trees are therefore subtrees of T (R,A j). This means that the replicated version Rs need just

execute all of T (R,A j). Whenever we reach a fork in a condition, Rs can turn off any of the

R which do not need to go deeper in the tree, and turn them back on during the join. Since

the branch packing technique turns off (deletes the entry) of routines which don’t take a

branch, the implementation discussed in the last section is sufficient. �

160 CHAPTER 10. FLATTENING NESTED PARALLELISM

10.6.3 Containment of Functions in Book

It turns out that all algorithms described in this book are contained.1 In this section we go

through the algorithms to show that they are contained. The discussion is informal; finding

a way to formally prove that functions are contained is an interesting direction for future

research.

We categorize the algorithms into three classes (see Figure 10.7):

Non Conditional Functions: These are functions that have no conditionals (straight-line

code). The evaluation tree for these functions is fixed regardless of the input, so they

are clearly contained.

Singly Recursive Functions: These are functions that only have a single call to a recur-

sive function in their body, and the single call must also be to a singly recursive

function. This call could be to a different function or to the function itself. All

singly recursive functions can be converted to be contained, as shown below.

Multiply Recursive Functions with Equal Depth: These are functions that might make

calls to multiple recursive functions, but in which it can be proved that the depth of

each recursive call increases over the same data.

We first argue that all singly recursive functions can be converted to be contained at a

constant cost. Since the depth of nesting is at most constant without a recursive call, at

any vertex only one branch of the evaluation tree of a singly recursive function can be

more than constant depth (the constant depends on the code not the data). All branches

that are constant depth can be evaluated completely; this will impose a constant overhead.

Now the one branch which is not constant depth will be the same for all data, so the one

invocation which goes deepest will always contain all other invocations. It turns out that all

the constant depth branches, for the singly recursive functions in this book, do not impose

any overhead. This is because these branches do not have any conditionals.

The only functions left are the multiply recursive functions. In all the multiply recursive

functions in this book (see Figure 10.7), the branches all depths that increase over the same

data. Here we just consider the
√
n-hull, the others are straightforward. In the

√
n-hull, the

main procedure makes two recursive calls. The first is to itself, and the second is to the

binary-search routine which is used to find the bridges. The binary search routine is singly

recursive and for n points has depth O(lgn), and is therefore increasing with the size of the

problem. The recursive call to
√
n-hull also has depth that is increasing with the size of the

problem, so both recursive calls grow in depth with the size of the problem, and therefore

increase over the same data.

1This assumes we pass in the random bits as arguments for the probabilistic algorithms, such as the minimum-

spanning-tree algorithm.

10.6. CONDITIONAL CONTROL 161

Non Conditional:

All the Simple Operations

Neighbor-Reduce, Distribute-Excess

+-Rootfix, +-Leaffix, Tree-Vertex-Delete

Line-Drawing, Line-of-Sight

Singly Recursive:

Split-Radix-Sort, Quicksort, Halving-Merge,

KD-Tree, Quickhull,

Minimum-Spanning-Tree, Maximal-Independent-Set,

Sparse Matrix-Matrix Multiply (assuming single sort),

Simplex, Dense Matrix-Matrix Multiply

Doubly Recursive, Equal Depth:

Binary-Search,
√
n-Hull, Closest-Pair,

Maximum-Flow, Biconnected-Components,

Linear-Systems Solver

Figure 10.7: A list of the algorithms in the book and in which way they are contained.

10.6.4 Round-Robin Simulation

We now consider another technique that could be used to limit the step complexity of a

replicated routine, round-robin simulation, and discuss why it is impractical.

The idea of round-robin simulation is that we simulate a MIMD model on the SIMD

model. The SIMD machine must have the capability of disactivating and reactivating any

processor. The SIMD machine continually loops over all the instructions of the MIMD

machine and each processor only executes the instruction when the right instruction comes

around. If the MIMD machine being simulated has k instructions, then this simulation

causes a factor of k slow-down. Although in theory the number of instructions k is constant,

such a simulation is impractical for most machines since the number of instructions k is

usually at least on the order of 100.

One way to minimize the simulation cost is to reduce the number of instructions (k) to

a small number. This can be done by breaking each instruction into even more primitive

parts (we could for example create a machine with only a logical NAND instruction). The

idea of reducing the number of instructions was used by Hudak [57] to implement a laze

functional language on the Connection Machine. He was able to reduce the process of

graph reduction to 5 primitive operations. He implemented this reduction machine on

the Connection Machine and took several timings. The running times he measured were

162 CHAPTER 10. FLATTENING NESTED PARALLELISM

extremely inefficient, often running slower on the Connection Machine than on a serial

machine. The problems he found with this technique was that the simulation overhead was

large and that breaking the operations into the five primitives added significant costs.

Chapter 11

A Compiler for Paralation Lisp

This chapter discusses a compiler that translates a subset of PARALATION LISP, a collection-

oriented language of Sabot’s [96], into the scan vector instruction set.1 As mentioned in

the introduction to the book, a PARALATION LISP version of quicksort translated by the

discussed compiler onto the Connection Machine runs within a factor of two of the fastest

sort implemented on the Connection Machine. This result lends practical credence to many

of the methods and techniques discussed in this book, and asserts concrete support for the

general use of high-level collection-oriented languages for programming applications and

algorithms, and powerful compilers for mapping these languages onto a gamut of parallel

and serial machines.

The compiler described in this chapter ties together many of the independent contri-

butions of the book. The compiler makes use of the scan vector model as an intermediate

language; it makes use of many of the simple operations discussed in Section 4.2 to imple-

ment some of the language forms; it makes use of the implementation of the scan vector

model on the Connection Machine discussed in Section 12.1 as the back end; it makes use

of segments, the replicating theorem, and packing nested conditionals discussed in Chap-

ter 10 to implement nested parallel constructs; and it makes use of the representation of

collections discussed in Section 9.3 to map the PARALATION LISP collection type, the

field, onto vectors. Figure 11.1 illustrates the stages of compiling and how they fit into the

book as a whole.

The most original contribution of the described compiler is its ability to flatten nested

parallelism. Although compilers have been implemented that compile collection-oriented

languages that support nesting onto parallel machines, such as the compiler for CM-

1Some of the work described in this chapter is joint work with Gary Sabot and is described in more detail

in [24].

163

164 CHAPTER 11. A COMPILER FOR PARALATION LISP

PARALATION LISP

⇓ This chapter

SV-LISP with Segmented Instructions

⇓ Sections 4.3 and B.2.3

SV-LISP without Segmented Instructions

⇓ A COMMON LISP compiler

Scan Vector Instruction Set

⇓ Chapter 12

Connection Machine and Host Machine Instructions

Figure 11.1: The stages of compiling a PARALATION LISP program onto a target machine.

Scan Vector Lisp is basically the scan vector instruction set buried in Lisp Syntax with

some of COMMON LISP’s higher level forms.

11.1. SOURCE CODE: PARALATION LISP 165

LISP [119], these compilers only compile for parallelism at the leaves of the nesting. For

example, a compiled routine that draws a set of lines would draw each line in parallel but

would serially loop over the lines. By taking advantage of segments and the replicating the-

ory, the implementation of nested parallelism by the described compiler is straightforward

and can be broken into the following major parts:

• Nested fields (the collection type of PARALATION LISP) are represented based on

a pfield data structure. This data structure has two slots: one contains a segment

descriptor and the other either a vector of data, if the field is not further nested, or

another pfield, if the field is further nested.

• The compilation of two versions of every function: one for use when called at top

level, and one for use when called inside a nested form.

• The insertion of stepping-down code at the entry of each elwise form (the apply-

to-each form of PARALATION LISP), which at run time strips off the top pfield of

each variable passed into the elwise; and the insertion of stepping-up code at the

exit of each elwise form, which at run time appends a pfield back onto the value

being returned.

• The insertion of code that at run time packs all active segments when entering either

branch of an if special-form, so that segments which are not being executed are

eliminated. The results of the two branches are joined when the else-expression

completes.

The compiler also shows the power of parallel vector models as an intermediate instruc-

tion set on which to compile a collection-oriented language. The techniques used by the

described compiler can can be applied to other collection-oriented languages that support

nesting such as CM-LISP or SETL.

Figure 11.2 illustrates the organization of this chapter. The chapter is separated into

three parts: 1) an outline of the source language, the subset of PARALATION LISP; 2) an

outline of the target language, SV-LISP; and 3) the important translation techniques used

by the compiler. Each of these parts is split into data structures, and operations.

11.1 Source Code: Paralation Lisp

This section summarizes the PARALATION LISP language; for more details the reader

should see [96]. PARALATION LISP consists of a new data structure, three primitive oper-

ators, and a set of other operators built on the primitive operators, all added to COMMON

LISP.

166 CHAPTER 11. A COMPILER FOR PARALATION LISP

Source Language: Paralation Lisp

Data Structures (Section 11.1.1) Operations (Section 11.1.2)

(Section 11.3.1) (Section 11.3.2)

⇓ ⇓
Target Language: Scan-Vector Lisp

Data Structures (Section 11.2.1) Operations (Section 11.2.2)

Figure 11.2: Organization of the compiler. To translate PARALATION LISP onto scan-

vector lisp both the data structures and the operations must be translated.

11.1.1 Data Structures

The data objects permitted in PARALATION LISP are all the standard COMMON LISP data

objects with one additional object, the field. The field, is a linear-ordered collection of

elements. A field can be heterogeneous and the elements can be any PARALATION LISP

value—including another field, allowing nested collections. Here are some examples of

fields.

A homogeneous field:

#F(7 2 11 19 6 12 9)

A nested homogeneous field:

#F(#F(4 8 3) #F(9 1 12 7) #F(2 9))

A heterogeneous field:

#F(7 #F(4 Nil 3) T "horse")

A structure field:

#F

⎛

⎝
u : u00

v : v00

u : u01

v : v01

u : u02

v : v02

⎞

⎠

11.1. SOURCE CODE: PARALATION LISP 167

11.1.2 Operators

The operations permitted in PARALATION LISP are all the standard COMMON LISP oper-

ations with three additional operations: an iteration operator and two field operators. The

iteration operator, elwise, is used to iterate any PARALATION LISP code, including an-

other elwise, over all elements of a field. The two primitive field operators, match and

<-, perform communication among the elements of fields: match encapsulates a commu-

nication pattern into a mapping, and <- transfers a field according to a mapping. Several

other operations are supplied by PARALATION LISP but can be defined in terms of match

and <-. All the COMMON LISP sequence functions can also be used on fields.

The operators of PARALATION LISP that are needed for the compilation examples are

outlined below. The ideas behind paralations and mappings, which are both important

concepts of the language, are not discussed because they are not germane to a discussion

of compiler issues.

Elwise: The elwise operator is used to apply a body over each element of a field, or set

of fields. The body can include any valid PARALATION LISP form. The form:

(elwise bindings

body)

executes the body elementwise over the elements of each field in the bindings. For exam-

ple:

(elwise ((a #F(4 7 1 3))

(b #F(6 2 5 8)))

(+ a b))

⇒ #F(10 9 6 11)

pairwise adds the elements of a and b. Each binding of an elwise must be from the same

paralation (of the same length).2

Match and Move: The match operation takes two key fields as arguments—one from

a source paralation and one from a destination paralation—and returns a mapping. A

mapping can be thought of as a bundle of one-way arrows that connect certain sites of the

source paralation to certain sites of a destination paralation. Two sites are connected if

their key field values are equal. A mapping is an encapsulated communication pattern.

2The example is actually not quite correct since the two fields given to the elwise will be from different

paralations, but for the sake of simplicity in the examples we assume that the two fields passed to the elwise

are from the same paralation if they are the same length. This assumption will be made in some of the other

examples.

168 CHAPTER 11. A COMPILER FOR PARALATION LISP

The <- (move) function accepts a mapping and a field from the source paralation of

the mapping as its arguments. <- simply pushes this source data field into the tails of the

mappings arrows, causing a field in the destination paralation to pop out at the other end

of the mapping. The elements in this field are calculated based upon what arrived over

the arrows. If a single arrow arrives at a destination site, it is clear what that element’s

value should be. Of course, in many cases, arrows can conflict. Simple rules govern the

resolution of the conflicts.

When the mapping indicates that source data is needed in multiple destination sites,

because a particular key occurred several times in the destination, a concurrent-read auto-

matically takes place, thus giving each destination site the data it needs. On the other hand,

if a destination site receives no incoming values, a value is taken from a user-specified

default field in the destination paralation.

The most interesting case arises when many source data items arrive at a single desti-

nation, because a particular key occurred several times in the source. The multiple incom-

ing values are reduced into a single value by repeatedly applying a user-specified, two-

argument combining function. Combining will not be needed for the examples presented

in this chapter, but it is an important part of the paralation model.

Composite Operations

Many operations can be defined using the elwise, match and <- operations, and are

important enough that they are worth mentioning here.

Vref: The vref operation “sums” the elements of a field according to any binary operator.

So, for example:

(vref #F(7 4 1 11 2 6) :with ’max)

⇒ 11

Collapse and Collect: The collapse operator takes a set of keys and generates a map-

ping in which all elements with equal valued keys are mapped to the same position. The

collect operator takes a mapping and a field and appends all the elements which are

mapped into the same position into a subfield. This can be implemented using a <- with a

combiner of concatenate. The collect operator returns a field of fields. As an example

of collect and collapse consider the following operation:

(let ((A #F(a0 a1 a2 a3 a4 a5))

(B #F(k0 k1 k0 k2 k1 k1)))

(collect A :by (collapse B)))

11.2. TARGET CODE: SCAN-VECTOR LISP 169

⇒ #F(#F(a0 a2) #F(a1 a4 a5) #F(a3))

Expand: The expand operator takes a field of fields and appends all the subfields into a

single field. So, for example:

(expand (collect A :by (collapse B)))

⇒ #F(a0 a2 a1 a4 a5 a3)

11.1.3 Restrictions

The compiler implements a small enough subset of PARALATION LISP that the subset is

more concisely described by what it does include rather than what it does not include.

The subset only supports homogeneous fields and the data type of each elements of a

field must be either an integer, boolean, field or structure. Since the elements can be fields,

the subset supports nested fields. Many other data types, such as floating-point numbers or

characters, would be straightforward to include, but were left out for the sake of simplicity.

The subset supports the following operations. It supports the three primitive operations

of PARALATION LISP, elwise, match and <-. It, however, only knows how to match in-

teger and boolean keys. The subset supports most of the operations on integer and boolean

values inside an elwise. It also supports nested operations on fields. The only conditional

the subset supports is the if special form, and it places the restriction that the results re-

turned from both the then-expression and the else-expression must be of the same type.

The subset includes the composite operations, vref, collect, collapse, and expand.

The subset supports the following sequence operations on fields: elt, length, sort,

reduce, and concatenate. Many other sequence operators would be straightforward to

include, but these were the only ones needed for the test code.

These restrictions allow the application of the access-restricted replicating theorem

described in Chapter 10 so that any function written using these restrictions can be used

either at top level or nested within an elwise.

11.2 Target Code: Scan-Vector Lisp

This section describes the target code of the compiler, scan-vector Lisp (SV-LISP). SV-

LISP is a subset of COMMON LISP with the addition of a set of functions that implement

the vector and vector-scalar instructions of the scan vector instruction set (the scalar in-

structions are included in COMMON LISP).

170 CHAPTER 11. A COMPILER FOR PARALATION LISP

COMMON LISP Data Types
Integers, Booleans, Structures

Pvector Data Types
Integer-Pvectors, Boolean-Pvectors

Figure 11.3: The data types of SV-LISP.

Translating PARALATION LISP to SV-LISP rather than directly onto a parallel ma-

chine, such as the Connection Machine, has some important advantages. First, it separates

the novel techniques of compiling collection-oriented languages onto a set of vector in-

structions from standard compiler techniques. The novel techniques, such as flattening

nested parallelism, are implemented in translating from PARALATION LISP into SV-LISP

while the standard techniques, such as memory allocation or compiling recursive routines,

are implemented in translating from SV-LISP into actual machine instructions. Second, as-

suming a COMMON LISP compiler exists for a machine, PARALATION LISP can be ported

to that machine simply by implementing a subroutine for each of the pvector instructions,

and interfacing these subroutines into COMMON LISP. This allows great portability.

11.2.1 Data Structures

SV-LISP has five data types, three from COMMON LISP—integers, booleans and structures—

and two additional data types—boolean pvectors and integer pvectors. Pvectors are arbi-

trarily long linear-ordered collections of atomic values—boolean values for the boolean

pvectors and integers for the integer pvectors.3 Every pvector can have a different length

and the only operations that can create or manipulate the pvector data types are the pvector

instructions discussed in Section 11.2.2. If one was to implement a complete PARALATION

LISP rather than the subset discussed in this chapter, SV-LISP would need to be augmented

with some other types, such as floating-point numbers and floating-point pvectors.

11.2.2 Operations

Figure 11.4 lists the operations of SV-LISP. These operations are broken into two classes,

operations from COMMON LISP and the parallel vector instructions discussed in Sec-

tion 4.1. The COMMON LISP operations are defined in the COMMON LISP reference

manual [107].

3The term pvector is used instead of vector so as not to confuse it with the COMMON LISP vector data type—a

linear-ordered collection whose elements can be of any type.

11.3. TRANSLATION 171

COMMON LISP Operations
Special Forms and Macros:

if, defstruct, defun, let, let*, progn, setq

Scalar Arithmetic and Logical Operations:

+,−, and, or, =,<, ...

Pvector Instructions
Elementwise Instructions:

p+, p−, p-and, p-or, p= , p<, p-select, ...

Permutation Instructions:

permute, select-permute

Scan Instructions:

+-scan, max-scan, min-scan, or-scan, and-scan

Vector-Scalar Instructions:

insert, extract, distribute, length

Figure 11.4: The operations of SV-LISP.

11.3 Translation

This section discusses how PARALATION LISP is translated into SV-LISP. In keeping with

the rest of the chapter, it first describes data structures and then describes operations.

11.3.1 Data Structures

In collection-oriented languages, different mappings of the high-level collections onto the

target architecture can give rise to orders of magnitude differences in the efficiency of code

on the architecture. A compiler must therefore pay special attention to how the mappings

effect the efficiency of code. This section discusses how the compiler maps the collections

of PARALATION LISP, fields, onto the primitive data structures of SV-LISP, pvectors.

The mapping discussed allows a particularly efficient manipulation of nested fields by the

vector instructions of SV-LISP. The representation of nested fields is based on segments

as introduced in Section 4.3 and allows the generated code to operate over all subfields in

parallel.

All fields are constructed from the pfield structure—a COMMON LISP structure type

with two slots (see Figure 11.5). The first slot stores a segment-descriptor, which de-

scribes the length or segmentation of the field (see Section 4.3).4 The second slot stores

4In the actual compiler the segment-descriptor is itself a structure which contains several slots each with one of

172 CHAPTER 11. A COMPILER FOR PARALATION LISP

pfield

segdes: segment-descriptor

values: boolean pvector, integer pvector, structure, pfield

Figure 11.5: The definition of the pfield structure. Each line of the structures includes the

slot name followed by the type of values that can be placed in the slot.

the actual values. This slot contains a pvector if the field contains only atomic values, con-

tains another pfield if the field is nested, and contains a user-defined structure if the field is

a field of user-defined structures. Each of these cases is discussed below. Since the subset

of PARALATION LISP considered only supports homogeneous fields, heterogeneous fields

are not considered.

Simple Field: To represent a simple field—a field whose elements are all atomic—we use

a single pfield structure. The first slot contains a definition of a single segment—its length.

The second slot contains a pvector with the values of the field. For example:

#F(a0 a1 a2 a3 a4)

⇓

pfield

segdes: [5]

values: [a0 a1 a2 a3 a4]

We use a pfield structure instead of using a pvector directly since it allows us to check if two

equal length fields belong to the same paralation.5 Using the pfield structure also permits a

more homogeneous implementation of the stepping-up and stepping-down manipulations

to be discussed in Section 11.3.2.

Nested Field: We represent a nested field—a field whose elements are themselves fields—

by nesting the pfield structures and using segments of a single pvector to represent each

subfield. For example:

the segment descriptors defined in Section 4.3 For the purposes of this chapter, we assume the segment-descriptor

only contains the lengths segment-descriptor (the length of each segment).
5Since the segment-descriptor is actually a structure, we can check if two fields are from the same paralation

by seeing if the two segment-descriptors are eql.

11.3. TRANSLATION 173

#F(#F(a00 a01) #F(a10 a11 a12) #F(a20))

⇓

pfield

segdes: [3]

values:

pfield

segdes: [2 3 1]

values: [a00 a01 a10 a11 a12 a20]

In this example, the segdes slot of the inner pfield describes the segmentation of the values

slot. This technique can be applied recursively to represent a nesting of any depth. A

field nested n deep can be represented with n segment-descriptor structures and n pfield

structures.

The purpose of representing nested fields with a single value pvector is to get both the

parallelism on operations within each bottom level field and the parallelism over all the

bottom level fields.

Structure Field: We represent a structure field—a field whose elements are each a user

defined structure—by pulling the structure out from inside the field. For example:

#F

⎛

⎝
u : u00

v : v00

u : u01

v : v01

u : u02

v : v02

⎞

⎠

⇓

pfield

segdes: [3]

values:

uv-structure

u: [u0 u1 u2]

y: [v0 v1 v2]

In this example, the field of three uv-structures is mapped onto a single uv-structure whose

slots contain a pvector with the values of all three of the original uv-structures. Figure 11.6

illustrates a final example of a field with both nesting and structures.

Mappings in PARALATION LISP can be represented in canonical form as a pair of

integer vectors: the first vector are indices into the destination from the source, and the

second are indices into the source from the destination (see [96] for more details).

174 CHAPTER 11. A COMPILER FOR PARALATION LISP

#F

⎛

⎜
⎜
⎜
⎝

x : x0

y : y0

z : #F

(

u : u00

v : v00

u : u01

v : v01

u : u02

v : v02

)

x : x1

y : y1

z : #F

(

u : u11

v : v11

)

⎞

⎟
⎟
⎟
⎠

⇓
pfield

segdes: [2]

values:

xyz-structure

x: [x0 x1]

y: [y0 y1]

z:

pfield

segdes: [3 1]

values:

uv-structure

u: [u00 u01 u02 u10]

v: [v00 v01 v02 v10]

Figure 11.6: An example of how a nested field with structures is represented. In the exam-

ple, the xyz-struct and the uv-struct are user-defined structures.

11.3. TRANSLATION 175

(defun plus-times (a b)

(* a (+ a b)))

Called at top level

(plus-times 5 2)

⇒ 35

Called within an elwise

(elwise ((a #F(2 1 6))

(b #F(3 5 2)))

(plus-times a b))

⇒ #F(10 6 48)

Figure 11.7: Any routine in PARALATION LISP can be called either at top level or within

an elwise.

11.3.2 Operations

This section discusses the manipulations necessary to translate code from the subset of

PARALATION LISP into SV-LISP. The discussion is broken into four parts: 1) compiling

two versions of all code, one parallel and one serial; 2) compiling the elwise form; 3)

compiling conditionals; 4) and implementing the PARALATION LISP collection operations.

Compiling Two Versions

When a function is defined in PARALATION LISP, it must work both if called at top level

(not within an elwise), and if called within an elwise. Consider the example of Fig-

ure 11.7. In the first case, the compiler uses a serial version of plus-times while in the

second case the compiler uses a parallel version of the routine. The serial version uses

the standard COMMON LISP + and * operations while the parallel version uses the pvector

primitives p-+ and p-*. Figure 11.8 illustrates an example of the translation of a PARA-

LATION LISP routine into the two SV-LISP routines.

The compiler keeps two versions of every user-defined function and every function

supplied by PARALATION LISP: the top level version and the replicated version (the ver-

sion called inside a nested parallel form). When compiling the replicated version of a new

function, the function calls inside the routine are simply replaced with their replicated ver-

sion (see Figure 11.8). The special forms, however, cannot in general be replaced with a

parallel function. This is because the arguments of special forms in COMMON LISP are

not necessarily all evaluated (for example, the if form only evaluates the second argument

if the first evaluates to T). Furthermore, COMMON LISP does not permit user definitions of

special forms. Special forms can therefore require some extra manipulations. The trans-

lation of the if special form is discussed in Section 11.3.2. The let, let* and progn

176 CHAPTER 11. A COMPILER FOR PARALATION LISP

(defun plus-times (a b c)

(+ a (* b c)))

⇓

(defun s-plus-times (a b c)

(+ a (* b c)))

(defun p-plus-times (a b c)

(p-+ a (p-* b c)))

Figure 11.8: Compiling both a parallel and a serial version of a routine. The parallel

version replaced all function calls with their parallel versions.

special forms require no manipulations.

Compiling Elwise Forms

The compiler applies several manipulations to translate an elwise form. First, it executes

the same manipulations required when creating a parallel form of a function as discussed

in the last sections. Second, it inserts code that copies all the free variables—variables that

appear in the body but not in the binding list—across the elements of the elwise. Third, it

inserts code that steps-down all the values bound in the binding list, and steps-up the result

of the body.

We first discuss copying free variables. In PARALATION LISP, if a variable appears in

the body of an elwise but not in the binding list, the variable in implicitly copied across

the elements of the elwise.6 For example, in the form:

(let ((b 3))

(elwise ((a #F(4 1 2)))

(+ a b)))

⇒ #F(7 4 5)

the value of the variable b is implicitly copied across the three elements and added to

each. When translating from PARALATION LISP to SV-LISP, the translator inserts code to

execute this copy at run time. The particular code inserted depends on the type of value

that needs to be copied. If the value is a scalar, the distribute pvector primitive (see

Section 11.2.2) is inserted. Figure 11.9 illustrates an example of this manipulation. If

6This is similar to scalar extension in APL [59], but in PARALATION LISP any value will be extended, not

just scalars.

11.3. TRANSLATION 177

(elwise ((a A))

(+ a b))

⇓

(simp-elwise ((a A)

(b (distribute b (pfield-segdes A))))

(+ a b))

Figure 11.9: An example of the code inserted for copying free variables. All free variables

are removed by this manipulation. The simp-elwise form is a version of elwise that

does not accept free variables.

(simp-elwise ((a A)

(b B))

(+ a b))

⇓

(let ((a (pfield-values A))

(b (pfield-values B))

(current-segdes (pfield-segdes A)))

(make-pfield

:segdes current-segdes

:values (p-+ a b)))

Figure 11.10: An example of the stepping-down and stepping-up manipulations.

the value is a structure of scalars, a distribute primitive is inserted for each slot of the

structure. If the value is a field, a distribute-segment operation is inserted that creates

a nested field with the original field in each element. The type of the variable to be copied

can often be inferred at compile time so that the correct code can be inserted at compile

time (in the above example b must be a scalar since it is being added). If the type cannot

be inferred at compile time, the compiler inserts code that executes a type dispatch at run

time.

We now discuss stepping-down and stepping-up. Stepping down and up are crucial to

the implementation of operations on nested fields. Stepping-down consists of stripping off

the top pfield from each value being bound in the elwise bindings, and setting a variable

called the current-segdes to this value. So for a nested field, each time the field is passed

178 CHAPTER 11. A COMPILER FOR PARALATION LISP

inside another elwise another of its pfield structures is stripped off. Stepping-up is the

inverse of stepping-down. When leaving an elwise, stepping-up consists of tagging on a

pfield structure to the result returned from the body of the elwise, and restoring the value

of the current-segdes. Figure 11.10 illustrates the code inserted by these manipulations.

To see how stepping-down and stepping-up are used, consider the following code:

(let ((field-of-fields #F(#F(7 4) #F(11) #F(8 1 17))))

(elwise ((field field-of-fields))

(elwise ((value field))

(+ value value)))

⇒ #F(#F(14 8) #F(22) #F(16 2 34))

Based on the representation discussed in Section 11.3.1, the original field is represented

as:

field-of-fields =

pfield

segdes: [3]

values:

pfield

segdes: [2 1 3]

values: [7 4 11 8 1 17]

When entering the outer elwise, the stepping-down code strips off the top pfield leaving:

field =

pfield

segdes: [2 1 3]

values: [7 4 11 8 1 17]

And when entering the inner elwise, the next pfield is stripped off leaving:

field = [7 4 11 8 1 17]

Now when p-+ is applied to field, the result is:

[14 8 22 16 2 34]

When exiting the inner elwise the stepping-up code appends a pfield back on, returning:

pfield

segdes: [2 1 3]

values: [14 8 22 16 2 34]

11.3. TRANSLATION 179

And when exiting the outer elwise another pfield is appended, returning:

pfield

segdes: [3]

values:

pfield

segdes: [2 1 3]

values: [14 8 22 16 2 34]

Which is the representation of the desired result:

#F(#F(14 8) #F(22) #F(16 2 34))

In this example, the code that executes the addition runs in parallel over all elements

therefore taking advantage of the parallelism within each subfield and also the parallelism

among the subfields. This technique works regardless of the depth of the nesting and

regardless of the complexity of the operations executed within the elwise.

One way of thinking about what is going on is that the compiler converts an elwise,

which is a mapping of a function over many sets of data, into a new “composite” function

over one larger set of data—the data sets all appended together. The effect of stripping off

a pfield by the translated elwise is to remove a level of dividing boundaries and therefore

effectively appending the data sets. The “composite” function (the replicated function) can

then be applied to this appended data set. So, in the above example, inside the inner elwise

there are no longer any dividing boundaries—all the original values are appended into one

long vector—and the parallel vector version of + is then applied over all the elements.

Compiling Conditionals

This section describes the translation used for the if special form. Many of the other

COMMON LISP control forms, such as cond, when, and do, can be implemented with the

if special form. The general throw, catch and go special forms, however, cannot be

implemented with just the if form and are not supported by the subset of PARALATION

LISP accepted by the compiler. The translation described in this section is based on the

methods discussed in Section 10.2.

The problem with the parallel (replicated) version of a routine with an if form is that,

some of the segments might take one branch while others might take the other. The parallel

version therefore might need to execute both branches. It, however, cannot simply evaluate

both branches and select the appropriate result based on the conditional flag. This would

render the program incorrect for the following two reasons:

180 CHAPTER 11. A COMPILER FOR PARALATION LISP

• if there are any side effects (such as a setq) in the then-expression or else-expression,

these side effects might be evaluated in segments in which they should not be;

• if there is a recursive call in one of the branches, the recursion would never terminate—

the branch would be executed in the recursive call and again in the next recursive call

with no termination condition.

It would also make the program inefficient for the following reason:

• If both branches are executed for all segments, computation is performed on the

segments which were not supposed to take a branch and therefore wasted. This can

be particularly bad when conditionals are nested.

The first problem can be solved by guaranteeing that side effects are only executed in

segments which should be taking the current branch. The second problem can be solved by

only executing a branch if there is at least one segment that needs to execute that branch.

The third problem can be solved by packing the active segments in each branch and merg-

ing the results as discussed in Section 10.2. The compiler inserts code for all these manip-

ulations.

Figure 11.11 illustrates an example of the translation executed by the compiler for the

if special form. Each or-reduce is inserted to check if any segment needs to execute

that branch. This code guarantees that at run-time a branch will only be executed if there

are segments taking the branch. The recursive-pack function packs the segments of

a variable so that inactive segments are dropped out. This function is applied to every

variable that appears in a branch. Unlike the pack operation described in Section 4.2, this

version can pack nested fields: it recursively packs the levels of a nested field and returns

when it reaches the leaves. The recursive-flag-merge function merges two segmented

values based on the conditional flags. As with the recursive-pack, it can be applied to

nested fields. To merge in variables that are side effected in one of the branches (with a

setq), a recursive-unpack routine is inserted at the exit of each branch. At run-time,

this routine replaces the altered segments with the new values but leaves the unaltered

segments unchanged.

Since our subset of PARALATION LISP only manipulates homogeneous fields, the re-

sults from the two branches of an if special-form must be of the same type so that the

recursive-flag-merge will return a homogeneous field.

Operations

This section has covered everything except how the PARALATION LISP operations de-

fined in Section 11.1.2 are implemented. The operations considered here are the elt,

11.3. TRANSLATION 181

(if flag

(func1 a)

(setq a (func2 b)))

⇓

(if (or-reduce flag)

(if (or-reduce (p-not flag))

(recursive-flag-merge flag

(let ((temp-a (recursive-pack a flag)))

(func1 temp-a))

(let ((temp-b (recursive-pack b (not flag))))

(let ((result (func2 temp-b)))

(setq a (recursive-unpack

result a (not flag)))

result)))

(func1 a))

(func2 b))

Figure 11.11: Translating the parallel version of the if special form. If the flag is NIL

in all of the segments, only func2 is executed. If the flag is T in all of the segments, only

func1 is executed. If some flags are T and other NIL then the respective segments are

packed before execution and merged after execution.

182 CHAPTER 11. A COMPILER FOR PARALATION LISP

collapse, collect, and expand. A full description of the implementation of these

functions is not within the scope of this chapter, but the code is provided and the basic

ideas are outlined. Only one version of each function needs to be written because the com-

piler itself can be applied to this group of library of functions to generate the nested parallel

versions automatically.

0 (defun elt (sequence index)

1 (extract sequence index))

2

3 (defun collapse (field)

4 (make-map

5 :pointers (rank field)

6 :length (value-count field)

7 :segdes (elements-counts field)))

8

9 (defun collect (field &key by)

10 (make-pfield

11 :values (make-pfield

12 :values (permute field (map-pointers by))

13 :segdes (map-segdes by))

14 :segdes (map-length by)))

15

16 (defun expand (field)

17 (let ((child-field (pfield-values field)))

18 (make-pfield

19 :values (pfield-values child-field)

20 :segdes (+-reduce (pfield-segdes child-field)))))

The collapse routine generates a mapping which can then be used to move data using

the collect routine. The mapping is represented with two vectors and a scalar. The

pointer vector contains pointers from the original field into a new vector so that equal

values in the original field are adjacent. This pointer vector is generated by executing a

rank on the original field. For example:

(rank #F(2 5 3 8 2 2 8))

⇒ #F(0 4 3 5 1 2 6)

If the field is an number field, the implementation of rank requires a sort. If the field

is a boolean field, however, the rank can be implemented with two scans and a permute

(because a single partition phase of quicksort always suffices for a boolean key).

The segdes vector of the mapping contains the number of occurrences of each distinct

value in the source field. It is generated with the elements-counts routine; for example:

11.3. TRANSLATION 183

(elements-counts #F(2 5 3 8 2 2 8))

⇒ #F(3 1 1 2)

If the field is a boolean field, this requires two calls to the +-scan primitive. The length slot

of the map contains the number of distinct values and is generated with the value-count

routine. For example:

(value-count #F(2 5 3 8 2 2 8))

⇒ 4

This is just the length of the segdes vector.

The collect routine extracts the pointers from the map structure and permutes its

input to those pointers. Collect creates a field of fields from a field, using the length slot as

the top level segment-descriptor and the segdes slot as the next level segment-descriptor.

The expand removes a level of nesting. It strips off two levels of segment descriptors,

sums the lengths of the subfields, and creates a new segment descriptor with the length

specified by this sum.

184 CHAPTER 11. A COMPILER FOR PARALATION LISP

Part IV

Architecture

185

Introduction: Architecture

This part contains two chapters. Chapter 12, implementing parallel vector models, de-

scribes the implementation of the parallel vector models on the Connection Machine and

describes how the models can be simulated on the P-RAM models. Chapter 13, imple-

menting the scan operations, illustrates how the scan operations can be implemented in

hardware. This illustration is important because although there has been considerable the-

oretical and practical research on how to implement the permutation operations (routing),

and there has been theoretical research on how to implement the scan operation [65, 41],

there has been little research on how to implement the scan operation on real hardware.

The purpose of this part is to illustrate that the parallel vector models can be imple-

mented on parallel machines. Many of the techniques described in this part can be used for

machines other than the Connection Machine.

187

188

Chapter 12

Implementing Parallel Vector

Models

This chapter describes how parallel vector models in general and the scan vector model

in particular can be simulated on a real machine, the Connection Machine, and how they

can be simulated on another theoretical model, the P-RAM model. The general simulation

techniques described should be applicable to a wide range of parallel machines, both with

serial control and with parallel control. In particular the chapter shows:

1. All the scan vector instructions can be implemented on the Connection Machine

(CM-2). The running times are tabulated in Table 12.1.

2. Any scan vector algorithm with an element complexity of e and a step complexity

of s, can be simulated on a synchronous EREW P-RAM with scan primitives with

asymptotic complexity t = O(e/p+ s).

12.1 Implementation on the Connection Machine

In this section we describe an implementation of the scan vector model on the Connection

Machine. Much of the description is useful for parallel vector models in general. In Sec-

tion 12.1.4 we tabulate the running times of the instructions for vectors of various lengths.

We start with a brief description of the Connection Machine; more detailed descriptions

can be found in Hillis’s book on the Connection Machine [53] or in a Thinking Machines

Corporation technical summary [114].

189

190 CHAPTER 12. IMPLEMENTING PARALLEL VECTOR MODELS

Figure 12.1: Block diagram of the Connection Machine.

The CM-2 Connection Machine is a fine-grained data-parallel computer with between

8K and 64K processors (see Figure 12.1). Each processor is a 1-bit serial processor, with

64K bits of local memory, and optional floating-point hardware. Each processor can access

its memory with independent addresses. All the processors are controlled by a microcon-

troller, which is attached to a front end computer. The processors are organized into a

hypercube network with 16 processors at each node (corner) of the hypercube. The wires

of the hypercube network are shared by the scan instructions and the permutation instruc-

tions.

We now consider how the general architecture of a V-RAM can be mapped onto the

Connection Machine. The scalar processor of the V-RAM can be mapped onto the front

end of the Connection Machine, and the vector processor can be mapped onto the processor

array of the Connection Machine. Since vectors in a V-RAM can be arbitrarily long, we

must somehow simulate them on the Connection Machine which has a fixed number of pro-

cessors. In the following discussion we first discuss how the vector memory of a V-RAM

is mapped onto the Connection Machine and then discuss how the specific instructions of

the scan vector model are mapped onto the Connection Machine.

12.1.1 The Vector Memory

To support the vector memory on the Connection Machine, arbitrarily long vectors must

be mapped onto the fixed number of processor memories of the Connection Machine. This

12.1. IMPLEMENTATION ON THE CONNECTION MACHINE 191

Figure 12.2: An illustration of how the vector memory is simulated on the Connection

Machine. The virtual vector memory is stored on the front-end computer and contains

pointers to slices of the actual Connection Machine memory.

is implemented using a level of indirection. Each location of a virtual vector memory is a

structure which contains a pointer to a physical location in the Connection Machine mem-

ory where the vector is actually stored (see Figure 12.2). It also contains other information,

including the length and the type of the vector. The virtual vector memory is stored on the

front end computer.

Since the vectors can be longer than the number of processors in the Connection Ma-

chine, each vector might take up many slices of the Connection Machine memory. A vector

of length m on an n processor machine, will require ⌈m/n⌉ slices of memory. Since vectors

in general are not a multiple of n long, the left over n×⌈m/n⌉−m elements are left unused.

The elements within a vector are numbered so that contiguous indices are within the same

processor. For a vector of length m, on a n processor machine, elements 0, ..,(⌈m/n⌉−1)

are in processor 0, elements ⌈m/n⌉ , ..,(2⌈m/n⌉−1) are in processor 1, and so forth.

To implement the vector memory we need some sort of memory management, because

it might be necessary to allocate space in the Connection Machine memory when we write

a vector into the virtual vector memory. If the vector we write is the same length as the

192 CHAPTER 12. IMPLEMENTING PARALLEL VECTOR MODELS

previous vector stored at that location in the virtual vector memory, then we can simply

write over the old version. If, however, the vector is longer, the vector might require more

slices of the Connection Machine memory and not fit in the position it was previously at.

We therefore require some sort of memory management that allocates new space in the

Connection Machine memory when writing into a location of the virtual vector memory,

and that deallocates the space when another vector is overwritten. As with other memory

management systems, this system might have problems with fragmentation of the memory,

and might be required to occasionally relocate vectors. If vectors are allocated on a stack

within the virtual vector memory, the allocation and deallocation is straightforward since

we can keep an analogous stack in the Connection Machine memory and slices of memory

can always be allocated and deleted from the top of the stack.

This general technique of mapping arbitrarily long vectors using a level of indirection

can be used for a much broader class of machines than just the Connection Machine.

12.1.2 The Instructions

We now describe how the instructions of the scan vector model are implemented on the

Connection Machine. The scalar instructions are simply executed on the front end and

therefore need no explanations. All instructions with vector arguments take indices into the

virtual vector memory rather than directly into the Connection Machine memory. When

executed, each instruction calculates how many slices of memory each vector occupies and

loops over these slices. We now describe the each class of instruction.

Elementwise Instructions

The elementwise vector instructions take as input some set of vectors each of the same

length. Based on the length of the vectors and the size of the machine, they calculate how

many slices of CM memory are taken by each vector. They then loop over each slice,

loading the values into each processor from its local memory, executing the particular ele-

mentwise operation and storing the result back into their local memory. The elementwise

instructions never require communication among processors.

Permutation Instructions

The permutation instructions are supported by the routing hardware of the Connection

Machine. The router uses a packet-switched message routing scheme that directs messages

along the hypercube wires to their destinations (see [53] for more details).

The router requires a processor address, and a location within each processor to de-

liver each value. Before executing the route, we must therefore translate the destination

12.1. IMPLEMENTATION ON THE CONNECTION MACHINE 193

indices from the index argument of the permutation instruction into two parts: the proces-

sor address, and the slice number within that processor. This can be executed by dividing

each index by the number of slices, using the result as the processor address, and using the

remainder as the slice number within that processor.

It is important for the permutation instruction that each processor has independent ad-

dressing: different processors can access different locations simultaneously. This is be-

cause when a value arrives at the destination processor, the processor must place it in the

correct slice. The values arriving at different processors might belong in different slices.

The CM-2 has such independent addressing but the CM-1 does not. When there are many

slices the permutation instruction is inefficient on the CM-1.

Another trick used to improve the performance of the permutation instruction is for

each processor to randomly select the elements to be sent from its memory rather than to

serially loop over them. This prevents the problem of having many elements in one slice

going to a single processor and congesting the routing hardware.

Scan Instructions

The scan instructions are implemented on the Connection Machine using a mix of the bi-

nary tree and hypercube algorithms described in Chapter 13. The implementation uses the

same hypercube wires as the router but does not use the routing hardware. The technique

described in Section 3.7 is used when there are multiple memory slices.

Vector-Scalar Instructions

The insert and extract instructions are executed by translating the index argument of

the instructions into a processor and slice number. This can be executed on the front end.

The Connection Machine then selects the correct processor by broadcasting the processor

address and having each processor compare itself to the address. Once a processor is

selected, the value is read (extract) using the global-or wire, or written (insert) by

broadcasting the value to the selected processor. Since the value will belong to a single

slice, we need only do this for the appropriate slice.

The distribute instruction is implemented by allocating the appropriate number of

slices on the front end and then broadcasting the value to be distributed to all the slice.

12.1.3 Optimizations

This section describes some optimizations that can improve the performance of the scan

vector primitives on parallel machines. These are straightforward generalizations of op-

timizations considered by researchers involved with implementing compilers for APL [1,

194 CHAPTER 12. IMPLEMENTING PARALLEL VECTOR MODELS

85, 52, 30]. The optimizations discussed all involve viewing the vector instructions in a

wider context and changing the execution of each instruction based on this wider context.

Further generalization of this work is an interesting topic for future research.

The first optimization we consider is based on the dragthrough optimization suggested

by Abrams [1]. Consider the expression, D← (A+B)× (A−C), in which all the vari-

ables are vectors. The standard way to evaluate this in a vector model would be to add

the two vectors A and B into a temporary vector, subtract the two vectors A and C into

another temporary vector and then multiply the two temporary vectors. Let us now con-

sider the case that the vectors are long vectors (have more elements than processors): let’s

say that the vectors are of length m and there are p processors. In this case, when looping

over the slices, instead of completely executing the two subexpressions before multiplying

them, we could execute the whole expression for each slice—the looping could be moved

from inside each vector operation to outside the whole expression. This transformed rou-

tine would require 2 temporary slices of the Connection Machine memory instead of the

2⌈m/p⌉ required by the original routine. It might also be possible to optimize the trans-

formed routine by keeping each slice of A in a local register for both the first and second

subexpression.

We now consider a variation of the dragthrough optimization. Consider taking the

outer-product of two vectors and then reducing along the second dimension. If the two

original vectors are of length m1 and m2, the final result will be of length m1. The inter-

mediate result of the outer-product, however, contains m1 ×m2 elements. If this operation

is simulated on p processors, and p < m1 ×m2, the required temporary memory can be

reduced to O(p) by generating p elements of the outer product at a time and reducing this

part along the way. This particular case is an example of a broad range of cases in which

very large intermediate results need not be generated if the code is viewed in a wider con-

text. This optimization in its full generality is much more complicated to implement than

the simple expression-dragthrough optimization.

As a final optimization, consider the select-permute primitive when the default vec-

tor, D, is much larger than the data vector. The select-permute primitive is defined so

that instead of side effecting D, it makes a new copy with the inserted elements. To do

this, the select-permute primitive might copy all the elements of D even though few

of them have been changed. To avoid executing this potentially large copy, an optimizer

might notice that the old vector D is never used again, so even though conceptually a new

vector is being created, the implementation could just side effect D. Such an optimization

is often used by compilers for functional languages. As with the other optimizations, this

optimization requires that a compiler looks at the vector instructions in context.

12.2. SIMULATING ON P-RAM 195

Slices Instruction

p+ permute +-scan extract

1 20 500 500 30

4 68 2100 620 30

16 260 8800 1100 30

64 1030 35000 3000 30

Table 12.1: Running times for a selection of primitives (one from each class). The times

are for the CM-2 and are in microseconds. The times are all for 32-bit values.

12.1.4 Running Times

Table 12.1 tabulates the running times of some of the instructions of the scan vector model

when executed on the Connection Machine (CM-2). The times are given for various dif-

ferent numbers of slices.

12.2 Simulating on P-RAM

In this section we discuss how the scan vector model can be simulated on a synchronous

P-RAM. We show that a scan vector algorithms with a step complexity of s and an element

complexity of e, can execute on a p processor EREW P-RAM with scan primitives with a

time complexity t =O(e/p+ s). We first prove a more general theorem and then prove the

specific case. The general theorem is a variation of Brent’s scheduling principle [28] for

the simulation of circuits on the P-RAM model.

Theorem 3 If all the instructions of a V-RAM V for vectors of length l can be simulated

on some P-RAM P with p processors with asymptotic complexity

t = O(⌈l/p⌉) , (12.1)

then any algorithm for V with an element complexity of e, and a step complexity of s, can

be simulated on P with asymptotic complexity

t = O(e/p+ s) . (12.2)

Proof: Let us denote the length of the vectors used on step i of the algorithm as li. By

definition,

e=
s−1

∑
i=0

li . (12.3)

196 CHAPTER 12. IMPLEMENTING PARALLEL VECTOR MODELS

The total time taken to simulate the algorithm on P is just the sum over the time of each

step. Using equations 12.1 and 12.3, this is:

t = O

(
s−1

∑
i=0

⌈
li

p

⌉)

= O

(
s−1

∑
i=0

(

1+
li

p

))

= O

(

s+
1

p

s−1

∑
i=0

li

)

= O

(

s+
e

p

)

(12.4)

�

We now show the specific case.

Theorem 4 Any scan vector algorithm with an element complexity of e and a step com-

plexity of s, can be simulated on a synchronous EREW P-RAM with scan primitives with

asymptotic complexity

t = O(e/p+ s) . (12.5)

Proof: We only need to show that equation 12.1 is true for simulating all the instructions

of the scan vector model on a synchronous EREW P-RAM with scan primitives. In Sec-

tion 3.7 we already showed this for the elementwise, scan, and permutation instructions.

The simulation involved assigning each processor to a block of elements and looping over

the elements in the block. We are left with the scalar and vector-scalar instructions. To

implement the scalar instructions we dedicate an additional P-RAM processor to act as the

scalar processor. The extract and insert vector-scalar instruction only require that the

dedicated scalar processor executes a read or a write into the vector. The distribute

scalar-vector instruction can be implemented with a copy operation (see Section 3.4). We

have therefore covered all the instructions. �

Chapter 13

Implementing the Scan Primitives

This chapter discusses many practical issues involved with implementing the scan prim-

itives on parallel hardware. It defines a circuit, at the logic level, for implementing two

primitive scan operations: a +-scan and a max-scan on unsigned integers. It shows that

all the other scan operations used in this book can be implemented with these two primitive

scan operations. The most interesting of these is the implementation of the floating-point

+-scan. The chapter also illustrates how some of the other scan operations, such as the

segmented scans, can be implemented directly rather than being simulated. A direct im-

plementation of these scans is likely to execute in half the time as a version based on the

two primitives.

13.1 Unsigned +-Scan and Max-Scan

This section introduces a practical circuit for implementing unsigned integer versions of the

+-scan and max-scan operations. It starts by reviewing the standard tree implementation

of the scan operation [80, 65, 41, 72], and then shows specifics of what hardware is needed

at each unit of the tree to implement the two primitive scans, and argues that an actual

implementation is very practical.

These two scan primitives can be used to implement all eight scan instructions of the

scan vector model (the or-scan and and-scan on boolean vectors, and the +-scan,

max-scan and min-scan on both integer and floating-point vectors). All but the floating-

point +-scan involve simple bit manipulations. An unsigned min-scan can be imple-

mented by inverting the source, executing a max-scan, and inverting the result. The signed

versions of all the scans can be implemented by inverting the sign bit, executing the un-

signed version, and inverting the sign bit of the result. The floating-point max-scan and

197

198 CHAPTER 13. IMPLEMENTING THE SCAN PRIMITIVES

Figure 13.1: Parallel scan on a tree using the operator “+”. The number in the block is the

number being stored in the memory on the up sweep.

min-scan can be implemented by flipping the exponent and significant if the sign bit is

set, executing the signed version, and flipping the exponent and significand of the result

back based on the sign bit. The or-scan and and-scan can be implemented with a 1-bit

max-scan and min-scan respectively. The implementation of the floating-point +-scan

is described in Section 13.3.

13.1.1 Tree Scan

Before describing details on how a circuit is implemented, we illustrate a general technique

for implementing the scan operation on a balanced binary tree for any binary associative

scan operator ⊕. The technique consists of two sweeps of the tree, an up sweep and a down

sweep, and requires 2 lgn steps. Figure 13.1 shows an example. The values to be scanned

start at the leaves of the tree. On the up sweep, each unit executes ⊕ on its two children

units and passes the sum to its parent. Each unit also keeps a copy of the value from the left

child in its memory. On the down sweep, each unit passes to its left child the value from

its parent and passes to its right child ⊕ applied to its parent and the value stored in the

memory (this value originally came from the left child). After the down sweep, the values

at the leaves are the results of a scan.

If the scan operator ⊕ can be executed with a single pass over the bits of its operand,

such as integer addition and integer maximum, the tree algorithm can be bit pipelined. Bit

13.1. UNSIGNED +-SCAN AND MAX-SCAN 199

pipelining involves passing the operands one bit at a time up the tree so that when the

second level is working on bit n the first level works on bit n+ 1. Such bit pipelining can

greatly reduce the hardware necessary to implement the scan operations since only single

bit logic is required at each unit.

As an example of how bit pipelining works, we consider a bit-pipelined version of

+-scan for n, m bit integers. This bit-pipelined scan starts by passing the least significant

bit of each value into the leaf units of the tree. Each unit now performs a single bit addition

on its two input bits, stores the carry bit in a flag, propagates the sum bit to its parent in the

next layer of units, and stores the bit from the left child in an m bit memory on the unit. On

the second step, the scan passes the second bit of each value into the leaf units of the tree

while it propagates the least significant bit of the sums on the first layer, to the second layer.

In general, on the ith step, at the jth layer (counting from the leaves), the (i− j)th bit of the

sum of a unit (counting from the least significant bit) gets propagated to its parent. After

m+ lgn steps, the up sweep is completed. Using a similar method, the down-sweep is also

calculated in m+ lgn steps. The total number of steps is therefore 2(m+ lgn). The down

sweep can actually start as soon as the first bit of the up sweep reaches the top, reducing

the number of steps to m+2lgn.

13.1.2 Hardware Implementation of Tree Scan

We now discuss in more detail the hardware needed to implement the bit-pipelined tree

scan for the two primitive scan operations +-scan and max-scan. In Section 13.2 we

consider what additional hardware is needed to implement some of the other scans directly,

such as the segmented scans.

Figure 13.2 shows an implementation of a unit of the binary tree. Each unit consist

of two identical state machines, a variable-length shift register and a one bit register. The

control for a unit consists of a clock, a clear signal, and an operation specification, which

specifies whether to execute a +-scan or a max-scan. The control signals are identical

on all units. The units are connected in a balanced binary tree, as shown in Figure 13.1,

with two single bit unidirectional wires along every edge.

The shift register acts as a first in first out buffer (FIFO), with bits entered on one end

and removed from the other. One bit is shifted on each clock signal. The length of the

register depends on the depth of the unit in the tree. A unit at level i from the top needs a

register of length 2i bits. The maximum length is therefore 2 lgn bits. The length of the

shift register can either be hardwired into each unit, in which case different levels of the

tree would require different units, or could be controlled by some logic, in which case all

units could be identical, but the level number would need to be stored on each unit.

The sum state machine consists of three bits of state and a five input, three output

200 CHAPTER 13. IMPLEMENTING THE SCAN PRIMITIVES

Figure 13.2: Diagram of a unit needed to implement the tree algorithm. It consists of

a shift register (which acts as a first in first out buffer), a one bit register (a D type flip-

flop), and two identical sum state machines. These units are arranged in a tree as shown in

Figure 13.1.

combinational logic circuit. Figure 13.3 shows its basic layout and the required logic. The

Op control specifies whether to execute a +-scan or a max-scan. Two bits of state are

needed for the max-scan to keep track of whether A is greater, equal or lesser than B (if

Q1 is set, A is greater, if Q2 is set, B is greater). The +-scan only uses one bit of state to

store the carry flag (Q1). The third bit of state is used to hold the output value (S) for one

clock cycle.

To execute a scan on a tree of such units, we reset the state machines in all units with

the clear signal and set the Op signal to execute either a +-scan or max-scan. We must

tie the parent input of the root unit low (0). We then simply insert one bit of the operand

at the leaves on each clock cycle. In a max-scan the bits are inserted starting at the most

significant bit, and in a +-scan the bits are inserted starting at the least significant bit.

After 2 lgn steps, the result will start returning at the leaves one bit on each clock cycle.

We do not even need to change anything when going from the up sweep to the down sweep:

when the values reach the root, they are automatically reflected back down since the shift

register at the root has length 0. The total hardware needed for scanning n values is n−1

shift registers and 2(n−1) sum state machines. The units are simple so it should be easy

to place many on a chip.

Perhaps more importantly than the simplicity of each unit is the fact that the units are

organized in a tree. The tree organization has two important practical properties. First,

13.1. UNSIGNED +-SCAN AND MAX-SCAN 201

For max-scan For +-scan

D1 = Op(Q1 +BAQ2) + Op(AB+AQ1 +BQ1)

D2 = Op(Q2 +ABQ1)

D3 = Op(BQ1 +AQ2) + Op(A⊕B⊕Q1)

Figure 13.3: Diagram of the sum state machine. It consists of three d-type flip-flops and

some combinational logic. If the signal Op is true, the circuit executes a max-scan. If the

signal Op is false, the circuit executes a +-scan. In the logic equations, the symbol ⊕ is

an exclusive-or, and the symbol + is an inclusive-or. This state machine fits into a unit as

shown in Figure 13.2.

202 CHAPTER 13. IMPLEMENTING THE SCAN PRIMITIVES

only two wires are needed to leave every branch of the tree. So, for example, if there are

several processors per chip, only a pair of wires are needed to leave that chip, and if there

are many processors on a board, only a pair of wires are needed to leave the board. Second,

a tree circuit is much easier to synchronize than other structures such as grids, hypercubes

or butterfly networks. This is because the same tree used for the scans can be used for clock

distribution. Such a clock distribution gets rid of the clock skew problem1 and makes it

relatively easy to run the circuit extremely fast.

13.1.3 An Example System

We now consider an example system to show how the scan circuit might be applied in

practice. We consider a 4096 processor parallel computer with 64 processors on each

board and 64 boards per machine. To implement the scan primitives on such a machine,

we could use a single chip on each board that has 64 inputs and 1 output and acts as 6 levels

of the tree. Such a chip would require 126 sum state machines and 63 shift registers—such

a chip is quite easy to build with today’s technology. We could use one more of these chips

to combine the pair of wires from each of the 64 boards.

If the clock period is 100 nanoseconds, a scan on a 32 bit field would require 5 mi-

croseconds. This time is considerably faster than the routing time of existing parallel com-

puters such as the BBN Butterfly or the Thinking Machines Connection Machine. With a

more aggressive clock such as the 10 nanoseconds clock being looked at by BBN for the

Monarch2 [6], this time would be reduced to .5 microseconds—twice as fast as the best

case global access time expected on the Monarch.

In most existing and proposed tightly connected parallel computers [53, 86, 6, 102],

the cost of the communication network is between 1/3 and 1/2 the cost of the computer. It

is unlikely that the suggested scan network will be more than 1% of the cost of a computer.

13.2 Directly Implementing Other Scans

Although all the scans used in this book can be implemented with a small number of calls

to the two primitive scans, in practice it might be beneficial to implement some of them

directly; the direct implementation can save at least a factor of two in the execution time

of the operations. In this section we look at the additional hardware needed to implement

the backward scans and the segmented scans directly.

1When there are many synchronous elements in a system, the small propagation time differences in different

paths when distributing the clock signals can cause significant clock time differences at the elements.
2Because of the tree structure, it would actually be much easier to run a clock at 10 nanoseconds on a scan

network than it is for the communication network of the Monarch.

13.2. DIRECTLY IMPLEMENTING OTHER SCANS 203

13.2.1 Backward and Segmented Scans

To implement the backward scans directly, each node only needs the capability of switch-

ing its left and right child. This capability requires four 1-bit multiplexers—one for each

child input, and one for each child output. A 1-bit multiplexer consists of two and gates

and an or gate. To simulate backward scans using only forward scans requires a permute,

which might be expensive. Since the simulation might be expensive, backward scans are

used frequently, and the hardware required to implement them is minimal, in a real system

the backward scans should be implemented directly.

Implementing the segmented scans directly is conceptually slightly more involved but

requires little additional hardware. The solution we suggest only involves changing the

sum state machine on each unit by adding a few terms to the logic and a single bit of state.

In this solution, the segment bit is appended as the first bit on the values to be scanned and

therefore requires no extra wiring.

We first present a general technique for executing segmented scans and then show how

this technique can be applied to our circuit. A segmented version of a scan for any binary

associative operator ⊕ can be implemented using an unsegmented scan on a new operator

⊕s [101]. Each argument to this new operator is a pair of values—the value to be scanned

and a segment flag. The new operator is associative but not commutative, and is defined in

terms of the original operator as follows:

define ⊕s(a, b){
flag ← flag(a) or flag(b);

value ← if flag(b)

then value(b)

else value(a) ⊕ value(b);}

The segmented scan is therefore implemented by passing around segment-value pairs and

using the modified operator to sum them.

To use the technique on our circuit, we can pass the segment-value pair by appending

the segment bit to the front of the value. We also need to append an additional header bit

to the front of the segment, value pair. The header bit is always set to 1 and is used to tell

the state machine that the next bit should be interpreted as a segment bit. As this header bit

travels up the tree—one level on each step—it starts up all the state machines at that level

when it reaches them.

Implementing the segmented versions of +, andmax (+s andmaxs) involves modifying

the sum state machine. The new sum state machine requires an extra bit of state and the

combinational logic needs to be slightly more complicated. Figure 13.4 shows the state

diagram for the new sum state machine. Generating the logic equations from the state

diagram is straightforward.

204 CHAPTER 13. IMPLEMENTING THE SCAN PRIMITIVES

Figure 13.4: The state diagram for a segmented max-scan. The state machine stays in

state 0 until a 1 comes along on either input. This 1 is the header bit and is used to specify

that the next bit is the segment bit. If the next bit of the right child (b) is 1, then the state

machine goes into state 2 and henceforth outputs b. If the the bit is a 0, then it goes into

state 3 and outputs the maximum of a or b. The states 3, 4 and 5 are identical to the states

of the unsegmented version. The clear control signal brings the machine back to state 0.

13.3. FLOATING-POINT +-SCAN 205

13.2.2 Multidimensional Grid Scans

The grid scans can be implemented directly also. This can significantly increase perfor-

mance on algorithms based on dense matrices such as many discussed in Chapter 8. We

are not going to discuss in detail how implemented but refer the reader to [4]. Because they

require a more complex network, grid scans are inherently more expensive, and in general

should not be expected to run as fast as one dimensional scans. They, however, should still

run faster than general memory references.

13.3 Floating-Point +-Scan

In this section we discuss how a floating-point +-scan can be simulated with the two

primitive scans. As mentioned at the beginning of the chapter, floating-point +-scan is

the only one of the eight scan operations that involves more than trivial bit manipulations.

One problem with implementing a floating-point +-scan is that the floating-point +

operator applied to fixed-precision floating-point numbers is not truly associative. For

example, with single-precision IEEE floating-point numbers,

1.0e10+(−1.0e10+1.0) = 0

whereas

(1.0e10+−1.0e10)+1.0 = 1.0 .

The goal for an implementation of floating-point +-scan on fixed-precision floating-point

numbers is to return results which are as close as possible to the results that would be

returned by using infinite-precision floating-point numbers.

In implementing a floating-point +-scan we are mostly concerned with the accuracy

of the +-reduce built from the +-scan. This is because the floating-point +-scan is

used almost exclusively to implement a +-reduce.3 We will show that the technique we

describe returns quite accurate results when used to implement a floating-point +-reduce.

It returns a sum that is at most one bit off in the lowest bit of the significand from the

results given by summing the values into an infinite-precision accumulator. This result

is significantly better than the result given by serially summing a set of values into an

accumulator which has the same precision as the numbers themselves.

The basic idea of the technique is to denormalize all numbers based on the maximum

exponent, to use an unsigned +-scan on these denormalized values, and then renormal-

ize the results. The following discussion assumes a signed magnitude representation of

3The only direct use of a floating-point +-scan I have come across is for block filtering [71].

206 CHAPTER 13. IMPLEMENTING THE SCAN PRIMITIVES

floating-point numbers. We use the symbol e for the exponent of each number, and the

symbol m for the significand.

1. Find the maximum exponent and distribute it to all the elements of the vector.

This can be executed with a max-distribute. We will refer to the result as emax.

2. For each element, denormalize the significand relative to emax.

This consists of exposing the hidden bit and shifting the bits of each significand right

by emax−e. If the vector is of length n, and the significand is d bits, we denormalize

into a bit field of size d+ lgn bits. This extra lgn is important. If

(emax− e) > lgn,

some bits are dropped.

3. Invert the negative numbers so that they are in signed integer representation.

4. Apply a signed +-scan to these integers.

5. Invert the negative numbers of the result so that all numbers are again in signed

magnitude representation.

6. Renormalize each number, again relative to emax.

To implement a floating-point +-reduce directly, an integer +-reduce can be used in

step 4 instead of the integer +-scan.

Theorem 5 The result of a floating-point+-reduce implemented as described is accurate

to within one bit in the least-significant bit of the significand (relative to emax).

Proof: The inaccuracy of the total sum is at most the difference between the maximum

and minimum possible sum of the lost bits—the bits that get shifted off the end when

the numbers are denormalized. Since we are adding n values, and the padding region

is of length lgn, the sum of the lost bits cannot reach into the significand region (see

Figure 13.5). This sum, therefore, cannot affect the significand relative to emax by more

than one bit. �

If there is a balance of negative and positive values, the leftmost nonzero bit might be

within the left line. In this case, the loss of accuracy relative to the final exponent (rather

than emax) could be more than a bit. This problem with a balance of positive and negative

numbers appears in almost all schemes for adding floating-point values (see the example

at the beginning of the section).

13.3. FLOATING-POINT +-SCAN 207

Figure 13.5: An illustration of the accuracy of a floating-point +-reduce. When we

denormalize in step 2 each significand gets shifted to the right by the difference of the

maximum exponent and their exponent. Numbers with an exponent more than lgn less

than the maximum exponent, will have some of their bits pushed over into the lost bits

region, which, in our algorithm, will be dropped. At the bottom, we show the maximum

and minimum possible values of the sum of all the lost bits if we had kept them.

208 CHAPTER 13. IMPLEMENTING THE SCAN PRIMITIVES

Chapter 14

Conclusion

This book introduced the parallel vector models. These models served both as algorithmic

models on which to analyze the complexity of parallel algorithms and as a virtual machine

model on which to compile high-level languages.1 From the algorithmic side, the book

showed how a broad set of algorithms—including sorting, graph, computational-geometry,

and numerical algorithms—can be implemented and analyzed on parallel vector models.

From the virtual machine side, the book showed how a high-level language, PARALATION

LISP, can be compiled onto the instruction set of a parallel vector virtual machine. The

book also showed how a parallel vector model can be implemented on a real machine,

the Connection Machine, and how it can be simulated on another algorithmic model, the

P-RAM model.

The parallel vector models obliterate the view of a parallel model as a set of indepen-

dent communicating serial processors, and instead treat parallel operations as inseparable

operations over collections of values. Treating operations as inseparable is similar to the

way word operations are treated in the serial RAM model. The RAM model does not treat

word operations, such as the additions of two words, in terms of a set of single-bit units

and the logic operations among those units, but instead treats them as inseparable atomic

operations. As the serial RAM model is a higher-level model than models based on manip-

ulating bits, such as a Turing machine, the parallel vector models are higher-level models

than parallel models based on a set of communicating serial processors, such as the P-RAM

model. I claim that this higher level makes algorithms implemented on the parallel vector

models easier to describe, program and analyze; on the other hand, understanding parallel

1When trying to understand the motivation for having a model that naturally serves both purposes, keep in

mind that part of reason for success of the serial RAM model as an algorithmic model was that it closely modeled

the instruction sets of real machines and therefore the target code of real compilers.

209

210 CHAPTER 14. CONCLUSION

vector models involves a new mind-set—a mind-set that takes some effort to accept and

only slips into place once the pieces are together.

The remainder of this conclusion contains a section listing the contributions of this

book, a section on directions for future research, a section on implementation goals, and a

section describing how the ideas in this book developed.

14.1 Contributions

The contributions of this book, by part, can be summarized as follows:

Models

• A formal definition of the parallel vector models, the complexity measures that ac-

company the models, and an illustration of the power of the models. The models

were defined in Chapter 2 and their power was illustrated throughout the book.

• A careful analysis of the consequences of including a set of scan operations as “unit

time” primitives in the P-RAM models. Section 3.1 summarized these consequences.

Every algorithm in this book used the scan primitives is some way.

• The definition of segmented versions of all the instructions of a vector model, and

an illustration of the broad applicability of these segmented instructions. The seg-

mented versions of the instructions of the scan vector model were defined in Sec-

tion 4.3 and the applicability was illustrated throughout the book.

Algorithms

• The definition of how graphs and trees can be mapped onto vectors so that they can

be efficiently manipulated by the primitive vector operations. Also, the definition of

a set of operations on these data structures (Chapter 5).

• The definition of many algorithms and algorithmic techniques. The most original

algorithms included the halving-merge (Section 3.7.2), the minimum-spanning-tree

(Section 7.1), and the binary-search (Section 6.1) algorithms.

Languages

• A careful comparison of the collection-oriented languages by placing them in a uni-

fied framework based on the collection types and the collection operations they sup-

ply (Chapter 9).

14.2. DIRECTIONS FOR FUTURE RESEARCH 211

• The definition and proof of the replicating theorem and the formal presentation of

the notions of replicating and flattening nested parallelism (Chapter 10). Also, the

introduction of the branch-packing technique and of contained programs.

• The implementation of the PARALATION LISP compiler (Chapter 11). The interest-

ing techniques used by the compiler included the simple implementation of nested

parallelism with the stepping-up and stepping-down manipulations.

Architecture

• The implementation of the parallel vector models on the Connection Machine and

the simulation on the P-RAM (Chapter 12).

• The definition of a logic circuit to implement both the unsegmented and segmented

versions of the +-scan and max-scan operations on unsigned integers (Chap-

ter 13).

• The implementation of the segmented versions of the scan primitives with a constant

number of calls to the unsegmented versions (Section B.2.3).

• The implementation of the floating-point +-scan with the unsigned version of the

+-scan and max-scan primitives (Section 13.3).

14.2 Directions for Future Research

This section outlines some directions for future research on topics related to this book.

Modifying the model to include locality: The assumption in the scan vector model that

all permute operations on equal length vectors take equal time, as with the assumption

in the serial RAM model that all memory references take equal time, has a problem in

practice—the assumption ignores locality. In real machines, certain local communication

patterns will always be faster than other non-local patterns. Aggarwal, Chandra and Snir

have proposed models for taking account of locality in the serial RAM models [2] and

suggested that the models could be extended to the P-RAM models. Ideas from these

models might be transferred in the parallel vector models. Leiserson and Maggs have also

proposed parallel models that take account of locality [69, 70]. These ideas might again be

transferred to the parallel vector models.

Analyzing how wide serial control can be stretched: As mentioned in Section 2.2, al-

most all algorithms found in the literature can be mapped efficiently onto machines or

212 CHAPTER 14. CONCLUSION

models with serial control. But what about real world problems? What about compilers,

text formatters and database applications? I believe that with the replicating theory in hand,

many of these problems can be mapped naturally onto serial control. This, however, needs

to be backed up with solid evidence. A careful study of a broad range of applications to

see if they can be mapped onto serial control would be very useful.

Modifying the model to include parallel control: An interesting machine to consider is

a machine with multiple control streams each of which controls a parallel vector machine.

What would such a machine be useful for? Would it only allow a fixed number of control

streams or could the number of control streams change dynamically? Could it allocate

control streams like the elements of a vector in the parallel vector models? How would

data from different control streams interact?

Analyzing various language features: Should a collection-oriented language be strongly

typed? Should it include dynamic allocation? Should it be functional? Should it allow

the user to access lower lever features such as the segmented scans? The fact that the

languages manipulate whole collections might enhance different choices than for standard

serial language. One important observation is that since the operations operate on large sets

of data, the relative cost of dynamic type checking and memory allocation is lower than

for serial languages—the checks and allocation only have to be applied once per collection

instead of once per scalar.

Analyzing various parallel vector instructions: As discussed in Chapter 4, the parallel

vector models permit a broad range of primitives. There are many interesting question

regarding the selection of a set of primitives. How do various primitives affect the com-

plexity of various algorithms? What is the complexity of simulating one set of primitives

with another?

Modifying the model for the benefit of small changes to large data sets: In a parallel

vector model, if a small number of changes are made distributed over a large data set, the

cost (the element complexity) is proportional to the size of the large data set. Is this an

accurate measure? Should the element complexity always be proportional to the longest

vector when vectors of greatly different length are involved in a vector operation?

14.3 Implementation Goals

This section lists some future implementation goals. The purpose of these goals is both to

give stronger support to the claims made in this book and to make available to the research

community systems on which to write parallel algorithms and to have those algorithms run

14.4. DEVELOPMENT OF BOOK IDEAS 213

on a broad variety of machines.

To implement the scan vector instruction set on more machines: I am currently in the

process of implementing it on the Cray X-MP and am looking at possibly implementing

it on a iWarp [25]. To get a broad range of machines, the instruction set should also be

implemented on some coarse grained parallel machines, such as the Encore Multimax and

Alliant FX, and on some hypercube machines such as the Intel iPSC/2, and optimized

versions of the instruction set should be implemented on various serial machines.

To collect more timing comparisons: It would be interesting to get more data on how the

run-time of algorithms written in a high-level language and compiled through the scan vec-

tor model compare to algorithms optimized for particular machines. This should be tested

over a broad range of algorithms and applications so that application specific deficiencies

of the model might be identified.

To implement a complete Paralation-Lisp compiler: A complete and properly docu-

mented version of the PARALATION LISP compiler would be a very powerful tool that

would allow researchers to quickly implement code to run on parallel machines.

To implement compilers for other languages: A compiler for SETL, for example, would

be very interesting. An important issue that arises when implementing a compiler for lan-

guages such as SETL is how to extract parallelism that is not directly stated. For example,

consider the PARALATION LISP and SETL definitions of quicksort shown in Figure 14.1.

In the PARALATION LISP version, the parallel application of the two quicksorts is explicit

in the elwise, whereas in the SETL version, a compiler would need to extract the two

quicksorts and schedule them to be applied together.

Implementing a broader range of applications: Although this book describes many al-

gorithms, it does not describe any full applications. Paul Resnick is currently implementing

a simple text formatter using the scan vector instruction set. It would also be interesting to

implement a compiler, some database applications, and other commonly used applications.

14.4 Development of Book Ideas

It is important to outline the history of the ideas in a dissertation so that the casual reader

can understand the motivation, the admirer can understand the methodology, and the skep-

tic can understand where the research went astray. This section presents such an history of

the ideas in this book (the book is a slightly modified version of my Ph.D. dissertation).

While employed at Thinking Machines during the summer of 1985, Abhiram Ranade

214 CHAPTER 14. CONCLUSION

(defun quicksort (keys)

(if (< (value-count keys) 2)

keys

(let* ((pivot (elt keys 1))

(side (elwise (keys)

(if (< keys pivot) 0

(if (= keys pivot) 1 2))))

(piles (collect keys :by (match (make-paralation 3)

side))))

(expand (elwise ((pile piles))

(quicksort pile))))))

Quicksort in PARALATION LISP

proc quicksort(keys),

if #keys < 2

then return keys

else pivot := keys(1);

lesser-pile := [keys: keys = t(i)| keys < pivot];

equal-pile := [keys: keys = t(i)| keys = pivot];

greater-pile := [keys: keys = t(i)| keys > pivot];

return quicksort(lesser-pile) + equal-pile +

quicksort(greater-pile);

end;

end proc quicksort;

Quicksort in SETL

Figure 14.1: The code for quicksort in PARALATION LISP and in SETL.

14.4. DEVELOPMENT OF BOOK IDEAS 215

and I implemented the enumerate instruction (see Section 4.2) as part of the original in-

struction set of the Connection Machine (CM-1). The instruction was seen as useful to

implement the cons instruction, used to allocate elements to unused processors (see [31]).

While implementing the enumerate instruction, I realized that it would run faster than

the send instruction, used to communicate among processors. I also realized that with

small modifications of the code used for the enumerate instruction, I could implement

a general +-scan and max-scan instruction; so in January of 1986 I did. On top of

these two instructions I implemented the min-scan, or-scan, and and-scan, and also

implemented the segmented versions and the floating point versions of the scans. These

were implemented as described in Chapter 13 and Appendix B. I also implemented the

split radix sort described in Section 3.4.1 which is currently the sort supplied by the CM-1

and CM-2 instruction set. With the support of Guy Steele, the scan instructions and the sort

were added to the instruction set of the CM-1 before the first CM-1 was delivered during

the summer of 1986.

During the summer of 1986, other people and I found a great number of uses for the

scan instructions. Often the instructions lead to great performance benefits for applications.

For example, we sped up a SPICE circuit simulator, a network learning algorithm [23],

a rule based system [17, 18], and several numerical tasks such as a linear systems solver.

During the year the idea of segments and segmented scans also became very popular among

Connection Machine programmers and I implemented a set of utilities on top of *LISP [66]

(the most commonly used Connection Machine language) for dealing with segments.

I then made my first attempt at abstracting the idea of a scan primitive away from the

Connection Machine to see if applied to a broader class of machines. I realized that the

scan primitive, under almost any practical assumptions, on any reasonable architecture,

would always be cheaper to implement and run faster than a permutation primitive. In

this first attempt on abstracting this observation, I basically took the P-RAM model and

included on top of it a set of “unit-time” scan primitives [19, 20]. Based on this model I

showed how the asymptotic running time of many P-RAM algorithms could be improved

by a O(lgn) factor [22].

The CM software environment at this time supported so called “virtual processors”.

The idea of virtual processors was that the user could specify the number of processors

they wanted, and if that many physical processors were not available, the software would

simulate them by time slicing each physical processor. The problem with virtual processors

was that the number of processors needed to be specified at cold boot time, and in many

applications, the number of processors needed would change dynamically and frequently.

To resolve this problem, in January of 1987 I suggested what I now call parallel vector

models. Jim Salem and Guy Steele also suggested changes to the environment to resolve

the same problem. Cliff Laser took the various ideas, added more of his own and made a

216 CHAPTER 14. CONCLUSION

specification for a new model of “virtual processors”, which has now been implemented.

This specification was a compromise among the various ideas and is not exactly the parallel

vector model described in this book, but for most practical purposes is the same. The main

difference is that vectors of the same length are grouped into so called virtual processor

sets. After suggesting the parallel vector models, I realized that the scan primitives would

fit much better into a parallel vector model than into the P-RAM model. This was mainly

because the scans imply a single source of control: all processors (elements) must be

executing a scan operation at the same time.

Having spent a lot of time implementing algorithms and applications I had become

quite interested in parallel languages—I wanted to reduce the time required to implement

applications and algorithms on the Connection Machine. A language issue that particularly

interested me, since it had turned up over and over again, was what I call nested parallelism.

Up to this point, the notion of segments had been used to implemented nested parallelism

on the Connection Machine. Maintaining segments, however, required a lot of work on the

programmers part and often makes programs hard to debug. On the other hand, the two

languages PARALATION LISP and CM-LISP both allowed the direct expression of nested

parallelism, but, unfortunately, neither of their implementations took advantage of it: they

would run each subcollection in parallel but serially loop through the subcollections. I

wanted to merge the ideas of nested parallelism and segments.

During the summer of 1987 I implemented a compiler for a subset of PARALATION

LISP which would map nested parallelism onto segments thus alleviating the programmer

from having to deal with the segments themselves, but yet would take full advantage of the

expression of nested parallel expressions. While implementing the compiler, I realized that

if I organized things correctly I would only need to implement a single version of all the

operators regardless if used in a nested call or not. This is where the replicating theorem

originated.

Many of the ideas in this book were cleaned up over the next year while I was orga-

nizing and writing my dissertation. Since the dissertation, the following has been changed

for this book: (1) I rewrote the introduction; (2) I added the section on containment in

Chapter 10; and (3) I added the preface and the index. These changes were made during

my first year at Carnegie Mellon.

Appendix A

Glossary

Access-Fixed Code: Code that uses on any but three of the scan vector instructions: the

cond-jump, move-scalar and move-vector instructions.

Access-Restricted Code: Code that uses on the scan vector instructions that abides by

some restrictions on the use of the cond-jump, move-scalar and move-vector

instructions.

Backward Scan: A scan operation that starts at the last element of a vector and goes to

the first.

Collection: A group of elements viewed as a whole.

Collection Oriented: When used to refer to an algorithmic model or a language, the term

signifies that the model or language centers around collections of values, and a set

of operations for manipulating the collections as a whole.

Contained Program: A program that satisfies certain rules needed to prove the step com-

plexity bound in the replicating theorem.

Element Complexity: A time complexity measure for the parallel vector models. It is

the sum, over the steps, of the lengths of the vectors manipulated in each step, and

corresponds roughly to the serial complexity.

Element Space Complexity: A space complexity measure for the parallel vector models.

It is the sum of the vector lengths over the locations used in the vector memory.

Elementwise: Signifies applying an operation independently to each of a collection of

elements.

217

218 APPENDIX A. GLOSSARY

Enumerate: An operation that takes an vector of boolean flags and return the integer i to

the ith true element.

Equal Time Assumption: For the parallel vector models, it is the assumption that all

primitives take equal time on equal-length vectors.

Flat Collection: A collection whose elements are all scalars.

Flat Parallel Construct: A scalar operation applied in parallel over a set of elements or

processors.

Flattening: When used to refer to a collection or to parallelism, the term signifies taking

a nested collection or a nested parallel construct and turning into a flat collection or

flat parallel construct.

Grid-Ordered Collection: A multi-dimensionally ordered collection: for a collection

with n elements, each element is associated with a unique vector of d non-negative

integers (the index along each dimension) such that the product of one more than

the maximum integer in each position over the elements (the product of the range of

each dimension) is n. Also called a dense array.

Homogeneous: When used to refer to a vector or collection, the term signifies that all the

elements of the vector or collection are of the same type.

Linear-Ordered Collection: A one dimensionally ordered collection: for a collection

with n elements, each element is associated with a unique integer between 0 and

n−1. Also called a vector.

Long Vector: When used to refer to mapping a vector onto a fixed set of processors, the

term signifies a vector with more elements than there are processors.

Nested Collection: A collection whose elements are all themselves collections.

Nested Parallel Construct: A parallel operation applied in parallel over a set of elements—

each application is itself parallel.

Pack: An operation that takes a vector of n elements and a vector of n flags,m of which are

true (m≤ n). It returns a new vector with m elements such that elements in positions

where a flag was false are removed, and the remaining elements maintain their order.

Parallel Random Access Machine (P-RAM): Defined at the end of the glossary.

Parallel Vector Model: Any of a class of algorithmic models based on a set of operations

on vectors.

219

Prefix Computation: Another name for a scan operation.

Processor-Oriented: When used to refer to an algorithmic model or a language, the term

signifies that the model or language centers around a collection of processors, a set

of local operations on each processor, and a set of operations for communicating

among the processors.

Processor-Step Complexity: In a model with a fixed number of processors, such as the

P-RAM model, it is the number of steps multiplied by the number of processors.

Replicating: A technique for translating a parallel routine that executes an operation on a

set of data, into another routine that executes the same operation over many sets of

data in parallel.

Scan Operation: Another name for a prefix computation.

Scan Vector Model: A parallel vector model with three classes of primitive instructions—

elementwise instructions, scan instructions, and permutation instructions.

Segment Descriptor: A structure used to describe the segmentation of a segmented vec-

tor.

Segmented Vector: A vector that is segmented into contiguous blocks.

Serially Linear Model: A model in which all the primitives are serially linear.

Serially Linear Primitive: A primitive of a parallel vector model that when applied to a

vector of length n will take O(n) time to simulate on a RAM model.

Serially Time Optimal: A parallel vector algorithm whose asymptotic element complex-

ity is equal to the optimal serial algorithm.

Simple Vector: A vector of scalar values.

Step Complexity: The number of steps taken by an algorithm.

Vector: A linear-ordered collection.

Vector Memory: The part of a V-RAM used to store vectors. Also called the virtual

vector memory.

Vector Model: A shortened name for parallel vector model.

Vector Random Access Machine (V-RAM): A machine architecture based on parallel

vector models.

220 APPENDIX A. GLOSSARY

Vector Space Complexity: A space complexity measure for parallel vector

models. It is the number of locations used in the vector memory.

Virtual Vector Memory: The apparent vector memory seen by a user of a V-RAM. This

must be mapped onto a physical vector memory on a real machine.

History of the Scan Operations

A parallel circuit to execute a particular scan operation was suggested by Ofman in the

early 60s [80] to be used to add binary numbers—the following routine executes addition

on two binary numbers with their bits spread across two vectors A and B:

(A⊗B)⊗seg-or-scan(AB,A B)

A general scan operator was suggested by Iverson in the mid 1960s for the language

APL [61].1 A parallel implementation of scans on a perfect shuffle network was suggested

by Stone [109] to be used for polynomial evaluation—the following routine evaluates a

polynomial with a vector of coefficients A and variable x at the head of another vector X :

A××-scan(copy(X))

Ladner and Fisher first showed an efficient general-purpose circuit for implementing

the scan operations [65]. Wyllie first showed how the scan operation can be executed

in parallel on a linked list [120] (this implementation is based on the P-RAM model).

Brent and Kung, in the context of binary addition, first showed an efficient VLSI layout

for a scan circuit [29]. Schwartz [101] and, independently, Mago [74] first suggested the

segmented versions of the scans. More recent work on implementing scan operations in

parallel include the work of Fich [41], which demonstrates a more efficient implementation

of the scan operations, and of Lubachevsky and Greenberg [72], which demonstrates the

implementation of the scan operation on asynchronous machines.

As concerns terminology, scan is the original name given to the operation by Iverson.

Ladner and Fisher introduced the term parallel prefix operation. Schwartz used the term all

partial sums. I find the original term, scan, more concise and flexible—it, for example, can

be used as a verb, as in “the algorithm then scans the vector” or “after scanning twice....”.

1The history of the scan operator in APL is actually quite complex. It did not appear in the original defini-

tion [59], but appears in some but not all subsequent definitions.

221

P-RAMModels

The Parallel-RAM (P-RAM) models [42, 101, 104, 48, 49], also known as shared-memory

models, are probably the most used algorithmic models of parallel computation. As with

the RAM model and the vector models, the P-RAM models are based on a machine ar-

chitecture. The general machine architecture consists of a set of standard RAM (random

access machine) processors connected to a shared memory. Each processor has its own

instruction interpreter, and all processors can read and write to the shared memory. In the

synchronous P-RAM models, it is assumed that all the processors are fed by a global clock.

There are several variations of the synchronous P-RAM models which differ in how

they treat concurrent access to a single memory location. The exclusive-read exclusive-

write (EREW) P-RAM model does not permit concurrent reads or writes to a single loca-

tion in shared memory: it is an error to execute such an operation. The concurrent-read

concurrent-write (CRCW) P-RAM models on the other hand do allow concurrent reads

and writes. The CRCW P-RAM models can be further divided depending on the result

when several values are written to the same location concurrently. Surveys of the varia-

tions can be found in [118, 51]. Probably the most powerful P-RAM model suggested in

the literature is the fetch-and-op P-RAM model (see [50, 49, 93]).

222 APPENDIX A. GLOSSARY

Appendix B

Code

This appendix gives the code for many of the routines described in this book. It includes

the code for (1) the operations defined in Section 4.2, (2) the translations between the

different segment-descriptors described in Section 4.3, (3) the simulation of the segmented

primitives with the unsegmented primitives, (4) the implementation of the pack and flag-

merge needed for implementing the segmented conditionals discussed in Section 10.2, (5)

the simulation of the scan instructions on the two scan primitives discussed in Chapter 13,

and (6) various other routines described in this book.

The code is written in SV-LISP (see Section 11.2) and all the routines in this ap-

pendix have been tested. The only operations or forms used in this appendix which

are not described in Section 11.2 or in the COMMON LISP manual are append-bits,

extract-bits and over-elements. We briefly describe each of these.

The append-bits function takes two integer arguments and lexically appends the bit

representation of one integer to the bit representation of the other. The result is therefore

an integer with twice as many bits. In the implemented version, regular integers use 32

bits, and appended integers use 64 bits. The extract-bits function strips the high bits

off of a long integer leaving only the low bits.

The over-elements form is used to specify that the code inside the form is to be

applied over the elements of a vector. It takes two arguments—a list of bindings and a

body. Each binding is a free variable followed by a vector. All the vectors must be of the

same length. For example, the form:

(over-elements ((element-a vector-a)

(element-b vector-b)

(+ element-a element-b))

223

224 APPENDIX B. CODE

will elementwise add the elements of vector-a and vector-b.

B.1 Simple Operations

;; Converts a vector of boolean flags to ones and zeros.

(defop flag-to-number (flags)

(over-elements ((f flags))

(select-value f 1 0)))

;; Numbers the elements with their flag set to T.

(defop enumerate (flags)

(plus-scan (flag-to-number flags)))

;; Given a length, returns an index vector of that length.

(defop index (length)

(plus-scan (distribute 1 length)))

;; Sums the elements of a vector.

(defop plus-reduce (values)

(+ (extract (plus-scan values) (1- (length values)))

(extract values (1- (length values)))))

;; Finds the maximum element of a vector.

(defop max-reduce (values)

(max (extract (max-scan values) (1- (length values)))

(extract values (1- (length values)))))

;; Finds the minimum element of a vector.

(defop min-reduce (values)

(min (extract (min-scan values) (1- (length values)))

(extract values (1- (length values)))))

;; Counts the number of T flags in a vector.

(defop count (flags)

(plus-reduce (flag-to-number flags)))

;; Given two vectors of pointers and two vectors of values,

;; merges the values into the positions specified by the pointers.

(defop join (v1 p1 v2 p2)

(default-permute

v1

p1

(default-permute

v2

p2

(distribute nil (+ (length v1) (length v2))))))

B.1. SIMPLE OPERATIONS 225

;; Appends two vectors.

(defop append (v1 v2)

(join v1 (index (length v1))

v2 (over-elements ((i (index (length v2)))

(l (distribute (length v1) (length v2))))

(+ i l))))

;; Packs the values from positions where the flags are set to T.

(defop pack (values flags)

(select-permute values

(enumerate flags)

flags

(distribute nil (count flags))))

;; Splits the NIL values to the bottom of a vector and the T values

;; to the top.

(defop split (values flags)

(let ((not-flags (over-elements ((f flags)) (not f))))

(permute values

(over-elements ((h (enumerate flags))

(l (enumerate not-flags))

(f flags)

(o (distribute (count not-flags)

(length values))))

(select-value f (+ h o) l)))))

;; Merges two vectors according to a set of flags.

(defop flag-merge (flags v1 v2)

(let ((indices (index (length flags))))

(join v2 (pack indices flags)

v1 (pack indices (over-elements ((f flags)) (not f))))))

;; Fetches the values from the positions specified by the indices.

(defop i-permute (values indices)

(let ((returnp (index (length indices)))

(default (distribute nil (length values))))

(select-permute

values

(default-permute returnp indices default)

(default-permute (distribute t (length values)) indices default)

indices)))

;; Returns the sum of a vector to all positions of a vector.

(defop plus-distribute (values)

(distribute (plus-reduce values) (length values)))

;; Returns the maximum element to all positions of a vector.

(defop max-distribute (values)

226 APPENDIX B. CODE

(distribute (max-reduce values) (length values)))

;; Returns the minimum element to all positions of a vector.

(defop min-distribute (values)

(distribute (min-reduce values) (length values)))

;; Returns the index of the maximum element.

(defop max-index (values)

(min-reduce

(over-elements ((max (max-distribute values))

(v values)

(l (distribute (length values) (length values)))

(i (index (length values))))

(select-value (= max v) i l))))

B.2 Segments

B.2.1 Useful Utilities

;; Returns a boolean vector of length LENGTH with a T in the first element.

(defop set-first-element (length)

(insert (distribute nil length) t 0))

;; Returns a boolean vector of length LENGTH with a T in the last element.

(defop set-last-element (length)

(insert (distribute nil length) t (1- length)))

;; Returns previous element of a vector; DEFAULT is placed in the

;; first element.

(defop previous (values default)

(select-permute values

(over-elements ((i (index (length values))))

(+ i 1))

(over-elements ((f (set-last-element (length values))))

(not f))

(distribute default (length values))))

;; Returns next element of a vector; DEFAULT is placed in the

;; last element.

(defop next (values default)

(select-permute values

(over-elements ((i (index (length values))))

(- i 1))

(over-elements ((f (set-first-element (length values))))

(not f))

B.2. SEGMENTS 227

(distribute default (length values))))

;; Returns a boolean vector set to T in positions where the value changes.

(defop boundary (values)

(over-elements ((f (set-first-element (length values)))

(p (previous values 0))

(v values))

(simple-or f (/= p v))))

;; Like enumerate but it includes the flag in the sum.

(defop i-enumerate (flags)

(let ((number (flag-to-number flags)))

(over-elements ((enum (plus-scan number))

(f number))

(+ f enum))))

;; A backward version of enumerate: it starts at end.

(defop b-enumerate (select)

(over-elements ((enumerate (enumerate select))

(flag (flag-to-number select))

(total (distribute (count select) (length select))))

(- total (+ flag enumerate))))

B.2.2 Segment Descriptor Translations

(defop head-pointer-from-length (lengths)

(plus-scan lengths))

(defop head-pointer-from-head-flag (head-flags)

(pack (index (length head-flags)) head-flags))

(defop length-from-head-pointer (head-pointers total-length)

(over-elements ((next (next head-pointers total-length))

(this head-pointers))

(- next this)))

(defop length-from-head-flag (head-flags)

(length-from-head-pointer

(head-pointer-from-head-flag head-flags)

(length head-flags)))

(defop head-flag-from-head-pointer (head-pointers head-pointer-flags

total-length)

(select-permute

(distribute t (length head-pointers))

head-pointers

head-pointer-flags

228 APPENDIX B. CODE

(distribute nil total-length)))

(defop head-flag-from-length (lengths)

(head-flag-from-head-pointer

(head-pointer-from-length lengths)

(over-elements ((l lengths)) (> l 0))

(plus-reduce lengths)))

B.2.3 Segmented Primitives

(defop s-max-scan (values segment-head-flags)

(over-elements ((r (max-scan

(over-elements

((block (i-enumerate segment-head-flags))

(value values))

(append-bits block value))))

(f segment-head-flags))

(select-value f 0 (extract-bits r))))

(defop s-copy (values segment-head-flags)

(over-elements ((r (max-scan

(over-elements ((i (index (length values)))

(f segment-head-flags)

(value values))

(append-bits (select-value f (+ i 1) 0) value))))

(f segment-head-flags)

(v values))

(select-value f v (extract-bits r))))

(defop s-plus-scan (values segment-head-flags)

(let ((total-sums (plus-scan values)))

(over-elements ((total-sum total-sums)

(head-sum (s-copy total-sums segment-head-flags)))

(- total-sum head-sum))))

(defop s-permute (values pointers segment-head-flags)

(let* ((offset (s-copy (index (length values)) segment-head-flags))

(real-pointers (over-elements ((p pointers)

(o offset))

(+ p o))))

(permute values real-pointers)))

(defop s-extract (values indices segment-head-pointers)

(let ((real-indices (over-elements ((i indices)

(p segment-head-pointers))

(+ i p))))

(i-permute values real-indices)))

B.3. OTHER ROUTINES 229

(defop s-insert (pvector values indices segment-head-pointers)

(let ((real-indices (over-elements ((i indices)

(p segment-head-pointers))

(+ i p))))

(default-permute values real-indices pvector)))

(defop s-distribute (values lengths)

(let* ((head-pointers (head-pointer-from-length lengths))

(head-pointer-flags (over-elements ((l lengths)) (/= 0 l)))

(total-length (plus-reduce lengths))

(head-flags (head-flag-from-head-pointer head-pointers

head-pointer-flags

total-length))

(default (distribute 0 total-length)))

(s-copy (default-permute values head-pointers default) head-flags)))

B.2.4 Segmented Conditionals

(defop pack-segments (values flags lengths)

(pack values (s-distribute flags lengths)))

(defop flag-merge-segments (flags v1 v2 lengths)

(flag-merge (s-distribute flags lengths) v1 v2))

B.3 Other Routines

;; This routine fixes a near-merge as part of the halving-merge

;; routine.

(defop fix-near-merge (near-merge)

(over-elements ((max-previous (max-scan near-merge))

(min-next (back-min-scan near-merge))

(self near-merge))

(min min-next (max max-previous self))))

;; This routine implements the insert instructions based on

;; the other instructions

(defop insert (destination index value)

(over-elements ((i (index (length destination)))

(d destination)

(v (distribute value))

(p (distribute index)))

(select-value (= i p) v d)))

230 APPENDIX B. CODE

Appendix C

Paralation-Lisp Code

This appendix contains examples of PARALATION LISP code for many algorithms. Sec-

tion C.1 defines a set of generally useful functions used by many of the other algorithms.

Section C.2 defines the line drawing routine described in Section 3.6.1. Section C.3 defines

a quad tree routine based on the algorithm described in Section 6.2. Section C.4 defines the

quickhull convex-hull technique as described in Section 6.4. Section C.5 defines a quick-

sort routine as described in several places in this thesis. Section C.6 defines routines that

determine the entropy and the conditional entropy of a sequence, as defined by Shannon

[103]. Section C.7 defines a set of routines that implement Quinlan’s ID3 learning algo-

rithm [91]. This routine along with a *LISP version written by Donna Fritzsche has been

used in practice over many sets of data [21].

C.1 Utilities

;; Gives each element of a field its rank in the sorted order

;; determined by the predicate pred.

(defun rank (field pred)

(<- (index field)

:by (match (index field)

(elwise ((elt (sort (elwise ((f field)

(i (index field)))

(cons f i))

pred :key #’first)))

(cdr elt)))))

;; Same as collapse but guarantees that the field will be collapsed

;; in such a way that the collapsed values of the field are in

;; sorted order.

231

232 APPENDIX C. PARALATION-LISP CODE

(defun scollapse (field pred &key (key #’identity) (test #’eql))

(match (sort (<- field

:with #’arb

:by (collapse field :test test))

pred

:key key)

field))

;; Same as (elt (sort (elwise (field) field) pred :key key) 0))

;; It returns the first element of the sorted field.

(defun limit (field pred &key (key #’identity))

(flet ((op (a b) (if (funcall pred (funcall key a) (funcall key b))

a b)))

(vref field :with #’op)))

;; Returns the index of the minimum element with respect to the

;; predicate pred.

(defun rank-limit (field pred)

(cdr (limit (elwise ((f field)

(i (index field)))

(cons f i))

pred :key #’car)))

;; Returns the number of different values in a field.

(defun value-count (field &key (test #’eql))

(vref (<- (elwise (field) 1)

:with #’arb

:by (collapse field :test test))

:with #’+ :else 0))

;; Functions for testing the routines in this file.

(defvar *test-list* ’())

(defmacro deftest (name &body keyword-pairs

&key string input output function)

(declare (ignore keyword-pairs))

‘(defun ,(first (pushnew name *test-list*)) ()

(let* ((input ,input)

(output ,output)

(string ,string)

(function ,function)

(result (funcall function input)))

(when (not (equalp output result))

(format t "~%~s test failed,~% Got: ~a ~% Expected: ~a"

string result output)))))

(defun test-all ()

(dolist (test *test-list*) (funcall test)))

C.2. LINE DRAWING 233

C.2 Line Drawing

;; A simple line drawing routine

(defun point-location (endpoints fraction)

(let ((e1 (first endpoints))

(e2 (second endpoints)))

(list (+ (first e1)

(round (* fraction

(- (first e2)

(first e1)))))

(+ (second e1)

(round (* fraction

(- (second e2)

(second e1))))))))

(defun line-length (endpoints)

(let ((e1 (first endpoints))

(e2 (second endpoints)))

(1+ (max (abs (- (first e1) (first e2)))

(abs (- (second e1) (second e2)))))))

;; Determines all the points on a line given the endpoints.

(defun line-draw (endpoints)

(let ((line-length (line-length endpoints)))

(elwise ((point (make-paralation line-length)))

(point-location endpoints (/ point (float (1- line-length)))))))

;; Draws multiple lines given a field of endpoint pairs.

;; It also removes all duplicate points.

(defun multi-line-draw (endpoint-list)

(let ((points (expand (elwise ((endpoint-pair endpoint-list))

(line-draw endpoint-pair)))))

(<- points

:with #’arb

:by (collapse points :test #’equal))))

(deftest line-test

:string "Line Drawing Routine"

:input #1f(((0 0) (5 5)) ((4 3) (2 7)) ((4 4) (6 4)))

:output #1F((0 0) (1 1) (2 2) (3 3) (4 4) (5 5)

(4 3) (3 5) (2 6) (2 7) (5 4) (6 4))

:function #’multi-line-draw)

C.3 Quad-Tree

;; a quad tree algorithm

234 APPENDIX C. PARALATION-LISP CODE

(defun quad-split (points)

(if (> (length points) 1)

(let* ((half-length (/ (length points) 2))

(match (match (index points)

(elwise (points) (second points))))

(back-pointers (<- (index points) :by match)))

(elwise ((pts (collect

(elwise ((point (<- (elwise (points)

(first points))

:by match))

(back-pointer back-pointers))

(list point (mod back-pointer half-length)))

:by

(scollapse (elwise ((back-pointer back-pointers))

(truncate back-pointer half-length))

#’<))))

(quad-split pts)))

(first (vref points))))

(defun sort-init (points)

(let* ((y-rank (rank (elwise (points) (second points)) #’<))

(x-rank (rank (elwise (points) (first points)) #’<)))

(<- (elwise ((i (index points)) (yp y-rank)) (list i yp))

:by (match (index points) x-rank))))

(defun quad-tree (points)

(quad-split (sort-init points)))

(deftest quad-tree-test

:string "Quad Tree Algorithm"

:input #1f((.32 .91) (.75 .53) (.63 .38) (.21 .49)

(.56 .77) (.48 .09) (.24 .87) (.96 .02))

:output #1F(#1F(#1F(3 5) #1F(6 0)) #1F(#1F(2 7) #1F(4 1)))

:function #’quad-tree)

C.4 Convex Hull: Quickhull

;; a convex hull algorithm (QuickHull)

(defun cross-product (o p1 p2)

(- (* (- (first p1) (first o)) (- (second p2) (second o)))

(* (- (second p1) (second o)) (- (first p2) (first o)))))

(defun line-side (e1 e2 point)

(plusp (cross-product e1 e2 point)))

(defun triangle-area (p1 p2 p3)

C.5. QUICKSORT 235

(abs (/ (cross-product p1 p2 p3) 2)))

(defun split-direction (p1 p2 ps point)

(let ((l (line-side p1 ps point))

(r (line-side ps p2 point))

(e (equal ps point)))

(cond (e 1) (l 0) (r 2) (t nil))))

(defun hull-split (points p1 p2 ps)

(let* ((sfield (make-paralation 3))

(match (match sfield (elwise (points)

(split-direction p1 p2 ps points)))))

(expand

(elwise ((new-points (collect points :by match))

(new-p1 (elwise (sfield) (elt (list p1 ps ps) sfield)))

(new-p2 (elwise (sfield) (elt (list ps ps p2) sfield))))

(if (> (length new-points) 1)

(hull-split new-points new-p1 new-p2

(limit new-points #’>

:key #’(lambda (new-points)

(triangle-area new-points

new-p1

new-p2))))

new-points)))))

(defun convex-hull (points)

(let ((min-x (limit points #’< :key #’first))

(max-x (limit points #’> :key #’first)))

(hull-split points min-x min-x max-x)))

(deftest convex-hull-test

:string "Convex Hull Algorithm (Quickhull)"

:input #1f((4 2) (6 5) (1 12) (3 8) (12 1) (6 15) (14 5)

(11 17) (13 13) (17 14) (19 9))

:output #1F((6 15) (11 17) (17 14) (19 9) (12 1) (4 2))

:function #’convex-hull)

C.5 Quicksort

;; A quicksort routine

(defun qsort (data pred)

(if (> (value-count data) 1)

(let* ((pivot (elt data (random (length data))))

(side (elwise (data) (if (funcall pred data pivot) 0 1)))

(sets (collect data

236 APPENDIX C. PARALATION-LISP CODE

:by (match (make-paralation 2) side))))

(expand (elwise ((set sets))

(qsort set pred))))

data))

(deftest qsort-test

:string "Quicksort Algorithm"

:input #1F(97 68 16 70 55 3 11 47 75 53 1 21 16 15 78 13 72 38 88 24)

:output #1F(1 3 11 13 15 16 16 21 24 38 47 53 55 68 70 72 75 78 88 97)

:function #’(lambda (data) (qsort data #’<)))

C.6 Entropy

;; This function determines the entropy of the values of the INPUT field.

;; Mathematically this is H(I) = - \sum_i p(i) \lg p(i).

;; The sum is over all possible values and p(i) is the fraction of times

;; that the value i appears (the probability of i).

(defun entropy (input-string)

(vref (elwise ((prob (<- (elwise ((is input-string))

(/ 1.0 (length input-string)))

:by (collapse input-string) :with #’+)))

(* prob (- (log prob 2))))

:with #’+))

(deftest entropy-test

:string "Shannon Entropy Routine"

:input #1f(0 1 0 1 0 1 0 1 a b c d a b c d)

:output 2.5

:function #’entropy)

;; This function takes two fields from the same paralation:

;; an input and an output.

;; It determines the conditional entropy of the output based on the input.

;; Mathematically this is H_I(O) = - \sum_i \sum_o p(i, o) \lg p_i(o).

;; p(i,o) is the fraction of positions in which the input i and the

;; output o appear together.

;; p_i(o) is the fraction of the positions where i is the input in which

;; o is the output (conditional probability of o based on i).

;; This function calculates it in the form:

;; H_I(O) = - \sum_i p(i) \sum_o p_i(o) \lg p_i(o)

;; = \sum_i p(i) H_i(O) = (\sum_i l(i) H_i(O)) / l(I)

(defun conditional-entropy (input output)

(let* ((input-sets (collect output :by (collapse input))))

(/ (vref (elwise ((input-set input-sets))

C.7. ID3: QUINLAN’S LEARNING ALGORITHM 237

(* (length input-set) (entropy input-set)))

:with #’+)

(vref (elwise ((input-set input-sets)) (length input-set))

:with #’+))))

(deftest cond-entropy-test

:string "Shannon Conditional Entropy Routine"

:input #1f((0 a) (0 b) (0 a) (0 b) (1 c) (1 c) (1 c) (1 c))

:output .5

:function #’(lambda (in) (conditional-entropy

(elwise (in) (first in))

(elwise (in) (second in)))))

C.7 ID3: Quinlan’s Learning Algorithm

;; This function removes the nth element of a sequence.

(defun remove-elt (sequence index)

(remove-if #’(lambda (arg) t) sequence :start index :end (+ index 1)))

;; This function takes a field of sequences (INPUT), a field of values

;; (OUTPUT),

;; and the number of elements in the sequences (INPUT-LENGTH).

;; For each position J up to INPUT-LENGTH of the INPUT sequences, it

;; determines

;; the conditional entropy of OUTPUT based on that position of the INPUT.

;; It returns a field of length INPUT-LENGTH; each element is a

;; conditional entropy value.

(defun parameter-entropies (input output imask input-length)

(elwise ((parameter-position (make-paralation input-length)))

(if (elt imask parameter-position)

(conditional-entropy (elwise (input)

(elt input parameter-position)) output)

(entropy output))))

;; This structure is used for each node of the decision tree.

;; Par-Value -- contains the input value of the node of the tree.

;; Next-Par-Position -- contains which one of the input positions

;; should be used for branching.

;; Position-Entropies -- Contains the conditional entropies for

;; each position.

;; The minimum of these entropies is used to select

;; Next-Par-Position.

;; Output -- Is the default value for the node (the most common

;; output value).

;; If there is no child that corresponds to the given input value,

238 APPENDIX C. PARALATION-LISP CODE

;; then this value should be selected.

;; Child field -- This is a field which contains all the children.

;; There can be as many children as possible input values.

(defstruct (qt-node (:print-function ptree))

par-value

next-par-position

position-entropies

output

child-field

count)

;; These variables and the function assign a cost to creating each

;; node of the decision tree.

;; They are used so that a node will only branch out if more

;; information can be reduced than the cost of creating all the

;; children nodes.

;; Its effect is to prune the tree.

;; This cost is in number of bits.

(defvar *node-cost* 0)

(defvar *child-cost* 1.3)

(defun node-cost (children)

(+ *node-cost* (* children *child-cost*)))

;; This is the routine that builds the decision tree.

;; It takes an INPUT and OUTPUT field that must both be from the same

;; paralation.

;; The INPUT must be a field of sequences; all sequences should be the

;; same length and INPUT-LENGTH is used to specify this length.

;; The INPUT sequences are used as the input parameter vectors--each element

;; contains the value of the parameter denoted by that position.

;; The parameter names are implicit in the positions.

;; The OUTPUT is a sequence of values - the values of the output parameter.

;; The FP-SEQUENCE argument can be used to specify a fixed sequence of

;; parameters to branch on -- one position per level of the tree.

;; This argument should be a list of length no greater than INPUT-LENGTH.

;; If less than the INPUT-LENGTH, then the function will stop building

;; the tree when it runs out of positions.

;; If an FP-SEQUENCE is specified, the entropy calculations are not

;; carried out.

;; The PAR-VALUE argument can be ignored (it is used for recursion).

;; This function returns a QT-NODE which is the root of a decsion tree.

(defun build-q-tree (input output imask input-length

&key (par-value :root) (fp-sequence nil))

(let ((tree-node (make-qt-node)))

C.7. ID3: QUINLAN’S LEARNING ALGORITHM 239

(setf (qt-node-par-value tree-node) par-value)

(setf (qt-node-output tree-node) (select-max output))

(setf (qt-node-count tree-node) (length input))

(when (and (plusp input-length) (< 1 (value-count output)))

(let* ((par-entropies (when (not (car fp-sequence))

(parameter-entropies input output

imask input-length)))

(best-parameter-position (or (car fp-sequence)

(rank-limit par-entropies #’<=)))

(best-parameter (elwise (input)

(elt input best-parameter-position)))

(collapse (collapse best-parameter))

(new-io-pairs (collect (elwise (input output)

(list input output)) :by collapse))

(input-chars (<- best-parameter :with #’arb :by collapse))

(new-imask (copy-seq imask)))

(setf (elt new-imask best-parameter-position) nil)

(when (or fp-sequence

(> (* (length input)

(- (entropy output)

(vref par-entropies :with #’min)))

(node-cost (length input-chars))))

(setf (qt-node-next-par-position tree-node)

best-parameter-position)

(setf (qt-node-position-entropies tree-node) par-entropies)

(setf (qt-node-child-field tree-node)

(elwise ((new-io-pair new-io-pairs)

(input-char input-chars))

(let ((new-input (elwise (new-io-pair)

(first new-io-pair)))

(new-output (elwise (new-io-pair)

(second new-io-pair))))

(build-q-tree new-input new-output

new-imask input-length

:par-value input-char

:fp-sequence (cdr fp-sequence))))))))

tree-node))

;; This routine takes a field of input parameter vectors and a tree

;; returned by BUILD-Q-TREE and returns a field of output values - the

;; best guess for each postion.

;; The INPUT must be a field of sequences (each sequence is a

;; parameter vector).

;; The input parameter positions must be in the same order as when

;; BUILD-Q-TREE was run.

;; The field of output values returned will be in the same paralation

;; as the INPUT field.

240 APPENDIX C. PARALATION-LISP CODE

(defun find-outputs (input q-tree)

(let ((par-position (qt-node-next-par-position q-tree))

(child-field (qt-node-child-field q-tree))

(default-output (qt-node-output q-tree)))

(if (and child-field (plusp (length input)))

(let* ((collapse (match (elwise (child-field)

(qt-node-par-value child-field))

(elwise (input)

(elt input par-position))))

(new-inputs (collect input :by collapse)))

(field-merge

(elwise (new-inputs child-field)

(find-outputs new-inputs child-field))

:by collapse :default (elwise (input) default-output)))

(elwise (input) default-output))))

;; This function can be used as an interface to BUILD-Q-TREE.

;; It takes as input, a field of input-output pairs -- each pair is a cons.

;; The CAR of each cons must be a sequence of I-LENGTH and is used

;; as the input parameter vector.

;; The CDR is used as the output value.

;; FP-SEQUENCE can be used as described earlier.

(defun build-tree (io-field i-length &optional fp-sequence)

(let ((input (elwise (io-field) (car io-field)))

(output (elwise (io-field) (cdr io-field)))

(imask (make-array i-length :initial-element t)))

(build-q-tree input output imask i-length :fp-sequence fp-sequence)))

;; This function can be used to determine how well the decision tree

;; determines the correct output -- to test a decsion tree.

;; It takes as input, a field of input-output pairs in the same

;; format as BUILD-TREE.

;; It finds the predicted outputs using FIND-OUTPUTS and then compares

;; them with the given output.

;; The function returns the fraction that are correct.

(defun check-completion (io-field q-tree)

(let ((input (elwise (io-field) (car io-field)))

(output (elwise (io-field) (cdr io-field))))

(/ (vref (elwise ((expected-output output)

(actual-output (find-outputs input q-tree)))

(if (eql expected-output actual-output) 1 0))

:with ’+)

(float (length input)))))

;; This function runs BUILD-TREE on (1 - TEST-FRACTION) of the io-field

;; and then runs check-completion on the remaning TEST-FRACTION part.

C.7. ID3: QUINLAN’S LEARNING ALGORITHM 241

;; It rueturns the fraction that were correct, and the decision tree.

(defun check-generalization (io-field input-length test-fraction

&optional fixed-parameter-sequence)

(let* ((generate-length (truncate (* (- 1 test-fraction)

(length io-field))))

(generate-set (subseq io-field 0 generate-length))

(test-set (subseq io-field generate-length))

(q-tree (build-tree generate-set input-length

fixed-parameter-sequence)))

(list (check-completion test-set q-tree) q-tree)))

242 APPENDIX C. PARALATION-LISP CODE

Bibliography

[1] P. Abrams. An apl machine. Technical Report SLAC 114, Stanford University, 1970.

[2] Alok Aggarwal, Ashok K. Chandra, and Marc Snir. Hierarchical memory with block transfer.

In Proceedings Symposium on Foundations of Computer Science, pages 204–216, 1987.

[3] Alok Aggarwal, Bernard Chazelle, Leo Guibas, Colm Ó Dúnlaing, and Chee Yap. Parallel

computational geometry. In Proceedings Symposium on Foundations of Computer Science,

pages 468–477, October 1985.

[4] Ajit Agrawal, Guy Blelloch, Robert Krawitz, and Cynthia Phillips. Four vector-matrix primi-

tives. In Proceedings of the 1989 ACM Symposium on Parallel Algorithms and Architectures,

pages 292–302, June 1989.

[5] M. Ajtai, J. Komlos, and E. Szemeredi. An O(n lgn) sorting network. In Proceedings ACM

Symposium on Theory of Computing, pages 1–9, April 1983.

[6] D. C. Allen. The bbn multiprocessors: Butterfly and monarch. In Proceedings Princeton

Conference on Supercomputers and Stellar Dynamics, June 1986.

[7] Mikhail J. Atallah, Richard Cole, and Michael T. Goodrich. Cascading divide-and-conquer:

A technique for designing parallel algorithms. In Proceedings Symposium on Foundations of

Computer Science, pages 151–160, October 1987.

[8] Mikhail J. Atallah and Michael T. Goodrich. Efficient parallel solutions to some geometric

problems. Journal of Parallel and Distributed Computing, 3(4):492–507, December 1986.

[9] Mikhail J. Atallah and Michael T. Goodrich. Efficient plane sweeping in parallel. In Proceed-

ings ACM Symposium on Theory of Computing, pages 216–225, 1986.

[10] Baruch Awerbuch and Yossi Shiloach. New connectivity and MSF algorithms for Ultracom-

puter and PRAM. In Proceedings International Conference on Parallel Processing, pages

175–179, 1983.

[11] Kenneth E. Batcher. Sorting networks and their applications. In AFIPS Spring Joint Computer

Conference, pages 307–314, 1968.

[12] Kenneth E. Batcher. The flip network of STARAN. In Proceedings International Conference

on Parallel Processing, pages 65–71, 1976.

243

244 BIBLIOGRAPHY

[13] Jon L. Bentley. Multidimensional binary search trees used for associative searching. Commu-

nications of the ACM, 18:509–517, 1975.

[14] Jon L. Bentley and Michael I. Shamos. Divide-and-conquer in multidimensional space. In

Conference Record of the Eighth Annual ACM Symposium on Theory of Computing, pages

220–230, May 1976.

[15] C. Berge and A. Ghouila-Houri. Programming, Games, and Transportation Networks. John

Wiley, New York, 1965.

[16] H. J. Berliner. A chronology of computer chess and its literature. Artificial Intelligence, 10(2),

1978.

[17] Guy E. Blelloch. Afl-1: A programming language for massively concurrent computers. Tech-

nical Report 918, Artificial Intelligence Laboratory, Massachusetts Institute of Technology,

November 1986.

[18] Guy E. Blelloch. Cis: A massively concurrent rule based system. In Proceedings National

Conference on Artificial Intelligence, pages 735–741, August 1986.

[19] Guy E. Blelloch. Parallel prefix vs. concurrent memory access. Technical report, Thinking

Machines Corporation, October 1986.

[20] Guy E. Blelloch. Scans as primitive parallel operations. In Proceedings International Confer-

ence on Parallel Processing, pages 355–362, August 1987.

[21] Guy E. Blelloch and Donna Fritzsche. A comparison of the parallel implementations of two

learning algorithms. In Proceedings of the AAAI Spring Symposium Series: Parallel Models

of Intelligence, pages 59–62, March 1988.

[22] Guy E. Blelloch and James J. Little. Parallel solutions to geometric problems on the scan

model of computation. In Proceedings International Conference on Parallel Processing,

pages Vol 3: 218–222, August 1988.

[23] Guy E. Blelloch and Charles R. Rosenberg. Network learning on the connection machine. In

Proceedings International Joint Conference on Artificial Intelligence, pages 323–326, August

1987.

[24] Guy E. Blelloch and Gary W. Sabot. Compiling collection-oriented languages onto massively

parallel computers. Journal of Parallel and Distributed Computing, 8(2):119–134, February

1990.

[25] S. Borkar, R. Cohn, G. Cox, S. Gleason, T. Gross, H. T. Kung, M. Lam, B. Moore, C. Pe-

terson, J. Pieper, L. Rankin, P. S. Tseng, J. Sutton, J. Urbanski, and J. Webb. iWarp: An

integrated solution to high-speed parallel computing. In Proceedings of Supercomputing ’88,

IEEE Computer Society and ACM SIGARCH, November 1988.

[26] A Borodin. On relating time and space to size and depth. SIAM Journal of Computing,

6:733–744, 1977.

[27] Otakar Boru̇vka. O jistém problén minimálı́m. Práca Moravské Přı́rodovědecké Společnosti,

III(3):37–58, 1926. (In Czech.).

BIBLIOGRAPHY 245

[28] Richard P. Brent. The parallel evaluation of general arithmetic expressions. Journal of the

Association for Computing Machinery, 21(2):201–206, April 1974.

[29] Richard P. Brent and H. T. Kung. The chip complexity of binary arithmetic. In Proceedings

ACM Symposium on Theory of Computing, pages 190–200, 1980.

[30] Timothy A. Budd. An APL compiler for a vector processor. ACM Transactions on Program-

ming Languages and Systems, 6(3):297–313, July 1984.

[31] David Christman. Programming the Connection Machine. Master’s thesis, Massachussets

Institute of Technology, January 1984.

[32] C. Clos. A study of nonblocking switching networks. Bell System Technical Journal, 32:406–

424, 1953.

[33] E. F. Codd. A relational model of data for large shared data banks. Communications of the

ACM, 13(6), June 1970.

[34] Richard Cole. Parallel merge sort. In Proceedings Symposium on Foundations of Computer

Science, pages 511–516, October 1986.

[35] Richard Cole and Uzi Vishkin. Approximate scheduling, exact scheduling, and applications to

parallel algorithms. In Proceedings Symposium on Foundations of Computer Science, pages

478–491, 1986.

[36] Richard Cole and Uzi Vishkin. Faster optimal parallel prefix sums and list ranking. Technical

Report Ultracomputer Note 117, New York University, February 1987.

[37] Stephen A. Cook. A taxonomy of problems with fast parallel algorithms. Information and

Control, 64:2–22, 1985.

[38] Stephen A. Cook and H. James Hoover. A depth-universal circuit. SIAM Journal of Comput-

ing, 14(4):833–839, November 1985.

[39] C. J. Date. Relational Database: Selected Writings. Addison-Wesley, Reading, MA, 1986.

[40] C. C. Elgot and A. Robinson. Random access stored program machines. Journal of the

Association for Computing Machinery, 11(4):365–399, 1964.

[41] Faith E. Fich. New bounds for parallel prefix circuits. In Proceedings ACM Symposium on

Theory of Computing, pages 100–109, April 1983.

[42] Steven Fortune and James Wyllie. Parallelism in random access machines. In Conference

Record of the Tenth Annual ACM Symposium on Theory of Computing, pages 114–118, May

1978.

[43] Jerome H. Friedman, Jon Louis Bentley, and Raphael Ari Finkel. An algorithm for finding

best matches in logarithmic expected time. ACM Transactions on Mathematical Software,

3(3):209–226, 1977.

[44] F. Gavril. Merging with parallel processors. Communications of the ACM, 18(10):588–591,

1975.

246 BIBLIOGRAPHY

[45] Hillel Gazit, Gary L. Miller, and Shang-Hua Teng. Optimal tree contraction in the EREW

model. In Stuart K. Tewsburg, Bradley W. Dickinson, and Stuart C. Schwartz, editors, Con-

current Computations, pages 139–156. Plenum Publishing Corporation, 1988.

[46] Andrew V. Goldberg. Efficient graph algorithms for sequential and parallel computers. Tech-

nical Report 374, Laboratory for Computer Science, Massachusetts Institute of Technology,

February 1987.

[47] Andrew V. Goldberg and Robert E. Tarjan. A new approach to the maximum flow problem.

In Proceedings ACM Symposium on Theory of Computing, pages 136–146, April 1986.

[48] L. M. Goldschlager. A universal interconnection pattern for parallel computers. Journal of

the Association for Computing Machinery, 29(3):1073–1086, October 1982.

[49] Allan Gottlieb, R. Grishman, Clyde P. Kruskal, Kevin P. McAuliffe, Larry Rudolph, and Marc

Snir. The NYU Ultracomputer—designing a MIMD, shared-memory parallel machine. IEEE

Transactions on Computers, C–32:175–189, 1983.

[50] Allan Gottlieb, B. D. Lubachevsky, and Larry Rudolph. Basic techniques for the efficient

coordination of very large numbers of cooperating sequential processors. ACM Transactions

on Programming Languages and Systems, 5(2), April 1983.

[51] Vince Grolmusz and Prabhakar Ragde. Incomparability in parallel computation. In Proceed-

ings Symposium on Foundations of Computer Science, pages 89–98, 1987.

[52] Leo J. Guibas and Douglas K. Wyatt. Compilation and delayed evaluation in APL. In Confer-

ence Record of the 5th Annual ACM Symposium on Principles of Programming Languages,

pages 1–8, Tucson, Ariz, 1978.

[53] W. Daniel Hillis. The Connection Machine. MIT Press, Cambridge, MA, 1985.

[54] W. Daniel Hillis and Guy L. Steele Jr. Data parallel algorithms. Communications of the ACM,

29(12):1170–1183, December 1986.

[55] D. S. Hirschberg, A. K. Chandra, and D. V. Sarwate. Computing connected components on

parallel computers. Communications of the ACM, 22(8):461–464, 1979.

[56] C.A.R. Hoare. Quicksort. Computer J., 5(1):10–15, 1962.

[57] Paul Hudak and Eric Mohr. Graphinators and the duality of SIMD and MIMD. In ACM

Conference on Lisp and Functional Programming, pages 224–234, July 1988.

[58] IBM. APL2 Programming: Language Reference, first edition, August 1984. Order Number

SH20-9227-0.

[59] Kenneth E. Iverson. A Programming Language. Wiley, New York, 1962.

[60] Kenneth E. Iverson. A dictionary of APL. APL Quote Quad, 18(1):5–40, September 1987.

[61] Kenneth E. Iverson and Falkoff. APL 360 reference manual. The APL terminal system: In-

structions for operation. IBM, November 1966.

[62] A. V. Karzanov. Determining the maximal flow in a network by the method of preflows. Soviet

Math. Dokl., (15):434–437, 1974.

BIBLIOGRAPHY 247

[63] Donald E. Knuth. Sorting and Searching, volume 3 of The Art of Computer Programming.

Addison-Wesley Publishing Company, Reading, MA, 1973.

[64] Clyde P. Kruskal, Larry Rudolph, and Marc Snir. The power of parallel prefix. In Proceedings

International Conference on Parallel Processing, pages 180–185, August 1985.

[65] Richard E. Ladner and Michael J. Fischer. Parallel prefix computation. Journal of the Associ-

ation for Computing Machinery, 27(4):831–838, October 1980.

[66] Clifford Lasser. The Essential *Lisp Manual. Thinking Machines Corporation, Cambridge,

MA, July 1986.

[67] Frank Thomson Leighton. Tight bounds on the complexity of parallel sorting. In Proceedings

ACM Symposium on Theory of Computing, pages 71–80, May 1984.

[68] Charles E. Leiserson. Area-efficient layouts (for VLSI). In Proceedings Symposium on Foun-

dations of Computer Science, 1980.

[69] Charles E. Leiserson. Fat-Trees: Universal networks for hardware-efficient supercomputing.

IEEE Transactions on Computers, C–34(10):892–901, October 1985.

[70] Charles E. Leiserson and Bruce M. Maggs. Communication-efficient parallel algorithms for

distributed random-access machines. Algorithmica, 3:53–77, 1988.

[71] James J. Little, Guy E. Blelloch, and Todd Cass. Parallel algorithms for computer vision on

the Connection Machine. In Proceedings International Conference on Computer Vision, June

1987.

[72] Boris D. Lubachevsky and Albert G. Greenberg. Simple, efficient asynchronous parallel prefix

algorithms. In Proceedings International Conference on Parallel Processing, pages 66–69,

August 1987.

[73] Michael Luby. A simple parallel algorithm for the maximal independent set problem. In

Proceedings ACM Symposium on Theory of Computing, pages 1–10, May 1985.

[74] G. A. Mago. A network of computers to execute reduction languages. International Journal

of Computer and Information Sciences, 1979.

[75] Gary L. Miller and John H. Reif. Parallel tree contraction and its application. In Proceedings

Symposium on Foundations of Computer Science, pages 478–489, October 1985.

[76] Russ Miller and Quentin F. Stout. Efficient parallel convex hull algorithms. IEEE Transactions

on Computers, 37(12):1605–1618, December 1988.

[77] Trenchard More. The nested rectangular array as a model of data. In APL 79 Conference

Proceedings, pages 55–73, Rochester, New York, 1979.

[78] Trenchard More. Rectangularly arranged collections of collections. In APL 82 Conference

Proceedings, pages 219–228. ACM, 1982.

[79] William M. Newman and Robert F. Sproull. Principles of Interactive Computer Graphics.

McGraw-Hill, New York, 1979.

248 BIBLIOGRAPHY

[80] Yu. Ofman. On the algorithmic complexity of discrete functions. Soviet Physics Doklady,

7(7):589–591, January 1963.

[81] Stephen M. Omohundro. Efficient algorithms with neural network behavior. Complex Sys-

tems, 1, 1987.

[82] Mark H. Overmars and Jan van Leeuwen. Maintenance of configurations in the plane. Journal

of Computer and System Sciences, 23(2):166–204, October 1981.

[83] C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms and Complex-

ity. Prentice-Hall, Inc., Englewood Cliffs, NJ, 1982.

[84] M. C. Pease. Matrix inversion using parallel processing. Journal of the Association for Com-

puting Machinery, 14(4):757–764, October 1967.

[85] Alan J. Perlis. Steps toward an APL compiler—updated. Technical Report 24, Computer

Science Department, Yale University, March 1975.

[86] G. F. Pfister and V. A. Norton. ‘Hot Spot’ contention and combining in multistage intercon-

nection networks. In Proceedings International Conference on Parallel Processing, pages

790–797, August 1985.

[87] Vaughan R. Pratt and Larry J. Stockmeyer. A characterization of the power of vector machines.

Journal of Computer and System Sciences, 12(2):198–221, April 1976.

[88] Franco P. Preparata and Michael I. Shamos. Computational Geometry — an Introduction.

Springer-Verlag, New York, NY, 1985.

[89] Franco P. Preparata and Jean Vuillemin. The cube-connected cycles: A versatile network for

parallel computing. Communications of the ACM, 24(5):300–309, May 1981.

[90] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical Recipes. Cam-

bridge University Press, Cambridge, 1986.

[91] Ross Quinlan. Induction of decision trees. Machine Learning, 1:81–106, 1986.

[92] Abhiram G. Ranade. How to emulate shared memory. In Proceedings Symposium on Foun-

dations of Computer Science, pages 185–194, 1987.

[93] Abhiram G. Ranade. Fluent Parallel Computation. PhD thesis, Yale University, Department

of Computer Science, New Haven, CT, 1989.

[94] John H. Reif and Sandeeep Sen. Optimal randomized parallel algorithms for computational

geometry. In Proceedings International Conference on Parallel Processing, pages 270–277,

August 1987.

[95] Richard M. Russell. The CRAY-1 computer system. Communications of the ACM, 21(1):63–

72, January 1978.

[96] Gary W. Sabot. The Paralation Model: Architecture-Independent Parallel Programming. MIT

Press, Cambridge, Massachusetts, 1988.

[97] James B. Salem. *Render: A data parallel approach to polygon rendering. Technical Report

VZ88–2, Thinking Machines Corporation, January 1988.

BIBLIOGRAPHY 249

[98] Carla Savage and Joseph Ja’Ja’. Fast, efficient parallel algorithms for some graph problems.

SIAM Journal of Computing, 10(4):682–691, 1981.

[99] Fl. Schmidt and M. A. Jenkins. Array diagrams and the NIAL approach. In APL 82 Confer-

ence Proceedings, pages 315–319. ACM, 1982.

[100] J. T. Schwartz, R. B. K. Dewar, E. Dubinsky, and E. Schonberg. Programming with Sets: An

Introduction to SETL. Springer-Verlag, New York, 1986.

[101] Jacob T. Schwartz. Ultracomputers. ACM Transactions on Programming Languages and

Systems, 2(4):484–521, October 1980.

[102] Charles L. Seitz. The Cosmic Cube. Communications of the ACM, 28(1):22–33, January

1985.

[103] C. E. Shannon. A mathematical theory of communication. Bell System Technical Journal,

27:379–423, 623–656, July, October 1948.

[104] Yossi Shiloach and Uzi Vishkin. Finding the maximum, merging and sorting in a parallel

computation model. Journal of Algorithms, 2(1):88–102, March 1981.

[105] Yossi Shiloach and Uzi Vishkin. An O(logn) parallel connectivity algorithm. Journal of

Algorithms, 3(1):57–67, March 1982.

[106] Marc Snir and Jon A. Solworth. The Ultraswitch—a VLSI network node for parallel process-

ing. Technical Report Ultracomputer Note #39, New York University, January 1984.

[107] Guy L. Steele Jr., Scott E. Fahlman, Richard P. Gabriel, David A. Moon, and Daniel L. Wein-

reb. Common LISP: The Language. Digital Press, Burlington, MA, 1984.

[108] Guy L. Steele Jr. and W. Daniel Hillis. Connection Machine Lisp: Fine-Grained Parallel

Symbolic Processing. In Proceedings of the 1986 ACM Conference on Lisp and Functional

Programming, pages 279–297, 1986.

[109] Harold S. Stone. Parallel processsing with the perfect shuffle. IEEE Transactions on Comput-

ers, C–20(2):153–161, 1971.

[110] Quentin F. Stout. Sorting, merging, selecting and filtering on tree and pyramid machines. In

Proceedings International Conference on Parallel Processing, pages 214–221, 1983.

[111] Robert E. Tarjan. Data Structures and Network Algorithms. Society for Industrial and Applied

Mathematics, Philadelphia, Pennsylvania, 1983.

[112] Robert E. Tarjan and Uzi Vishkin. An efficient parallel biconnectivity algorithm. SIAM Jour-

nal of Computing, 14(4):862–874, 1985.

[113] Thinking Machines Corporation. Connection Machine parallel instruction set (PARIS), July

1986.

[114] Thinking Machines Corporation. Model CM-2 technical summary. Technical Report HA87-4,

Thinking Machines Corporation, Cambridge, Massachusetts, April 1987.

[115] C. D. Thompson and H. T. Kung. Sorting on a mesh-connected parallel computer. Communi-

cations of the ACM, 20(4):263–271, 1977.

250 BIBLIOGRAPHY

[116] A. M. Turing. On computable numbers, with an application to the entscheidungsproblem.

Proceedings London Mathematical Soc. Ser. 2, 42:230–265, 1936.

[117] Leslie G. Valiant. Universal circuits (preliminary report). In Proceedings ACM Symposium

on Theory of Computing, pages 196–202, 1976.

[118] Uzi Vishkin. Synchronous parallel computation: A survey. Technical Report Ultracomputer

Note #53, New York University, April 1983.

[119] Skef Wholey and Guy L. Steele Jr. Connection Machine Lisp: A dialect of Common Lisp for

data parallel programming. In Proceedings Second International Conference on Supercom-

puting, May 1987.

[120] James C. Wyllie. The complexity of parallel computations. Technical Report TR-79-387,

Department of Computer Science, Cornell University, Ithaca, NY, August 1979.

Index

abstraction,

level of, 24

access-fixed code, 150, 217

access-restricted code, 149, 217

algorithm,

biconnectivity, 114

binary search, 94

closest pair, 98

halving merge, 54

k-D tree, 96

line-drawing, 50

line-of-sight, 40, 105

linear-systems, 118

matrix-vector multiply, 117

maximal-independent-set, 114

maximum-flow, 114

merge-hull, 103

minimum-spanning-tree, 109

outer-product, 123

quickhull, 101

quicksort, 46

simplex, 122

sparse matrix-multiply, 123

split-radix-sort, 43

algorithmic models, 1, 37

collection-oriented, 5

processor-oriented, 5

algorithms,

branch-and-bound, 49

computational geometry, 93

graph, 109

numerical, 5, 117

all-closest-pairs, 98

allocating,

elements to processors, 24, 48

APL, 5, 10, 131

compiling, 194

APL2, 10

append, 65, 94, 224

append-bits, 223

application of program to data, 157

apply-to-each, 135

array ordering, 91

back solution, 118

backward scans, 217

implementation of, 203

barrier synchronization, 9

Batcher’s bitonic sort, 44

BBN Butterfly and Monarch, 202

biconnectivity algorithm, 114

binary search, 94

bit pipelining, 198

bit-vector machine, 30

bitonic merge, 27

bitonic sort, 44

boolean circuit, 2, 4

comparison to V-RAM, 28

level in, 28

bounds on element complexity, 153

bounds on step complexity, 153

branch-and-bound, 49

branch-packing, 144, 154

Brent’s scheduling principle, 57, 195

bridges, 104

butterfly networks, 28

c-rank-split, 70

capacity on an edge, 83

carry bit, 198

changes from thesis, 216

chess-playing, 49, 53

closest pair algorithm, 98, 146

CM-Lisp, 163

code replicating, 143

collapse, 168, 182

251

252 INDEX

collect, 168, 182

collection, 5, 217

grid-ordered, 134

heterogeneous, 134

homogeneous, 134

key-ordered, 134

nested, 132

simple, 134

structure, 134

unordered, 134

collection-oriented, 217

languages, 131, 163

models, 5, 22

operations, 135

combine, 26, 71

Common Lisp, 158, 165, 169

communicating serial processors, 4

compiling, 138, 146

conditionals, 179

Paralation Lisp, 163

complexity,

element, 4, 21

P-RAM vs. V-RAM, 23

space, 32

step, 4, 21

work, 5

computational geometry algorithms, 93

concatenate, 169

cond, 179

cond-jump, 61, 150

conditional control, 149, 154

conditional-jump, 25

conditionals,

compiling, 179

Connection Machine Lisp, 10, 131

Connection Machine, 2, 51, 189, 202

constraint matrix, 122

contained programs, 144, 149, 157, 217

contributions of book, 210

control,

conditional, 154

parallel, 25, 212

P-RAM vs. V-RAM, 25

serial, 5, 25

Convex C240, 2

convex hull,

merge-hull, 94, 103

quickhull, 101

copying, 42

count, 224

CRAY Y-MP, 2

CRAY computer, 5

cross-product, 234

cube-connected-cycles, 28

Dantzig method,

for pivoting in simplex, 122

data structures, 79, 131

Paralation Lisp, 166

scan-vector lisp, 170

data-parallel, 5

default vector, 62

depth,

of a tree, 86

of boolean circuit, 4

deterministic programs, 157

digital differential analyzer, 51

directed graphs, 80

distribute, 63, 224

distributed memory multiprocessor, 2

implementation on, 9

distributing sums, 42

divide-and-conquer, 145

do, 179

dot-product, 3

down sweep, 198

drag-out, 140

dragthrough, 194

element complexity, 4, 21

element space complexity, 217

elementwise instructions, 61

implementing, 192

elementwise, 217

else expression, 156

elt, 169, 180

elwise, 165, 167

compiling, 176

Encore Multimax, 2

entropy, 236

enumerate, 42, 66, 224

equal time assumption, 32, 218

EREW P-RAM, 37

Euler-tour order of tree, 84

evaluation tree, 157

even-insertion, 54

INDEX 253

example system, 202

expand, 182

expected time, 2

exponent, 205

extract, 63

extract-bits, 223

eyesore, 105

fast Fourier transform, 146

fenceposts, 27

fetch-and-op, 73

field, 166

figure-drawing algorithm, 145

fix-near-merge, 56, 229

fixed-network models,

comparison to V-RAM, 28

flag-merge, 66, 156, 224

flag-merge-segments, 156

flat collection, 218

flat machine, 143

flat parallel construct, 218

flattening nested parallelism, 143

floating-point +-scan,

implementing, 205

forest of trees, 109

fork-and-join, 149

forking, 145

FORTRAN, 5, 131

forward solution, 118

fragmentation of memory, 192

future research, 211

Gaussian elimination, 119

graph reduction, 162

graph,

algorithms, 109

operations on, 79

representation of, 45, 79

star-merge, 90

grid models, 2, 28

grid-ordered collection, 134

halving merge, 27 54, 148

head-flags, 67

head-pointers, 67

header bit, 203

heap ordering, 94

heterogeneous,

collection, 134

high-level languages, 1

history of book, 213

Hitachi S-820, 2

homogeneous, 218

collection, 134

vectors, 60

hypercube, 2, 5, 190

hyperplane, 96

iWARP computer, 2

ID3 learning algorithm, 237

if-then-else statement, 149, 154

implementing,

parallel vector models, 189

index, 64, 224

indirect addressing, 28, 153

inner parallel, 145

insert, 63

Intel iPSC computer, 2

inverse-permute, 26, 66

join operation, 135

k-D tree, 96

key-ordered collection, 134

keyed-scan, 73

languages,

collection-oriented, 131

latency of router, 9

leaffix, 86

learning algorithm,

ID3, 237

left-paren vector, 84

length, 63, 169

line drawing, 28, 50, 145, 233

line-draw, 233

line-length, 233

line-of-sight algorithm, 40, 105

linear-systems algorithm, 118

linked list, 24

list-scan, 86

load balancing, 51

locality, 211

long vectors, 51, 218

lower chain, 103

lower triangular, 118

254 INDEX

LU-decomposition, 118

machine models,

hypercube, 5

message passing, 5

make-pfield, 177

map, 133

match, 167

matrix-vector-multiply, 117

max-index, 67

maximal-independent-set algorithm, 114

maximum-flow algorithm, 114

memory,

access to, 149

management, 191

scalar, 32, 61

merge sort, 44, 146

merge, 27

bitonic, 27

halving, 27, 54

instruction, 70

line, 99

rectangles, 99

merge, 4

merge-hull algorithm, 94, 103

merge-mask, 70

message passing models, 5

minimum-spanning-tree algorithm, 109

models,

algorithmic, 37

move-scalar, 61, 150

move-vector, 61, 150

move, 167

multi-extract, 26, 72

multi-prefix operation, 73

multidimensional arrays, 28, 91

multiply recursive functions, 160

multiprocessors, 4

NASA MPP, 2

NC1, 4, 31

near-merge vector, 56

neighbor reducing, 83

nested collections, 132

representation of, 141

nested parallelism, 144

flattening, 143

nested,

conditionals, 163

fields, 165, 172

parallel, 218, 163

next, 226

NIAL, 10, 131

non conditional functions, 160

numerical algorithms, 5, 117

objective function, 122

observation point, 105

optimal,

serially, 32

outer parallel, 145

outer-product algorithm, 123

over-elements, 223

P = NP, 30

P-RAM, 2, 5

comparison to V-RAM, 22

definition of, 221

simulation of V-RAM, 195

pack, 26, 65, 94, 103, 224

pack-segments, 156

Paralation Lisp, 10, 48, 131, 138, 165

parallel,

control, 212

primitives, 25

parallel vector model, 1, 3, 19

implementing, 189

parenthetical form of a tree, 84

Pascal, 131

permute, 4, 62

implementation of, 9, 192

pfield, 165, 171

pivot,

in quicksort, 6

pivoting,

in gaussian elimination, 119

in simplex, 122

pixels, 50

prefix sum computation, 219

history of, 220

preflow push method, 114

previous, 226

primitive data,

P-RAM vs. V-RAM, 24

primitive operations,

P-RAM vs. V-RAM, 25

INDEX 255

selecting, 31

processor-oriented models, 5, 22, 28, 219

processor-step complexity, 219

program for a V-RAM, 3

program step, 5

proximity algorithms, 98

pruning, 53

pvectors, 170

pyramids, 28

quad-split, 233

quad-tree, 233

quickhull algorithm, 101, 234

quicksort, 1, 2, 6, 12, 46, 101, 235

RAM, 3, 37, 209

extensions of, 22

random mate, 110

rank-split, 98

rank-vector, 98

ray, 106

ray structure, 106

ray tracing, 96

recursion tree, 8

recursive-flag-merge, 180

recursive-pack, 180

recursive-unpack, 180

reduce, 26, 65, 169, 224

rendering, 51, 96

replicating, 144, 219

access-fixed theorem, 150

access-restricted theorem, 148

theorem, 67, 148

translator, 143

representation of,

graphs, 45

nested collections, 141

trees, 84

right-paren vector, 84

roadmap, 12

rootfix, 86

round-robin simulation, 161

row-major order, 91

scalar instructions, 61

scalar memory, 3, 32, 61

scan instruction, 6, 35, 63

history of, 220

implementing, 197

Scan-Vector Lisp, 169, 223

scan-vector model, 35, 59

search, 49

binary, 94

segment,

descriptor, 67

descriptor translations, 227

flags, 45, 48

operations, 68

segmented instructions, 6, 228

segmented scans, 45,

implementation of, 203

segmented vector, 67

segments, 45, 143

select, 61

select-permute, 62, 194

selection vector, 62

Sequent Balance, 2

serial control, 5

serial primitives, 25

serial vector machines, 5

serially linear,

model, 31, 219

primitive, 31, 219

serially optimal, 32

SETL, 2, 7, 10, 131, 165

setq, 180

sets, 133

Shared Memory SIMD Multiprocessor,

implementation on, 9

shared memory computer, 2

shuffle-exchange networks, 28

significand, 206

SIMD P-RAM, 5

SIMD computers, 154

simp-elwise, 177

simple field, 172

simple operations, 64

simple vector, 19

simplex algorithm, 122

simulating machine, 152

singly recursive functions, 160

size,

of boolean circuit, 4

small changes, 212

sort,

bitonic, 44

256 INDEX

Cole’s merge, 44

for sparse matrix multiply, 125

quicksort, 46, 235

radix, 74

replicated, 145

split-radix, 43

sort, 169

space complexity, 32

sparse matrix-multiply algorithm, 123

special forms, 175

split, 29, 43, 66, 94, 101, 224

split-and-segment, 70, 90, 94

split-radix-sort, 43

SQL, 131

stack allocation, 192

stack, 149, 154

star edge, 111

star of a graph, 110

star-merge, 90, 110

step complexity, 4, 21

stepping-down, 165, 177

stepping-up, 165, 177

Strassen’s matrix multiply, 146

stretch and warp, 26

structure field, 173

sum state machine, 200, 204

sum, 4

SV lisp, 223

Symbolics 3600, 12

synchronization, 9

tableau, 122

text formatting, 146

then expression, 156

theoretical models, 2

thesis,

changes from, 216

Thinking Machines,

see Connection Machine

throughput, 9

time complexity, 3, 21

titanic, 1

translating from P-RAM, 27

tree,

deleting vertices, 89

depth of, 86

Euler-tour order, 84

implementation of scan, 198

k-D, 96

leaffix and rootfix, 86

merging, 90

minimum-spanning, 109

quad, 233

splitting, 90

operations on, 84

representation of, 24, 84

tuple, 133

Turing machine, 3

Ultracomputer, 73

undirected graphs, 80

unit time primitives, 35

up sweep, 198

upper chain, 103

upper tangent line-segment, 104

upper triangular, 118

V-RAM, 3, 19

comparison to P-RAM, 22

v-graph representation, 79

Vector-RAM, 3, 19

vector computer, 2

vector graph representation, 80

vector instructions, 3, 5, 212

vector length, 3, 23

vector memory, 3, 19, 190

vector processor, 3

vector tree representation, 84

vector-scalar instructions, 63

implementing, 193

virtual vector memory, 190, 220

von Neumann languages, 131

vref, 168

weighted graph, 82

when, 179

while loop, 149

xapping, 133

xector, 133

xet, 133

