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Vector Order Statistics Operators as Color Edge Detectors 

P. E. Trahanias and A. N. Venetsanopoulos zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Abstruct4olor edge detection is approached in this paper using vector 

order statistics. Based on the R-ordering method, a clasis of color edge de- 
tectors is defined. These detectors function as vector operators as opposed 
to component-wise operators. Specific edge detectors can he obtained 
as special cases of this class. Various such detectors are defined and 
analyzed. Experimental results show the noise robustness of the vector 
order statistics operators. A quantitative evaluation aind comparison to 
other color edge detectors favors our approach. Edge detection results 
obtained from real color images demonstrate the efFectiveness of the 
proposed approach in real applications. 

I. INTRODUCTION 

An edge is characterized in a monochrome image by an intensity 
discontinuity. This may correspond to object boundaries or to a 
change in some physical property, such as illumination (shadows) or 
reflectance (surface orientation). In the case of mulltispectral (color) 
images, color plays a significant role in the perception of boundaries 
between regions as it is indicated by psychological research on 
the human visual system [l], [2]. It follows that color information 
should also be considered in addition to the other physical properties 
in edge detection approaches for color images. However, this is 
implicitly not considered in color edge detection schemes where the 
edges are searched separately in different components of a color 
image (e.g. intensity, normalized red, normalized green [3]) or in 
a component that results as a combination of some other components 
(e.g. brightness [4]). More surprisingly, research in the problem of 
color edge detection seems to have been neglected, especially when 
compared to the bulk of work done in monochrome edge detection 
so far [5]-[SI. 

The early approaches to color edge detection usually comprise 
extensions of the monochrome edge detectors 1.0 color images. 
Nevatia [3] has proposed the use of the Hueckel edge operator in 
the luminance, chrominance color space. Robinsoin [4] has studied 
the application of compass gradient edge detection method to color 
images. The gradient operators proposed for grey-level images [9] can 
be extended to color images by taking the vector sum of the gradients 
of the individual components [lo], [ I l l .  However, this approach may 
be very unsatisfactory in certain cases [ I l l .  Consider for example, 
the case of a color image where in a certain direction, the red 
component is constant while the green and the blue components both 
show step edges with the same strength but in opposite directions. 
Then, the vector sum of the gradients would provide a null gradient. 
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Consequently, latest approaches consider the problem of color edge 
detection in the vector space. In these approaches, color images are 
treated as vector fields, as has initially been suggested in [12]. Zenzo 
[ I l l ,  and Cumani [I31 employ vector gradient and second order 
derivative operators, respectively. In another approach, reported in 
[lo], the entropy operator is used as an edge detector for monochrome 
as well as for color images. 

A different approach to the problem of color edge detection is 
proposed in this paper which is based on vector order statistics 
[ 141. This approach is inspired by the morphological edge detectors 
[15], [16] that have been proposed for the case of monochrome 
images. These detectors essentially operate by detecting local min- 
ima and maxima in the image function and combining them in a 
suitable way in order to produce a positive response for an edge 
pixel. Since there is no exact equivalent of the min-max scalar 
operators for multivariate variables, we rely on the vector ordering 
schemes that have been proposed in the statistics literature [14]. 
More specifically, the R-ordering (reduced or aggregate ordering) 
scheme is adopted, and a class of color edge detectors is defined 
using linear combinations of the sorted vector samples. The minimum 
over the magnitudes of these linear combinations defines this class 
of operators. Different coefficients in the linear combinations result 
in different edge detectors that vary in simplicity and in efficiency. 
The coefficients are preset and cannot be changed at run time. It 
is shown by experimental and simulation results that a certain set 
of coefficients achieves a robust color edge detector. Moreover, 
our approach is shown superior to previous approaches based on 
comparative evaluation results using Pratt’s figure of merit [17]. The 
comparison has been made against the well known vector operators 
(vector gradient, second order derivative, entropy), and the vector sum 
of the gradients of the three color components. The final operator is 
also used since it presents one of the best known component-wise 
operators [ 181. 

In what follows, a brief introduction to vector order statistics is 
first given in Section I1 for the self completeness of the paper. Our 
approach to color edge detection is described in detail in Section 111. 
Evaluation results as well as edge detection results obtained from real 
images are presented in Section IV, and our conclusions are outlined 
in Section V. 

11. VECTOR ORDER STATISTICS 

Scalar order statistics have played an important role in the design 
of robust signal analysis techniques. This is due to the fact that 
any outliers will be located in the extreme ranks in the sorted data. 
Consequently, these outliers can be isolated and filtered out before the 
signal is further processed. Ordering of univariate data is well defined 
and has been extensively studied [19]. Let the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn random variables 
X,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi = 1,2,  . . . , n, be arranged in ascending order of magnitude as 

Then the ith random variable X(t) is the so-called ith order statistic. 
The minimum X(l), maximum X(n), and median X(n/2) are among 
the most important order statistics, resulting in the min, max, and 
median filters, respectively. 
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These concepts are, however, not straightforwardly expanded to 
multivariate data since there isn’t any universal way of defining an 
ordering in multivariate data. There has been a number of ways 
proposed to perform multivariate data ordering that are generally 
classified into zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 141: marginal ordering (M-ordering), reduced or 
aggregate ordering (R-ordering), partial ordering (P-ordering), and 
conditional ordering (C-ordering). 

Let X represent a p-dimensional multivariate X = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
[ X I , X 2 , .  . . ,XplT where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAXi, I = 1 , 2 , .  . . . p  are random 
variables and let X’, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi = 1 , 2 , .  . . , n be an observation of X. Each 
Xt is a p-dimensional vector Xt = [ X i ,  XG, . . . , X i ] T .  

In M-ordering the multivariate samples are ordered along each 
one of the p-dimensions independently. For color signals this is 
equivalent to the separable method where each one of the colors 
is processed independently. The ith marginal order statistic is the 

vector X‘” = [Xp’, Xp’, . . . , Xt’]  , where Xp) is the ith largest 

element in the rth channel. The marginal order statistic X(‘) may 
not correspond to any of the original samples XI, X2, . . . . X” as it 
does in one dimension. 

In R-ordering, each multivariate observation X’ is reduced to a 
scalar value zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd, according to a distance criterion. A metric that is 
often used is the generalized distance to some point zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx. The samples 
are then arranged in ascending order of magnitude of the associated 
metric values d,. 

In P-ordering the objective is to partition the data into groups 
or sets of samples, such that the groups can be distinguished with 
respect to order, rank, or extremeness. This type of ordering can 
be accomplished by using the notion of convex hulls. However, the 
determination of the convex hull is difficult to do in more than two 
dimensions. Other ways to achieve P-ordering are ad hoc partitioning 
procedures and are thus not preferred. Another drawback associated 
with P-ordering is that there is no ordering within the groups and thus 
it is not easily expressed in analytical terms. These properties make 
P-ordering infeasible for implementation in digital image processing. 

In C-ordering the multivariate samples are ordered conditional on 
one of the marginal sets of observations. This has the disadvantage in 
color image processing that only the information in one component 
(channel) is used. 

From the above it is evident that R-ordering is more appropriate 
for color image processing than the other vector ordering methods. 
If we employ as a distance metric the aggregate distance of Xz to 
the set of vectors XI, X2, .  . . , X”, then 

T 

where I /  . 1 1  represents an appropriate vector norm. The arrangement 
of the d ,s  in ascending order (d( ’ )  5 d(2) 5 . . . 5 c l ( n ) ) ,  associates 
the same ordering to the multivariate X’s 

In the ordered sequence X(’) is the vector median of the data 
samples [20]. It is defined as the vector contained in the given set 
whose distance to all other vectors is a minimum. Moreover, vectors 
appearing in low ranks in the ordered sequence are vectors centrally 
located in the population, whereas vectors appearing in high ranks are 
vectors that diverge mostly from the data population. These samples 
are generally called “outliers.” It follows that this ordering scheme 
gives a natural definition of the median of a population and of the 
outliers of a population. 
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Fig. 1. (a) ideal color step edge (VI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz\, V2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE/), (b) ideal 3-pixel 
color ramp edge (VI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS,: V2 37, Vy = 2 - = T I .  

111. COLOR EDGE DETECTION 

A. Notation and Definitions 

In this work a color image is viewed as a vector field, represented 
by a discrete vector valued function f(x) : 2’ + Z m ,  where Z 
represents the set of integers’. A notation will be used in the following 
concerning the image function f .  For W C Z 2 ,  xz E W, i = 
1 ,2 . .  . . . n, n is the size (number of pixels) of W, f(xt) will be 
denoted as X” X(’) will denote the ith ordered vector in the window 
TV according to the R-ordering method where the aggregate distance 
is used as a distance metric. Consequently, X(’) is the vector median 
in the window W and X(”) is the outlier in the highest rank of the 
ordered vectors. 

Although definitions of color edges have been given in other works 
[3], [13] we give here a loose definition of color edges in the context 
of vector fields. We also want to extend the notion of ramp edges 
that is well understood in monochrome images to color images. It 
is noted that the following definitions are not intended as formal 
definitions that can lead to edge detection operators but rather as 
intuitive descriptions of the notion of color edges in order to facilitate 
our discussion on edge detectors. We define a color edge as any 
signiJcant discontinuity in the vector field representing the color 
image function. An abrupt change in the vector field characterizes a 
color step edge, whereas a gradual change characterizes a color ramp 
edge. These points are illustrated in Fig. 1. A vertical color step edge 
is shown in Fig. l(a), whereas a vertical color 3-pixel ramp edge is 
shown in Fig. l(b). 

B. Color Edge Detectors Based on Vector Order Statistics 

Based on the previous discussion on vector order statistics, we 
define the basic color edge detector, the vector range’ (VR) edge 
detector, as 

V R expresses in a quantitative way the deviation of the vector outlier 
in the highest rank from the vector median in W .  Consequently, in a 
uniform area, where all vectors will be close to each other, the output 
of V R  will be small. However, its response on an edge will be large 
since X(”) will be selected among the vectors from the one side of 
the edge (the smaller side, when we assume that W is divided by 
the edge into two unequal sides) while X(’) will be selected among 
the vectors from the other side of the edge (the larger side). By 
thresholding the output of V R  the actual edges can be obtained. 

’ Usually m = 3 but the results presented hold for m 2 2 .  

’The name is borrowed from the scalar case where X ( ” )  - X( ’ )  is the 
range of the ordered random variables. 
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Fig. 2. (a) response of VR to the image of Fig. l(a), C == JIV1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-VzI(, (b) 
response of V R  to the image of Fig. lb, C/2 = llVl -V:$II = IIVz -V311. 

The response of V R  to the two images (vector fields) of Fig. 1 is 
shown in Fig. 23. As can be verified from Fig. 2, V R  introduces no 
bias in the case of a color step edge since it responds equally to both 
sides of the edge (Fig. 2(a)), but it responds with a 3-pixel wide 
edge in the case of an ideal color ramp edge. V R  is also sensitive 
to noise, especially to noise modeled with a heavy-tailed distribution 
(e.g. double-exponential) which, according to [20]1, 161, is termed 
as heavy-tailed noise. Similarly, noise modeled with a short-tailed 
distribution (e.g. gaussian) is termed as short-tailed noise. 

VR will respond with n pixels (the pixels that belong to W )  to 
a single noisy pixel in the center of W .  This drawback leads us 
to consider dispersion measures which are known as more robust 
estimates in the presence of noise [19]. A class of operators can 
be defined as a linear combination of the ordered vectors; V R  is a 
special case of this class. This class of operators expresses a measure 
of the dispersion of the ordered vectors, and hence the name vector 
dispersion edge detectors (V D E D ) :  

where at are proper coefficients (weights). V R  is obtained from 
V D E D  for a,  = 1, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa1 = -1, and a, = 0, i = 2 , .  . . ,n  - 1. 
Equation (5) can be further generalized by considering k sets of 
coefficients at and combining the resulting vector magnitudes in a 
suitable way. The combination that is proposed employs a minimum 
operator which attenuates the effect of noise. Such a minimum 
operator has also been employed in [16] in order to derive a detector 
insensitive to noise impulses. According to the above, the general 
class of color edge detectors based on vector order statistics is defined 
as (6), shown at the bottom of the page, where h ! fVDED stands 
for minimum V D E D .  Specific color edge detectors can be obtained 
from M V D E D  by selecting sets of coefficients at3. Since a strict 
mathematical approach to this seems very difficult, we select sets of 
aC3 s that satisfy the requirements of (a) noise insensitivity, and (b) 
proper response to ramp edges. 

3A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 x 3 window is assumed in this and all subsequent #examples presented 
in this section. 

The resulting edge detectors, that conform to the above require- 
ments, are considered next. Two cases are presented that result in 
operators with (a) immunity to heavy-tailed noise, and (b) immunity 
to short-tailed noise and improved performance in the presence of 
ramp edges. An operator that combines these characteristics is finally 
introduced. For the sake of brevity, the coefficients aZI will implicitly 
be considered as being equal to zero for all the pairs i , j  for which 
they are not defined. 

Case I :  a,, = a,-1,p - . . .  - a,-k+l,k = 1, = 
-1, j = 1 , 2 , .  . . , k ,  k < n. As explained previously, VR is 
sensitive to noise (especially to heavy-tailed noise) since the vectors 
placed in the highest ranks of the ordered data will essentially 
correspond to noisy samples and consequently VR will erroneously 
respond in the presence of noise. This problem can be alleviated by 
employing the magnitudes of the differences of the k highest vectors 
from X(') and obtain an edge detector that is insensitive to heavy- 
tailed noise (e.g. impulsive or exponential). In terms of (6) this can 
be formulated as 

- - 

j = 1 , 2  ,..., k ,  k < n  (7) 

where MVR stands for minimum VR. The choice of k depends on 
n, the size of W. For a 3 x 3 window, for example, k 5 3 and 
for a 5 x 5, k 5 10. Unfortunately, there is no general formula to 
obtain k and its value should be subjectively estimated. However, 
this is not a difficult task since k can be interpreted as the number 
of pixels that belong to the smaller side of an edge, when W is 
centered on an edge pixel. Moreover, its value is not crucial in the 
overall performance of MVR. The response of M V R  to ideal step 
and ramp color edges is exactly the same as the response of VR. 
However, it exhibits improved noise immunity. It will not respond 
to up to k - 1 noisy pixels in W .  

A final comment on MVR concerns the use of the min function. 
We note that this can not be simply replaced by taking the magnitude 
of the vector difference between X("-"') (the "smallest" among 
the X("-3+1), j = 1 , 2 , .  . . , k ,  vectors) and X(') since it will 
yield in general different results. In other words, the magnitudes 
of vector differences in a sorted vector data set, do not necessarily 
follow the order of the sorted vectors. This is exemplified by 
a simple example concerning the set of 2 - D vectors S, = 
{(5,4), (4,5), (4,7), (4,2), (3.4)). Sorting S, will result in the 
orderedsets, = {(4,5),(5,4),(3,4),(4,2),(4,7)}.Itisnotedthat 
(4,7) has been placed in the highest rank in the sorted data set 
and (4,2) has been placed in the second highest rank. The distance, 
however, of (4,2) to the vector median (4,5) is larger than the 
distance of (4,7) to (4,5) for both L1 and Lp metrics. 

Case 2: k = 1, an, = 1, a,l = -111, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi = I ,&.  . .  , I ,  1 < n. 
This choice of coefficients results in a vector dispersion ( V D )  edge 
detector that employs an averaging scheme 
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Fig. 3. 
response of VD to the image of Fig. lb, C1 > zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC,. 

(a) response of V D  to the image of Fig. la, C = llVl - Vz 1 1 ,  @) 

The response of VD to the two images of Fig. 1 is shown in 
Fig. 3. Its behavior is exactly the same with the behavior of T'-R and 
MVR in the case of the color step edge. However, it has improved 
performance in the case of a color ramp edge since it assigns a higher 
value (Cl) to the true edge pixel than the value (C,) assigned to the 
neighboring pixels (the fact that C1 > zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC, can be very easily proved 
by geometrical considerations). Consequently, by thresholding the 
output of VD with a proper threshold value, the ramp edges can 
be extracted. For ideal ramp edges of larger spatial extent than the 
detectors window, more than one central pixels will be given a large 
value. However, by enlarging the window size the central (true edge) 
pixel will again be given a higher value than its neighbors and it can 
be detected by thresholding. 

The value of the parameter I used in the computation of 1-D 
can not be formally defined as it is the case for the parameter k 
employed in the computation of MVR. However, a duality exists 
between these two parameters; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ expresses the number of pixels that 
belong to the larger side of an edge when zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATV is centered on an edge 
pixel. Therefore, proper values for the parameter 1 can be subjectively 
estimated for various sizes of W .  

is the vector a-trimmed mean (VaTM)  [21], which is a robust 
signal estimate in color images when the noise is modeled as short- 
tailed [22]. It is, therefore, expected that TrD will have improved 
performance in the presence of short-tailed noise due to the smoothing 
performed. 

Case3: anl = a,-1,2 = . .  . = a n - k + l , k  = 1. ai3 = +. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi = 
1 , 2 . .  . . , I ,  .j = 1 , 2 , .  . . , k ,  Z,k < n. The two operators introduced 
previously ( M V R ,  VD) have some desirable properties that are 
different in each case. M V R  is insensitive in the presence of heavy- 
tailed noise. VD responds properly to color ramp edges and has 
improved performance in the presence of short-tailed noise. We wish 
to combine these two operators in order to exploit the properties of 
both. This can be achieved by the set of coefficients aZJ outlined 
above. The resulting edge detector (minimum vector dispersion - 
M V D )  is given as 

The second term in the vector difference in (8) Cl=, x(i) ( 7) 

j = l , 2  , . . . ,  k , k , I < n  (9) 

M V D  inherits the properties of its ancestors. It is a bias free 
operator for color step edges whereas it produces a larger response 
for the true edge of a color ramp edge. Its response to the images 
of Fig. 1 is exactly the same as the response of V D  (Fig. 3). 
Moreover, it has improved noise performance since it is robust in 

I I 

(e) (f) 

Fig. 4. Response of M V D  to noise contaminated edge. (a) Initial edge, 
(b) Response of .IfVD to (a), (c)  edge (a) corrupted with gaussian noise, 
(d) response of M V D  to (c) ,  (e) edge (a) corrupted with double-exponential 
noise. (0 response of M V D  to (e). 

the presence of heavy-tailed noise (due to the minimum operation) 
and short-tailed noise (due to the averaging operation). The noise 
performance of MVD is illustrated in Fig. 4 for the cases of 
gaussian (Fig. 4(c)) and double-exponential (Fig. 4(e)) noise. The 
response of M V D ,  shown in Fig. 4(d) and (f), respectively, is 
much larger at the true edge which is, therefore, easily detected by 
thresholding. 

C. Statistical Considerations 

A statistical analysis of M V D  is attempted here in order to derive 
the error probability of the edge detector. The analysis is confined 
to the case of multivariate normal distributions only, since these 
are the only distributions for which analytical results concerning the 
distribution functions have been derived in the statistics literature. We 
consider an ideal edge model with the sample vectors X, on the one 
side of the edge as instances of a random variable X which follows a 
multivariate normal distribution N ,  ( p z ,  I,). Similarly, the sample 
vectors zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY ,  on the other side are instances of the random variable Y 
which is N,(pVr Im) .  Then, the error probability is given as 
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where P,, P, denote the prior probabilities of “edge” and “no edge,” 
respectively, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI‘M, PF are the probabilities of missing an edge 
and false edge alarm, respectively. 

A detailed analysis of (IO) is carried out in the Appendix. Based 
on the results presented there, a plot of PE is drawin which is shown 
in Fig. 5. The parameter p shown on the plot expresses the number 
of sample distances (i.e. ordered vectors) and is equal to IC [see (9)]. 
It is, therefore, related to the window size n. Froin (16), (17), and 
Fig. 5 we can conclude that PE is decreased with respect top. Since p 
increases with the window size n, it is concluded that the probability 
of error PE decreases with respect to 7 ~ .  However, n can not be 
drastically increased since it is well known that a large window has 
a negative effect in accurate edge localization. Besides, n should be 
kept reasonably small due to computational requirements as we will 
see in the next section. 

D. Computational Considerations 

Computationally the vector ordering task is a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0(n2) operation 
since $n(n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- I) vector distances have to be computed. The ordering 
itself may be performed by a fast sorting algorithim (e.g. quicksort) 
with a O(n1ogn) complexity. Therefore, the whole task of vector 
ordering is dominated by the O(n2)  term which determines its 
complexity. For the case, however, of color im,age processing, a 
fast algorithm has been proposed for the computation of the vector 
distances [20]. This algorithm is based on the principle that as the 
window W (of size n)  moves in the image plane, only m (< n) 
new pixels are considered each time whose distances have to be 
computed. The distances of the rest n - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArn pixels are simply updated. 
This algorithm results in a 0 n3” complexity for the computation 

of the vector distances in the case of square windows (m = 6). The 
trade-off is the increased programming complexity in the computation 
of the distances. 

The VaTM can be computed only once since it does not depend 
on the index j [(9)]. Its computation is a O ( l )  operation, 1 < n. 

The computation of the magnitudes of the IC vector differences 
( / /  X(”-3f1) - VaTM is a O ( k )  operatiton, k < n. This 
operation can be performed simultaneously with the minimization 
operation. In summary, the computational complexity of (9) is O(n2)  
if all the vector distances in W7 are computed, which can be reduced 
to O(n3”) if the fast algorithm is employed. For small IL, which 

is the case in edge detection, even the O ( n 2 )  complexity is not 
very expensive. Furthermore, if the L1 norm is adopted only integer 
operations are involved, whereas for the La norm, square root 
operations have to be employed. However, the siquare roots can be 
avoided, which is equivalent to computing the M V D squared. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 

1 1 )  
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IV. EXPERIMENTAL RESULTS 

Quantitative evaluation of the performance of edge detectors is 
complicated since different evaluation criteria are employed by the 
designers which lead to different performance figures. Moreover, 
quantitative evaluation is in many cases not performed and only 
qualitative results are presented which are very difficult to be used 
in assessing the performance of edge detectors. The quantitative 
performance measures can be grouped into two types, probabilistic 
measures and distance measures. The first type is based upon the 
statistics of false edge detection and false edge rejection. The second 
type is based upon edge deviation or error distance which is the 
minimum distance between the detected and the truth edge. A distance 
measure that is often used in edge detector’s evaluations is Pratt’s 
figure of merit (FOM) [17]. It is defined as 

where 10, I I  are the number of detected and number of ideal edge 
points respectively, a (> 0) is a calibration constant, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd ,  is 
the separation distance of the ith detected edge point normal to a 
line of ideal edge points [17]. In all cases 0 < F O M  5 1; for a 
p e ~ e c t  match between the detected and the ideal edges F O M  = 1, 
whereas as the detected edges deviate more and more from the ideal 
ones F O M  goes to zero. F O h l  has been adopted in this work 
due to its advantage over the probabilistic measures that it renders a 
more realistic appraisal of the detected edges [7]. If we consider, for 
example, the case where all the edges are 1-pixel shifted from the 
ground truth, a probabilistic measure would give a very poor rating 
but F O M  still gives a performance measure very close to unity (0.9). 
Moreover, F O M  has been used by many authors in the evaluation of 
edge detectors [7], [17], [25]. The scaling constant a = 1/9 proposed 
by Abdou and Pratt has been adopted in our simulations. 

A. Performance Evaluation 

An artificial image has been created and used as a benchmark 
for assessing the performance of the vector order statistics operators 
and for comparison purposes. It is shown in Fig. 6 along with its 
red, green and blue components. This image has been intentionally 
created in order to meet a number of requirements: (a) it contains 
vertical, horizontal and diagonal edges, (b) there are edges where all 
three color components, or two color components, or only one color 
component change, (c) black (all color components are zero), white 
(all color components are equal to the maximum value, 255) and 
grey (all color components have the same value) areas are present on 
the image, and (d) isoluminant (areas with identical luminance) and 
nonisoluminant areas are present on the image. 

A number of edge detection experiments have been conducted 
using various noise distributions at various noise levels to contaminate 
the test image. In each case, F O M  has been measured and used as 
the performance criterion. The ground truth (real edges) that is needed 
for the computation of F O M ,  is trivially obtained for the noise free 
(original) artificial image (Fig. 6) with the application of any edge 
detector. Three noise types were used in the experiments: gaussian, 
double-exponential and impulsive. For each noise type two sets of 
experiments have been performed. In the first set, the noise process 
in each channel has been considered as an independent process. In 
the second set, the noise process has been considered as a correlated 
process since there is some indication that this type of correlation 
may exist in real color images. 

The performance measures of the color edge detectors based on 
vector order statistics are shown graphically in Fig. 7. A number of 
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(c) (d) 

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6. 
(b) red component, (c) green component, (d) blue component. 

Artificial image used for testing and comparison purposes (a) image, 

conclusions can be drawn from the graphs of Fig. 7 which are in 
accordance with the structure of the edge detectors: 

The performance of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM V D  is superior compared to the other 
operators for all types of noise. This is quite as expected 
since M V D  has actually been assembled using the desirable 
properties of the other operators. 
V R  is sensitive to noise and its performance is largely deteri- 
orated as noise increases. 

* M V R  and TiD have good performances for heavy-tailed and 
short-tailed noise, respectively. 

From the plots of Fig. 7 we also conclude that the performance 
deterioration of the vector order statistics edge detectors is “smooth” 
as noise increases. Only for the case of impulsive noise we observe 
a more “precipitous” performance degradation in the range 6 8  
dB, which, for the test image of Fig. 6, corresponds to 8-10% of 
noise corruption. This noise level is sufficiently high to justify the 
performance degradation, especially for the case of color images 
where the contribution of the three channels causes one in every 
three or four pixels to be corrupted. 

In the experiments described above the Llnorm has been used. 
The reason for this is that very similar results have been obtained for 
both the L I  and the Lz norms, but L1 is cheaper to compute. The 
values used for the parameters of the operators were: 5 x 5 window, 
IC = 8, I = 12. It should be noted here that these values have been 
experimentally obtained and, more importantly, they are not critical in 
the overall performance. Practically, their performance has been left 
unchanged for 7 <: k 5 10 and 10 5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 5 15. Regarding the window 
size, even a 3 x 3 window has given very good results for low noise 
levels. However, for higher noise levels the 5 x 5 window performs 
better since it involves more pixels in the edge detection process. 

For comparison purposes, the same test image and the same 
evaluation procedure have been used. In the experiments conducted 
M V D  has been compared against four other color edge detectors: 
the vector gradient operator [ 1 11, the second-order derivative operator 
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statistics. 

F O M  plots for the color edge detectors based on vector order 

[13], the entropy operator [lo], and the vector sum of the gradients 
of the three color components. The last operator has been selected 
among the operators that result from combining component-wise edge 
detectors since it produces results that are generally better [18]. 

The performance measures obtained are shown in Fig. 8. As can be 
verified from this figure, all the operators have good performance for 
low noise levels, although M V D  performs slightly better. However, 
as the S N R  decreases, the superiority of the proposed M V D  becomes 
clear for all noise types. The performance of the vector gradient 
operator and the second-order derivative operator is close enough 
to the performance of M V D  for gaussian noise but is inferior for 
double-exponential and impulsive noise. The other two operators 
have lower performance measures. Especially the performance of the 
entropy operator is largely degraded as noise increases. 

In order to impart an intuitive feel of the behavior of M V D  and 
the other four color edge detectors, and complement the quantitative 
results presented in Figs. 7 and 8, the edge detection results on a noisy 
version of the test image are shown in Fig. 9. Fig. 9(a) shows the 
test image corrupted with 5% impulsive noise with a noise channel 
correlation factor p = 0.5. Fig. 9(b)-(f) show the edge detection 
results of the corresponding operators. The superiority of M V D  
(Fig. 9(b)) is clearly demonstrated in this example. It is robust in 
the presence of noise while at the same time it is sensitive to the 
image edges. The vector gradient based operators (Fig. 9(c) and (d)) 
exhibit a degree of robustness but the entropy operator (Fig. 9(e)) is 
very noise sensitive. The vector sum of gradients operator (Fig. 9(f)) 
performs comparably to the vector gradient operator (Fig. 9(c)); it is 
interesting to note, however, that it fails to detect two vertical edges 
(red - cyan edge, yellow - pink edge) since the image gradients 
change in opposite directions in these areas. 
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Fig. 8. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFOM plots for five color edge detectors: M V D ,  vector gradi- 
ent (VG),  second-order derivative (SOD),  entropy (EN) ,  vector sum of 
gradients (VSG). 

B. Application to Real Images 

Since the topic is image processing, the subjective evaluation 
constitutes a very important criterion as of the performance of any 
operator. Consequently, we have applied the vector order statistics 
based operators to real color images. Many different kinds of images 
have been utilized ranging from human faces to detailed outdoor 
scenes. In all cases, the results obtained were in good agreement with 
our subjective criteria for color edges. The edge detection results 
for an "airplane" image are presented here. This image has been 
selected because of the difficulty associated with the edge detection 
task due to the low contrast edges. The original color image is shown 
in Fig. 10(a) and the M V D  results are presented in Fig. 10(b). 
The results of the color edge detectors used for comparison are 
also shown in Fig. lO(c)-(0, respectively. A visual evaluation gives 
the impression that the M V D  and the vector giradient perform 
comparably, but still M V D  produces thinner edges and is less 
sensitive to small texture variations. This can be ascribed to the 
averaging operation which essentially smooths out small variations 
whereas the gradient-based operators are sensitive even to small 
changes. The second-order derivative operator is very sensitive to 
texture variations and the edges produced give the impression of 
a blurred original image. The reason for this is that a regularizing 
filter has to be applied before the computation of the derivatives. As 
suggested in [13], the gaussian filter is used; a standard deviation 
value (T = 3.5 has been selected through experimentation. This 
large value of (T is needed for the computation of the second- 
order derivatives and is responsible for the blurring produced. The 
entropy operator is totally insensitive to texture variations but on the 
other hand it leaves undetected many edges that correspond to fine 
image details. The results of the vector sum of the gradients operator 

(f) 

Fig. 9. Noise behavior of color edge detectors. (a) Artificial image corrupted 
with 5% correlated ( p  = 0.5) impulsive noise, (b) M V D ,  (c) vector gradient, 
(d) second-order derivative (e) entropy, (f) vector sum of gradients. 

resemble the results of the vector gradient operator, but are generally 
inferior. Moreover, this operator can not detect some simple edges 
when the gradients of the image components change in the opposite 
direction (see the back wing for example). 

The noise behavior of the color edge detectors is illustrated in 
Fig. 11. Fig. l l (a)  shows the airplane image corrupted with 5% 
correlated zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( p  = 0.5) impulsive noise. The results of the M V D  
and the vector gradient operators are shown in Fig. l l (b)  and (c), 
respectively. As can be verified the performance of the M V D  is 
superior to the vector gradient. The results of the other three operators 
(second-order derivative, entropy and vector sum gradient) are not 
shown since they are inferior. 

V. CONCLUSIONS 

The problem of color edge detection has been studied using vector 
order statistics in this paper. A class of color edge detectors has been 
proposed and efficient operators from this class have been derived by 
proper choice of the parameters. The experimental results presented 
demonstrate the effectiveness of this approach for noiseless as well 
as for noise contaminated images. The robustness of the proposed 
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Fig. 10. Edge detection results. (a) Original image. (b) l fVD,  (c) vector 
gradient, (d) second-order derivative (e) entropy, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(0 vector sum of gradients. 

operators has been experimentally shown for different types of noise 
and even for very low SNR’s. 

Vector order statistics are gaining importance in color image 
processing [20], [26], [22] since they offer a means of ordering 
multivariate samples. Until now, however, they have been used only 
in image filtering tasks by exploiting their property of placing the 
central vectors in the lower ranks of the sorted data. In this work. 
vector order statistics have been employed for the first time for a 
different task, namely color edge detection. Accurate detection of the 
edges is of primary importance for the later steps in an image analysis 
system. It has been shown that the proposed approach achieves this 
goal and consequently it may be very useful in color image analysis. 

APPENDIX 

Let an ideal edge model with the sample vectors X, on the one 
side of the edge be instances of a random variable X which follows a 
multivariate normal distribution zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( p 2 ,  I,). Similarly, the sample 
vectors zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY, on the other side are instances of the random variable Y 
which is iVm(pLy.Im). The error probability is given as 

(c) 

Fig. 11. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
.5% correlated (p = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.5) impulsive noise, (b) M V D ,  (c) vector gradient. 

Noise edge detection results. (a) image of Fig. l l(a) corrupted with 

where P,. P,, denote the prior probabilities of “edge” and “no edge,” 
respectively, and 2%. PF are the probabilities of missing an edge 
and false edge alarm, respectively. Denoting with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx the mean of the 
vectors X,, P.bf can be calculated as 

P,\r = P.{ min llYz - x 1 1  < t I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIIpY - pzll > t }. (13) 

Let the random variable d ,  with instances dl ,  da,  . . . , denote the 
distance IIY - xll, i.e. d ,  = llYz - xll. Let also d(z )  denote the 
sorted sequence d. Clearly, d( l)  = min I/Y, - xll; if we also set 
Ilpy - p.11 = 7 ,  (13) can be rewritten as 

P.\< = Pr{ d(1) - 7 < t‘ I t’ < 0 } , t‘ = t - 7 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
PT{ dT(1) < t’ , t’ < 0 } - - 

Pr{ t’ < 0 } 

where d q l )  = d ( l )  - 7. Carrying out similar computations, PF is 
given as 

We also observe that P, = Pr{t’ < 0}, P, = Pr{t‘ 2 0} and, 
consequently 

PE = Fdr( l )  ( t ‘ ) U ( - t ’ )  + py{t’ 2 o} 
- Fd‘(l) ( t ’ ) U ( t ‘ )  (16) 

where U(.) is the unit step function and Fdr(l) (t’) = F d ( l )  ( t )  since 

Fd‘( l ) ( t ‘ )  = P , { ~ T ( ~ )  I t ’ }  = ~ , { d ( ~ )  I t }  = ~ q ~ ) ( t ) .  ~ d ( ~ )  can 
be obtained from Fd, the distribution function of d as [19, p. 81: 

(17) Fd(,) (x) = 1 - [I - F d ( z ) I P  

where p denotes the number of sample distances. In our case p = k 
[see (9)l. The problem is now reduced to the estimation of Fd. If we 
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consider Euclidean distances then zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd2 follows a nonamtral chi-square 
distribution with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm degrees of freedom and noncentrality parameter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
s = (py - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApz)T(py - pz) [23, p. 191. The cumulative distribution 
function of the noncentral chi-square distribution, when z = m/2 is 
an integer, can be expressed in terms of the generalized Q function 
as F ~ z  (y) = 1 - Q z  (s, a) [24, p. 291. Since the distances d are 
nonnegative, Fd can be obtained by a simple change in variables 
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[25] J. T. Allen and T. Huntsbeger. “Comparing color edge detection and 

segmentation methods,” in Proc. IEEE 1989 Southeastcon, pp. 722-728, 
1989. 

[26] R. C. Hardie and G. R. Arce. “Ranking in RP and its use in multivariate 
image estimation,” IEEE Trans. Circuits Syst. Video Technol., vol. 1, no. 
2, pp. 197-209, June 1991. 
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From (18), (17) can be computed and (16) can also be computed 
provided that Pr{t’ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 0 )  is known. For our model, t’ = t - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 ,  

where t is the detector’s threshold (deterministic quantity) and T = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
llpy - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApsll (constant). Therefore, t’ is a deterministic quantity and 
Pr{t’ 2 O} is unit or zero for t’ 2 o or t’ < 0, respectively. 
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a Distributed Data Representation 

Sridhar Narayan, Gene A. Tagliarini, and Edward W. Page 

Abstract-Multilayer perceptron (MLP) networks trained using back- 
propagation can be slow to converge in many instances. The primary 
reason for slow learning is the global nature of hackpropagation. Another 
reason is the fact that a neuron in an MLP network functions as a 
hyperplane separator and is therefore ineficient when applied to classifi- 
cation problems in which decision boundaries are nonlinear. This paper 
presents a data representational approach that addresses these problems 
while operating within the framework of the familiar backpropagation 
model. We examine the use of receptors with overlapping receptive fields 
as a preprocessing technique for encoding inputs to MLP networks. 
The proposed data representation scheme, termed ensemble encoding, 
is shown to promote local learning and to provide enhanced nonlinear 
separability. Simulation results for well known problems in classification 
and time-series prediction indicate that the use of ensemble encoding 
can significantly reduce the time required to train MLP networks. Since 
the choice of representation for input data is independent of the learning 
algorithm and the functional form employed in the MLP model, nonlinear 
preprocessing of network inputs may he an attractive alternative for many 
MLP network applications. 

I. INTRODUCTION 

Multilayer perceptron (MLP) networks can be trained so that par- 
ticular stimuli evoke desired responses. Algorithms such as backprop- 
agation [ 11 employ samples of targeted behavior to adjust network 
connection weights in a manner that causes a network to learn to 
associate desired output patterns with specific input patterns. Once 
trained, MLP networks are typically capable of generalizing their 
response to provide correct outputs for input patterns that were 
not included in the training set. Neural networks trained using 
backpropagation have achieved notable success in applications such 
as sonar signal classification [2], time-series prediction [3 ] ,  and 
process control [4]. 
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