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Vector Order Statistics Operators as Color Edge Detectors

P. E. Trahanias and A. N. Venetsanopoulos

Abstract—Color edge detection is approached in this paper using vector
order statistics. Based on the R-ordering method, a class of color edge de-
tectors is defined. These detectors function as vector operators as opposed
to component-wise operators. Specific edge detectors can be obtained
as special cases of this class. Various such detectors are defined and
analyzed. Experimental results show the noise robustness of the vector
order statistics operators. A quantitative evaluation and comparison to
other color edge detectors favors our approach. Edge detection results
obtained from real color images demonstrate the effectiveness of the
proposed approach in real applications.

I. INTRODUCTION

An edge is characterized in a monochrome image by an intensity
discontinuity. This may correspond to object boundaries or to a
change in some physical property, such as illumination (shadows) or
reflectance (surface orientation). In the case of multispectral (color)
images, color plays a significant role in the perception of boundaries
between regions as it is indicated by psychological research on
the human visual system [1], [2]. It follows that color information
should also be considered in addition to the other physical properties
in edge detection approaches for color images. However, this is
implicitly not considered in color edge detection schemes where the
edges are searched separately in different components of a color
image (e.g. intensity, normalized red, normalized green [3]) or in
a component that results as a combination of some other components
(e.g. brightness [4]). More surprisingly, research in the problem of
color edge detection seems to have been neglected, especially when
compared to the bulk of work done in monochrome edge detection
so far [S]-[8].

The early approaches to color edge detection usually comprise
extensions of the monochrome edge detectors to color images.
Nevatia [3] has proposed the use of the Hueckel edge operator in
the luminance, chrominance color space. Robinson [4] has studied
the application of compass gradient edge detection method to color
images. The gradient operators proposed for grey-level images [9] can
be extended to color images by taking the vector sum of the gradients
of the individual components [10], [11]. However, this approach may
be very unsatisfactory in certain cases [11]. Consider for example,
the case of a color image where in a certain direction, the red
component is constant while the green and the blue components both
show step edges with the same strength but in opposite directions.
Then, the vector sum of the gradients would provide a null gradient.
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Consequently, latest approaches consider the problem of color edge
detection in the vector space. In these approaches, color images are
treated as vector fields, as has initially been suggested in [12]. Zenzo
[11], and Cumani [13] employ vector gradient and second order
derivative operators, respectively. In another approach, reported in
[10], the entropy operator is used as an edge detector for monochrome
as well as for color images.

A different approach to the problem of color edge detection is
proposed in this paper which is based on vector order statistics
[14]. This approach is inspired by the morphological edge detectors
[15], [16] that have been proposed for the case of monochrome
images. These detectors essentially operate by detecting local min-
ima and maxima in the image function and combining them in a
suitable way in order to produce a positive response for an edge
pixel. Since there is no exact equivalent of the min-max scalar
operators for multivariate variables, we rely on the vector ordering
schemes that have been proposed in the statistics literature [14].
More specifically, the R-ordering (reduced or aggregate ordering)
scheme is adopted, and a class of color edge detectors is defined
using linear combinations of the sorted vector samples. The minimum
over the magnitudes of these linear combinations defines this class
of operators. Different coefficients in the linear combinations result
in different edge detectors that vary in simplicity and in efficiency.
The coefficients are preset and cannot be changed at run time. It
is shown by experimental and simulation results that a certain set
of coefficients achieves a robust color edge detector. Moreover,
our approach is shown superior to previous approaches based on
comparative evaluation results using Pratt’s figure of merit [17]. The
comparison has been made against the well known vector operators
(vector gradient, second order derivative, entropy), and the vector sum
of the gradients of the three color components. The final operator is
also used since it presents one of the best known component-wise
operators [18].

In what follows, a brief introduction to vector order statistics is
first given in Section II for the self completeness of the paper. Our
approach to color edge detection is described in detail in Section IIL
Evaluation results as well as edge detection results obtained from real
images are presented in Section IV, and our conclusions are outlined
in Section V.

II. VECTOR ORDER STATISTICS

Scalar order statistics have played an important role in the design
of robust signal analysis techniques. This is due to the fact that
any outliers will be located in the extreme ranks in the sorted data.
Consequently, these outliers can be isolated and filtered out before the
signal is further processed. Ordering of univariate data is well defined
and has been extensively studied [19]. Let the » random variables
Xi, t=1,2,...,n, be arranged in ascending order of magnitude as

Xy £ X << X 1

Then the ith random variable X ;) is the so-called ith order statistic.
The minimum X (1), maximum X,), and median X, /2 are among
the most important order statistics, resulting in the min, max, and
median filters, respectively.
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These concepts are, however, not straightforwardly expanded to
multivariate data since there isn’t any universal way of defining an
ordering in multivariate data. There has been a number of ways
proposed to perform multivariate data ordering that are generally
classified into [14]: marginal ordering (M-ordering), reduced or
aggregate ordering (R-ordering), partial ordering (P-ordering), and
conditional ordering (C-ordering).

Let X represent a p—dimensional
(X1, X2,...,Xp]T where X;, | = 1,2,...,p are random
variables and let Xi, ¢ =1,2,...,n be an observation of X. Each
X* is a p—dimensional vector X* = [X{, X3,..., X}]T.

In M-ordering the multivariate samples are ordered along each
one of the p—dimensions independently. For color signals this is
equivalent to the separable method where each one of the colors
is processed independently. The ith Trparginal order statistic is the
vector X = [X(li), Xéi), AP X;i)] , where X9 is the ith largest
element in the rth channel. The marginal order statistic X(9 may
not correspond to any of the original samples X', X2,..., X" as it
does in one dimension.

In R-ordering, each multivariate observation X' is reduced to a
scalar value d; according to a distance criterion. A metric that is
often used is the generalized distance to some point x. The samples
are then arranged in ascending order of magnitude of the associated
metric values d;.

In P-ordering the objective is to partition the data into groups
or sets of samples, such that the groups can be distinguished with
respect to order, rank, or extremeness. This type of ordering can
be accomplished by using the notion of convex hulls. However, the
determination of the convex hull is difficult to do in more than two
dimensions. Other ways to achieve P-ordering are ad hoc partitioning
procedures and are thus not preferred. Another drawback associated
with P-ordering is that there is no ordering within the groups and thus
it is not easily expressed in analytical terms. These properties make
P-ordering infeasible for implementation in digital image processing.

In C-ordering the multivariate samples are ordered conditional on
one of the marginal sets of observations. This has the disadvantage in
color image processing that only the information in one component
(channel) is used.

From the above it is evident that R-ordering is more appropriate
for color image processing than the other vector ordering methods.
If we employ as a distance metric the aggregate distance of X® to

multivariate X =

the set of vectors X, X2, ..., X", then
n .
dizzuxuxk L i=1,2,....n )
k=1
where || - || represents an appropriate vector norm. The arrangement

of the d;s in ascending order (d(l) < d(2> << d(n)), associates
the same ordering to the multivariate X's

X(l) < X(Z) <o < X(n) 3)

In the ordered sequence XM s the vector median of the data
samples [20]. It is defined as the vector contained in the given set
whose distance to all other vectors is a minimum. Moreover, vectors
appearing in low ranks in the ordered sequence are vectors centrally
located in the population, whereas vectors appearing in high ranks are
vectors that diverge mostly from the data population. These samples
are generally called “outliers.” It follows that this ordering scheme
gives a natural definition of the median of a population and of the
outliers of a population.
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Fig. 1. (a) ideal color step edge (V1 =\, V2 =), (b) ideal 3-pixel
color ramp edge (Vi =\, Vo =/, V3 = w =1).

II. COLOR EDGE DETECTION

A. Notation and Definitions

In this work a color image is viewed as a vector field, represented
by a discrete vector valued function f(x) : Z2 — Z™, where Z
represents the set of integers’. A notation will be used in the following
concerning the image function f. For W C 2%, x; € W, i =
1,2,...,n, n is the size (number of pixels) of W, f(x;) will be
denoted as X*. X will denote the sth ordered vector in the window
W according to the R-ordering method where the aggregate distance
is used as a distance metric. Consequently, X is the vector median
in the window W and X is the outlier in the highest rank of the
ordered vectors.

Although definitions of color edges have been given in other works
[3], [13] we give here a loose definition of color edges in the context
of vector fields. We also want to extend the notion of ramp edges
that is well understood in monochrome images to color images. It
is noted that the following definitions are not intended as formal
definitions that can lead to edge detection operators but rather as
intuitive descriptions of the notion of color edges in order to facilitate
our discussion on edge detectors. We define a color edge as any
significant discontinuity in the vector field representing the color
image function. An abrupt change in the vector field characterizes a
color step edge, whereas a gradual change characterizes a color ramp
edge. These points are illustrated in Fig. 1. A vertical color step edge
is shown in Fig. 1(a), whereas a vertical color 3-pixel ramp edge is
shown in Fig. 1(b).

B. Color Edge Detectors Based on Vector Order Statistics

Based on the previous discussion on vector order statistics, we
define the basic color edge detector, the vector range® (VR) edge
detector, as

VRE=|x®-xW|| @)

V R expresses in a quantitative way the deviation of the vector outlier
in the highest rank from the vector median in W. Consequently, in a
uniform area, where all vectors will be close to each other, the output
of V R will be small. However, its response on an edge will be large
since X(™ will be selected among the vectors from the one side of
the edge (the smaller side, when we assume that W is divided by
the edge into two unequal sides) while X® will be selected among
the vectors from the other side of the edge (the larger side). By
thresholding the output of V' R the actual edges can be obtained.

1'Usually m = 3 but the results presented hold for m > 2.

2The name is borrowed from the scalar case where X (®) — X (1) is the
range of the ordered random variables.
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Fig. 2. (a) response of V'R to the image of Fig. 1(a), C' = ||[V1 = V2|, (®)

response of V' R to the image of Fig. 1b, C/2 = ||[V1 = V3| = ||[V2 = V3]

The response of V' R to the two images (vector fields) of Fig. 1 is
shown in Fig. 2. As can be verified from Fig. 2, V R introduces no
bias in the case of a color step edge since it responds equally to both
sides of the edge (Fig. 2(a)), but it responds with a 3—pixel wide
edge in the case of an ideal color ramp edge. V R is also sensitive
to noise, especially to noise modeled with a heavy-tailed distribution
(e.g. double-exponential) which, according to [20], [6], is termed
as heavy-tailed noise. Similarly, noise modeled with a short-tailed
distribution (e.g. gaussian) is termed as shori-tailed noise.

VR will respond with n pixels (the pixels that belong to W) to
a single noisy pixel in the center of W. This drawback leads us
to consider dispersion measures which are known as more robust
estimates in the presence of noise [19]. A class of operators can
be defined as a linear combination of the ordered vectors; VR is a
special case of this class. This class of operators expresses a measure
of the dispersion of the ordered vectors, and hence the name vector
dispersion edge detectors (V DED):

VDED = ©)

2": ;X
i=1

where «; are proper coefficients (weights). V' R is obtained from
VDED fora, =1, oy = =1l,and o; = 0, ¢ = 2,...,n — 1.
Equation (5) can be further generalized by considering k sets of
coefficients «; and combining the resulting vector magnitudes in a
suitable way. The combination that is proposed employs a minimum
operator which attenuates the effect of noise. Such a minimum
operator has also been employed in [16] in order to derive a detector
insensitive to noise impulses. According to the above, the general
class of color edge detectors based on vector order statistics is defined
as (6), shown at the bottom of the page, where MV DED stands
for minimum V DED. Specific color edge detectors can be obtained
from MV DED by selecting sets of coefficients «;;. Since a strict
mathematical approach to this seems very difficult, we select sets of
w48 that satisfy the requirements of (a) noise insensitivity, and (b)
proper response to ramp edges.

The resulting edge detectors, that conform to the above require-
ments, are considered next. Two cases are presented that result in
operators with (a) immunity to heavy-tailed noise, and (b) immunity
to short-tailed noise and improved performance in the presence of
ramp edges. An operator that combines these characteristics is finally
introduced. For the sake of brevity, the coefficients a;; will implicitly
be considered as being equal to zero for all the pairs ¢, j for which
they are not defined.

Case l: Qni = Qn_12 = ... = Qn_kt1,k = 1, ai; =
-1, 7 = L,2,...,k, k < n. As explained previously, VR is
sensitive to noise (especially to heavy-tailed noise) since the vectors
placed in the highest ranks of the ordered data will essentially
correspond to noisy samples and consequently V' R will erroneously
respond in the presence of noise. This problem can be alleviated by
employing the magnitudes of the differences of the & highest vectors
from X and obtain an edge detector that is insensitive to heavy-
tailed noise (e.g. impulsive or exponential). In terms of (6) this can
be formulated as

MVR = min { H x(r=i4h _ x () “ }
J
J=1,2,...k k<n %)

where MV R stands for minimum V R. The choice of k& depends on
n, the size of W. For a 3 x 3 window, for example, ¥ < 3 and
for a 5 x 5, k < 10. Unfortunately, there is no general formula to
obtain % and its value should be subjectively estimated. However,
this is not a difficult task since k£ can be interpreted as the number
of pixels that belong to the smaller side of an edge, when W is
centered on an edge pixel. Moreover, its value is not crucial in the
overall performance of MV R. The response of MV R to ideal step
and ramp color edges is exactly the same as the response of V R.
However, it exhibits improved noise immunity. It will not respond
to up to k& — 1 noisy pixels in W.

A final comment on MV R concerns the use of the min function.
‘We note that this can not be simply replaced by taking the magnitude
of the vector difference between X" F+1) (the “smallest” among
the X3+ j = 1,2, ...k, vectors) and X since it will
yield in general different results. In other words, the magnitudes
of vector differences in a sorted vector data set, do not necessarily
follow the order of the sorted vectors. This is exemplified by
a simple example concerning the set of 2 — D vectors S, =
{(5,4),(4,5),(4,7),(4,2),(3,4)}. Sorting S, will result in the
ordered set S, = {(4,5),(5,4),(3,4),(4,2),(4,7)}. It is noted that
(4,7) has been placed in the highest rank in the sorted data set
and (4, 2) has been placed in the second highest rank. The distance,
however, of (4,2) to the vector median (4,5) is larger than the
distance of (4,7) to (4,5) for both Ly and Lo metrics.

Case2: k=1, ani =1, ag=-1/, i=1,2,...,1, 1 <n.
This choice of coefficients results in a vector dispersion (V D) edge
detector that employs an averaging scheme

Lox@
3A 3 x 3 window is assumed in this and all subsequent examples presented VD=1 x" _ Z —)—{— ,Ii<n ®)
in this section. i=1 {
n X n . n .
MVDED = min{ > aax® ‘ } ST anXP L) Y anx® }

i=1 i=1 im1

I (%) :

= min a;; X ,i=12,...,k [©
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Fig. 3. (a) response of V' D to the image of Fig. la, C = ||[V1 — V32|, (b)
response of V' D to the image of Fig. 1b, C; > Cs.

The response of VD to the two images of Fig. 1 is shown in
Fig. 3. Its behavior is exactly the same with the behavior of V' R and
MYV R in the case of the color step edge. However, it has improved
performance in the case of a color ramp edge since it assigns a higher
value (C1) to the true edge pixel than the value (C5) assigned to the
neighboring pixels (the fact that Ci > C; can be very easily proved
by geometrical considerations). Consequently, by thresholding the
output of VD with a proper threshold value, the ramp edges can
be extracted. For ideal ramp edges of larger spatial extent than the
detectors window, more than one central pixels will be given a large
value. However, by enlarging the window size the central (true edge)
pixel will again be given a higher value than its neighbors and it can
be detected by thresholding.

The value of the parameter ! used in the computation of VD
can not be formally defined as it is the case for the parameter k&
employed in the computation of MV RE. However, a duality exists
between these two parameters; ! expresses the number of pixels that
belong to the larger side of an edge when W is centered on an edge
pixel. Therefore, proper values for the parameter  can be subjectively
estimated for various sizes of W.

The second term in the vector difference in (8) (Eiil X;”)
is the vector a—trimmed mean (VaT M) [21], which is a robust
signal estimate in color images when the noise is modeled as short-
tailed [22]. It is, therefore, expected that VD will have improved
performance in the presence of short-tailed noise due to the smoothing

performed.
Case 3: Qp1 = Qp-1,2 = ... = Qpn_ky1k = 1, 055 = %1, 1=
1,2,...,0, 5 =1,2,...,k, Lk < n. The two operators introduced

previously (MV R, VD) have some desirable properties that are
different in each case. MV R is insensitive in the presence of heavy-
tailed noise. V'.D responds properly to color ramp edges and has
improved performance in the presence of short-tailed noise. We wish
to combine these two operators in order to exploit the properties of
both. This can be achieved by the set of coefficients a;; outlined
above. The resulting edge detector (minimum vector dispersion —
MV D) is given as
x(n=i+1) _ Z b

i=1 ! ’

F=1,2,..k ki<n ©)

i

MVD:m_in{‘
7

MV D inherits the properties of its ancestors. It is a bias free
operator for color step edges whereas it produces a larger response
for the true edge of a color ramp edge. Its response to the images
of Fig. 1 is exactly the same as the response of VD (Fig. 3).
Moreover, it has improved noise performance since it is robust in
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Fig. 4. Response of MV D to noise contaminated edge. (a) Initial edge,
(b) Response of MV D to (a), (c) edge (a) corrupted with gaussian noise,
(d) response of MV D to (c), (e) edge (a) corrupted with double-exponential
noise, (f) response of MV D to (e).

the presence of heavy-tailed noise (due to the minimum operation)
and short-tailed noise (due to the averaging operation). The noise
performance of MV D is illustrated in Fig. 4 for the cases of
gaussian (Fig. 4(c)) and double-exponential (Fig. 4(e)) noise. The
response of MV D, shown in Fig. 4(d) and (f), respectively, is
much larger at the true edge which is, therefore, easily detected by
thresholding.

C. Statistical Considerations

A statistical analysis of MV D is attempted here in order to derive
the error probability of the edge detector. The analysis is confined
to the case of multivariate normal distributions only, since these
are the only distributions for which analytical results concerning the
distribution functions have been derived in the statistics literature. We
consider an ideal edge model with the sample vectors X; on the one
side of the edge as instances of a random variable X which follows a
multivariate normal distribution Ny, (fte, [rm ). Similarly, the sample
vectors Y; on the other side are instances of the random variable Y
which is Ny, (jty, Im ). Then, the error probability is given as

Pgp = P.Py + P Pp 10)
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Fig. 5. Pg versus t' (see text for explanation).

where P., P, denote the prior probabilities of “edge” and “no edge,”
respectively, and Pps, Pr are the probabilities of missing an edge
and false edge alarm, respectively.

A detailed analysis of (10) is carried out in the Appendix. Based
on the results presented there, a plot of Pg is drawn which is shown
in Fig. 5. The parameter p shown on the plot expresses the number
of sample distances (i.e. ordered vectors) and is equal to &k [see (9)].
It is, therefore, related to the window size n. From (16), (17), and
Fig. 5 we can conclude that Pg; is decreased with respect to p. Since p
increases with the window size n, it is concluded that the probability
of error Pr decreases with respect to n. However, n can not be
drastically increased since it is well known that a large window has
a negative effect in accurate edge localization. Besides, n should be
kept reasonably small due to computational requirements as we will
see in the next section.

D. Computational Considerations

Computationally the vector ordering task is a O(n?) operation
since %n(n — 1) vector distances have to be computed. The ordering
itself may be performed by a fast sorting algorithm (e.g. quicksort)
with a O(nlogn) complexity. Therefore, the whole task of vector
ordering is dominated by the O(n?) term which determines its
complexity. For the case, however, of color image processing, a
fast algorithm has been proposed for the computation of the vector
distances [20]. This algorithm is based on the principle that as the
window W (of size n) moves in the image plane, only m (< n)
new pixels are considered each time whose distances have to be
computed. The distances of the rest n —m pixels are simply updated.
This algorithm results in a O (ns/ 2) complexity for the computation

of the vector distances in the case of square windows (rn = v/n). The
trade-off is the increased programming complexity in the computation
of the distances. ‘
The VaZ'M can be computed only once since it does not depend
on the index j [(9)]. Its computation is a O(I) operation, | < n.
The computation of the magnitudes of the k& vector differences
X (=it _ v aT M H is a O(k) operation, & < n. This
operation can be performed simuitaneously with the minimization
operation. In summary, the computational complexity of (9) is O(n?)
if all the vector distances in W are computed, which can be reduced
to O(n3/ 2) if the fast algorithm is employed. For small n, which

is the case in edge detection, even the O(n?) complexity is not
very expensive. Furthermore, if the L; norm is adopted only integer
operations are involved, whereas for the Lo norm, square root
operations have to be employed. However, the square roots can be
avoided, which is equivalent to computing the MV D squared.

IV. EXPERIMENTAL RESULTS

Quantitative evaluation of the performance of edge detectors is
complicated since different evaluation criteria are employed by the
designers which lead to different performance figures. Moreover,
quantitative evaluation is in many cases not performed and only
qualitative results are presented which are very difficult to be used
in assessing the performance of edge detectors. The quantitative
performance measures can be grouped into two types, probabilistic
measures and distance measures. The first type is based upon the
statistics of false edge detection and false edge rejection. The second
type is based upon edge deviation or error distance which is the
minimum distance between the detected and the truth edge. A distance
measure that is often used in edge detector’s evaluations is Pratt’s
figure of merit (FOM) [17]. It is defined as

FOM = an

1 &1
max{Ip, I} Z; 1+ a(d;)?

where Ip, I; are the number of detected and number of ideal edge
points respectively, o (> 0) is a calibration constant, and d; is
the separation distance of the ith detected edge point normal to a
line of ideal edge points [17]. In all cases 0 < FOM < 1; for a
perfect match between the detected and the ideal edges FOM = 1,
whereas as the detected edges deviate more and more from the ideal
ones FOM goes to zero. FOM has been adopted in this work
due to its advantage over the probabilistic measures that it renders a
more realistic appraisal of the detected edges [7]. If we consider, for
example, the case where all the edges are 1-pixel shifted from the
ground truth, a probabilistic measure would give a very poor rating
but FFOM still gives a performance measure very close to unity (0.9).
Moreover, F'OM has been used by many authors in the evaluation of
edge detectors [7], [17], [25]. The scaling constant o = 1/9 proposed
by Abdou and Pratt has been adopted in our simulations.

A. Performance Evaluation

An artificial image has been created and used as a benchmark
for assessing the performance of the vector order statistics operators
and for comparison purposes. It is shown in Fig. 6 along with its
red, green and blue components. This image has been intentionally
created in order to meet a number of requirements: (a) it contains
vertical, horizontal and diagonal edges, (b) there are edges where all
three color components, or two color components, or only one color
component change, (c) black (all color components are zero), white
(all color components are equal to the maximum value, 255) and
grey (all color components have the same value) areas are present on
the image, and (d) isoluminant (areas with identical luminance) and
nonisoluminant areas are present on the image.

A number of edge detection experiments have been conducted
using various noise distributions at various noise levels to contaminate
the test image. In each case, FOM has been measured and used as
the performance criterion. The ground truth (real edges) that is needed
for the computation of F'OM, is trivially obtained for the noise free
(original) artificial image (Fig. 6) with the application of any edge
detector. Three noise types were used in the experiments: gaussian,
double-exponential and impulsive. For each noise type two sets of
experiments have been performed. In the first set, the noise process
in each channel has been considered as an independent process. In
the second set, the noise process has been considered as a correlated
process since there is some indication that this type of correlation
may exist in real color images.

The performance measures of the color edge detectors based on
vector order statistics are shown graphically in Fig. 7. A number of
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Fig. 6. Artificial image used for testing and comparison purposes (a) image,
(b) red component, (c) green component, (d) blue component.

conclusions can be drawn from the graphs of Fig. 7 which are in
accordance with the structure of the edge detectors:

¢ The performance of MV D is superior compared to the other
operators for all types of noise. This is quite as expected
since MV D has actually been assembled using the desirable
properties of the other operators.

o VR is sensitive to noise and its performance is largely deteri-

orated as noise increases.

e MV R and VD have good performances for heavy-tailed and

short-tailed noise, respectively.
From the plots of Fig. 7 we also conclude that the performance
deterioration of the vector order statistics edge detectors is “smooth”
as noise increases. Only for the case of impulsive noise we observe
a more “precipitous” performance degradation in the range 6-8
dB, which, for the test image of Fig. 6, corresponds to 8§-10% of
noise corruption. This noise level is sufficiently high to justify the
performance degradation, especially for the case of color images
where the contribution of the three channels causes one in every
three or four pixels to be corrupted.

In the experiments described above the Linorm has been used.
The reason for this is that very similar results have been obtained for
both the L, and the Ly norms, but L; is cheaper to compute. The
values used for the parameters of the operators were: 5 X 5 window,
k = 8,1 = 12. It should be noted here that these values have been
experimentally obtained and, more importantly, they are not critical in
the overall performance. Practically, their performance has been left
unchanged for 7 < k < 10 and 10 < [ < 15. Regarding the window
size, even a 3 X 3 window has given very good results for low noise
levels. However, for higher noise levels the 5 X 5 window performs
better since it involves more pixels in the edge detection process.

For comparison purposes, the same test image and the same
evaluation procedure have been used. In the experiments conducted
MV D has been compared against four other color edge detectors:
the vector gradient operator [11], the second-order derivative operator

Gaussian correlated noise
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Fig. 7. FOM plots for the color edge detectors based on vector order
statistics.

[13], the entropy operator [10], and the vector sum of the gradients
of the three color components. The last operator has been selected
among the operators that result from combining component-wise edge
detectors since it produces results that are generally better [18].

The performance measures obtained are shown in Fig. 8. As can be
verified from this figure, all the operators have good performance for
low noise levels, although MV D performs slightly better. However,
as the SNR decreases, the superiority of the proposed MV D becomes
clear for all noise types. The performance of the vector gradient
operator and the second-order derivative operator is close enough
to the performance of MV D for gaussian noise but is inferior for
double-exponential and impulsive noise. The other two operators
have lower performance measures. Especially the performance of the
entropy operator is largely degraded as noise increases.

In order to impart an intuitive feel of the behavior of MV D and
the other four color edge detectors, and complement the quantitative
results presented in Figs. 7 and 8, the edge detection results on a noisy
version of the test image are shown in Fig. 9. Fig. 9(a) shows the
test image corrupted with 5% impulsive noise with a noise channel
correlation factor p = 0.5. Fig. 9(b)—(f) show the edge detection
results of the corresponding operators. The superiority of MV D
(Fig. 9(b)) is clearly demonstrated in this example. It is robust in
the presence of noise while at the same time it is sensitive to the
image edges. The vector gradient based operators (Fig. 9(c) and (d))
exhibit a degree of robustness but the entropy operator (Fig. 9(e)) is
very noise sensitive. The vector sum of gradients operator (Fig. 9(f))
performs comparably to the vector gradient operator (Fig. 9(c)); it is
interesting to note, however, that it fails to detect two vertical edges
(red — cyan edge, yellow — pink edge) since the image gradients
change in opposite directions in these areas.
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Fig. 8. FOM plots for five color edge detectors: MV D, vector gradi-
ent (V@G), second-order derivative (SOD), entropy (EN), vector sum of
gradients (V SG).

B. Application to Real Images

Since the topic is image processing, the subjective evaluation
constitutes a very important criterion as of the performance of any
operator. Consequently, we have applied the vector order statistics
based operators to real color images. Many different kinds of images
have been utilized ranging from human faces to detailed outdoor
scenes. In all cases, the results obtained were in good agreement with
our subjective criteria for color edges. The edge detection results
for an “airplane” image are presented here. This image has been
selected because of the difficulty associated with the edge detection
task due to the low contrast edges. The original color image is shown
in Fig. 10(a) and the MV D results are presented in Fig. 10(b).
The results of the color edge detectors used for comparison are
also shown in Fig. 10(c)-(f), respectively. A visual evaluation gives
the impression that the MV D and the vector gradient perform
comparably, but still MV D produces thinner edges and is less
sensitive to small texture variations. This can be ascribed to the
averaging operation which essentially smooths out small variations
whereas the gradient-based operators are sensitive even to small
changes. The second-order derivative operator is very sensitive to
texture variations and the edges produced give the impression of
a blurred original image. The reason for this is that a regularizing
filter has to be applied before the computation of the derivatives. As
suggested in [13], the gaussian filter is used; a standard deviation
value ¢ = 3.5 has been selected through experimentation. This
large value of ¢ is needed for the computation of the second-
order derivatives and is responsible for the blurring produced. The
entropy operator is totally insensitive to texture variations but on the
other hand it leaves undetected many edges that correspond to fine
image details. The results of the vector sum of the gradients operator

Fig. 9. Noise behavior of color edge detectors. (a) Artificial image corrupted
with 5% correlated (p = 0.5) impulsive noise, (b) MV D, (c) vector gradient,
(d) second-order derivative (e) entropy, (f) vector sum of gradients.

resemble the results of the vector gradient operator, but are generally
inferior. Moreover, this operator can not detect some simple edges
when the gradients of the image components change in the opposite
direction (see the back wing for example).

The noise behavior of the color edge detectors is illustrated in
Fig. 11. Fig. 11(a) shows the airplane image corrupted with 5%
correlated (p = 0.5) impulsive noise. The results of the MV D
and the vector gradient operators are shown in Fig. 11(b) and (c),
respectively. As can be verified the performance of the MV D is
superior to the vector gradient. The results of the other three operators
(second-order derivative, entropy and vector sum gradient) are not
shown since they are inferior.

V. CONCLUSIONS

The problem of color edge detection has been studied using vector
order statistics in this paper. A class of color edge detectors has been
proposed and efficient operators from this class have been derived by
proper choice of the parameters. The experimental results presented
demonstrate the effectiveness of this approach for noiseless as well
as for noise contaminated images. The robustness of the proposed
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Fig. 10. Edge detection results. (a) Original image, (b) MV D, (¢) vector
gradient, (d) second-order derivative (e) entropy, (f) vector sum of gradients.

operators has been experimentally shown for different types of noise
and even for very low SNR’s.

Vector order statistics are gaining importance in color image
processing [201, [26], [22] since they offer a means of ordering
multivariate samples. Until now, however, they have been used only
in image filtering tasks by exploiting their property of placing the
central vectors in the lower ranks of the sorted data. In this work,
vector order statistics have been employed for the first time for a
different task, namely color edge detection. Accurate detection of the
edges is of primary importance for the later steps in an image analysis
system. It has been shown that the proposed approach achieves this
goal and consequently it may be very useful in color image analysis.

APPENDIX

Let an ideal edge model with the sample vectors X; on the one
side of the edge be instances of a random variable X which follows a
multivariate normal distribution N, (gtz, I ). Similarly, the sample
vectors Y; on the other side are instances of the random variable Y
which is Ny, (g, Im). The error probability is given as

Pg = PPy + Po Pr 12)

Fig. 11. Noise edge detection results. (a) image of Fig. 11(a) corrupted with
5% correlated (p = 0.3) impulsive noise, (b) MV D, (c) vector gradient.

where P., P, denote the prior probabilities of “edge” and “no edge,”
respectively, and Pys, Pr are the probabilities of missing an edge
and false edge alarm, respectively. Denoting with X the mean of the
vectors X;, Par can be calculated as

Py =P {min |[Y; =X || <t |y —pall >t} (13)

Let the random variable d, with instances dy,dsa, ..., denote the
distance ||Y — X||, i.e. di = ||Y; — X]||. Let also d(;y denote the
sorted sequence d. Clearly, d;y = min [|'Y: — X]|; if we also set

llty — pz|l = 7, (13) can be rewritten as
Py=P{dayy—r<t|[t<0},=t—7
_ Pr{d’l—(l) <t/, tl<0}
- Pt <0}
Fy, (t/)
(1) !
=W _—_

Pt <0]’ <0 (14
where d7(;y = d(;y — 7. Carrying out similar computations, Pr is
given as

Fy, (tl)
Pp=1— W " 4>
r=1- prS gyt 20 1)

We also observe that P. = P.{t' <0}, P, = P.{¢ > 0} and,
consequently

Pg = Fyr,y (u(=t") + P {t' > 0}

— Fargy, (£)u(t) (16)

where u(z) is the unit step function and Fur,, (Y= Fyy, (t) since

Fdr(l) (t') = P,»{dT(l) S tl} = Pr{d(l) § t} = Fd(n(t)A Fd<1> can

be obtained from Fjy, the distribution function of d as [19, p. 8
Fd(1) (z)=1-[L - Fafa)]” (17)

where p denotes the number of sample distances. In our case p = &
[see (9)]. The problem is now reduced to the estimation of Fy. If we
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consider Euclidean distances then d? follows a noncentral chi-square
distribution with m degrees of freedom and noncentrality parameter
5= (py — po)T (1y — pz) [23, p. 19]. The cumulative distribution
function of the noncentral chi-square distribution, when z = m/2 is
an integer, can be expressed in terms of the generalized ¢ function
as Fe(y) = 1 — Q. (s, /) [24, p. 29]. Since the distances d are
nonnegative, F;; can be obtained by a simple change in variables

Fa(y) = P{d <y} = P.{d* <y}

=Fpr@y®) =1-Q.(s,y) (18)

From (18), (17) can be computed and (16) can also be computed
provided that P.{¢' > 0} is known. For our model, ¢' = ¢ — 7,
where ¢ is the detector’s threshold (deterministic quantity) and 7 =
[y = pe|| (constant). Therefore, ¢ is a deterministic quantity and
P.{t' > 0} is unit or zero for ¢ > 0 or ¢’ < 0, respectively.
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Enhancing MLP Networks Using
a Distributed Data Representation

Sridhar Narayan, Gene A. Tagliarini, and Edward W. Page

Abstract—Multilayer perceptron (MLP) networks trained using back-
propagation can be slow to converge in many instances. The primary
reason for slow learning is the global nature of backpropagation. Another
reason is the fact that a neuron in an MLP network functions as a
hyperplane separator and is therefore inefficient when applied to classifi-
cation problems in which decision boundaries are nonlinear. This paper
presents a data representational approach that addresses these problems
while operating within the framework of the familiar backpropagation
model. We examine the use of receptors with overlapping receptive fields
as a preprocessing technique for encoding inputs to MLP networks.
The proposed data representation scheme, termed ensemble encoding,
is shown to promote local learning and to provide enhanced nonlinear
separability. Simulation results for well known problems in classification
and time-series prediction indicate that the use of ensemble encoding
can significantly reduce the time required to train MLP networks. Since
the choice of representation for input data is independent of the learning
algorithm and the functional form employed in the MLP model, nonlinear
preprocessing of network inputs may be an attractive alternative for many
MLP network applications.

1. INTRODUCTION

Multilayer perceptron (MLP) networks can be trained so that par-
ticular stimuli evoke desired responses. Algorithms such as backprop-
agation [1] employ samples of targeted behavior to adjust network
connection weights in a manner that causes a network to learn to
associate desired output patterns with specific input patterns. Once
trained, MLP networks are typically capable of generalizing their
response to provide correct outputs for input patterns that were
not included in the training set. Neural networks trained using
backpropagation have achieved notable success in applications such
as sonar signal classification [2], time-series prediction [3], and
process control [4].
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