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Abstract The unsteady dynamics of the Stokes flows, where �∇2
(

p
ρ

)

= 0, is shown to verify the vector

potential–vorticity ( �ψ, �ω) correlation
∂ �ψ
∂t

+ ν �ω + �� = 0, where the field �� is the pressure-gradient vector

potential defined by �∇
(

p
ρ

)

= �∇ × ��. This correlation is analyzed for the Stokes eigenmodes,
∂ �ψ
∂t

= λ �ψ ,

subjected to no-slip boundary conditions on any two-dimensional (2D) closed contour or three-dimensional
(3D) surface. It is established that an asymptotic linear relationship appears, verified in the core part of the

domain, between the vector potential and vorticity, ν ( �ω − �ω0) = −λ �ψ , where �ω0 is a constant offset field,
possibly zero.

Keywords Stokes flow · Stokes eigenmodes

PACS 47.10-g, 4715G-

1 Introduction

Incompressible flows ( �∇ · �v = 0) can be equivalently described by the vector potential �ψ from which they

can be derived (�v = �∇ × �ψ). Its determination (up to the gradient of any harmonic function, and verifying the

constraint �∇ · �ψ = 0) is made possible by the existence of the right number of boundary conditions [7]. For
planar flows, the vector potential reduces to a one-component vector along the normal to the flow plane. This

component is the stream function, ψ . The same simplification occurs for the vorticity �ω = �∇ × �v, where ω

denotes its unique component, along the normal to the flow plane as well, for planar flows.

Both �ψ and �ω are pseudo-vectors, that is they transform themselves in the opposite way with respect to
the proper vectors in a mirror reflection operation. The vorticity is not specifically related to incompressible
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flow, in contrast to the vector potential. Therefore, any incompressible flow is characterized by two separately
defined pseudo-vectors, differing however in one important aspect: the vorticity is completely defined whilst
the vector potential is defined up to the gradient of an harmonic function. Would it be that they are functionally

related, but associated with a third pseudo-vector whose role is to compensate for the arbitrariness of �ψ? The

answer is positive for the Stokes flows, with a relation
∂ �ψ
∂t

+ ν �ω + �� = 0 involving a pressure-gradient vector

potential, ��, defined by �∇
(

p
ρ

)

= �∇ × ��. This ensures that the pressure verifies the harmonicity relation,

�∇2
(

p
ρ

)

= 0. This ( �ψ , �ω) relationship contains all the dynamics of these flows. As for �ψ and �ω, for planar

flows the pressure-gradient vector potential reduces to a one-component vector along the normal to the flow
plane. This component is named the pressure-gradient potential, �.

The fundamental question of a possible vector potential–vorticity ( �ψ, �ω) relationship was initially raised
by Batchelor in a 1956 paper [1], but only for the two-dimensional (2D) inviscid (large Reynolds number)
steady laminar flows whose stream lines are closed. Expressing this relation is still an open question. Correla-
tion ω(ψ) models, such as ω ∝ sinh(βψ), are in particular associated with statistical-mechanical description
of decaying 2D turbulence (see [17] and references therein).

Later, Batchelor [2] again conjectured the existence of a relationship between ψ and ω, but regarding the
2D viscous flows (zero Reynolds number), writing “Thus a solution for ψ as a function of x and y obtained
from −ω = 
ψ = λψ represents either a steady motion of an inviscid fluid, or, when multiplied by exp(−λt),
a decaying motion of viscous fluid.”.

More recently, a scattered (ψ, ω) correlation was provided in [15,16] for five Stokes eigenmodes in the
square. A detailed presentation of the Stokes eigenspace in the square is now available in [9]. Its most inter-
esting feature is that the eigenmodes dynamics behave as if they were isobaric in the square core denoted
therein by RC and arbitrarily defined to be [−0.6,+0.6]2, for a [−1,+1]2 square domain. Within RC , each
eigenmode is shown to verify the simple ω ∝ −λψ relationship, where λ is the associated Stokes eigenvalue.
This is a nice confirmation of the conjecture opened by Batchelor about the viscous flows.

In the present paper, a general exact vectorial ( �ψ, �ω) relation is settled for any unsteady Stokes flow. Then,
guided by the analysis made in [9], this relation is applied to the Stokes eigenmodes confined in the disk, in
the plane channel, in the square and in the cube. It is shown that, in the core of these domains, and therefore

of any closed 2D or 3D domain, these modes verify the linear relationship �ω − �ω0 = −
(

λ
ν

) �ψ , where �ω0 is a
constant, possibly zero, offset field.

2 Stokes problems

2.1 Stokes problem formulations

Let the unsteady Stokes velocity and total pressure fields, (�v, p), be solutions of

∂�v
∂t

= ν �∇2�v − �∇
(

p
ρ

)

for x ∈ �, t > 0,

�∇ · �v = 0 for x ∈ �, t > 0,

�v = �V(x, t) for x ∈ ∂�, t > 0,

�v(x, t = 0) = �V0(x) for x ∈ �,

(1)

where ν is the momentum diffusivity, ρ is the constant fluid density, � is the open domain and ∂� its closure.
�V(x, t) and �V0(x) are compatible velocity fields. The

p
ρ

field can contain any source term that derives from a

scalar potential, such as, for instance, the gravity or a centrifugal acceleration. The first two equations of (1)
imply that the pressure verifies

�∇2

(

p

ρ

)

= 0, for x ∈ �, t > 0. (2)

This is the key relation of this analysis. The pressure
p
ρ

is said to be harmonic. It cannot be periodic along all

the space directions, unless constant, and, if it is periodic along one (or two) directions, it has to monotonically
decrease along the remaining normal direction. Equation (2) leads to consider on the same level the velocity
and pressure gradient as both deriving from a vector potential:
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�v = �∇ × �ψ, �∇
(

p

ρ

)

= �∇ × ��, for x ∈ �, t > 0. (3)

The �ψ and �� fields are subjected to analogous determination constraints, namely

�∇ · �ψ = 0 = �∇ · ��, for x ∈ �, t > 0, (4)

together with the additional specific kinematic relations:

�ω = −�∇2 �ψ, �∇2 �� = 0, for x ∈ �, t > 0 . (5)

Both fields are defined up to an additive arbitrary constant vectorial field.

2.2 Stokes eigenproblem

The Stokes eigenmodes (�v, p) are defined by

λ �v = ν �∇2�v − �∇
(

p
ρ

)

for x ∈ �,

�∇ · �v = 0 for x ∈ �,

�v = 0 for x ∈ ∂�,

(6)

where the eigenvalues λ are strictly negative [5,14]. An alternative form of the system (6) is its vector potential

formulation, with �ψ verifying

(

λ − ν �∇2
)

�∇2 �ψ = 0 for x ∈ � , (7)

�∇ · �ψ = 0 for x ∈ � , (8)

together with homogeneous no-slip/no-flux boundary conditions [7]:

�ψ = ∂ �ψ
∂n

= 0 for x ∈ ∂� , (9)

where n is the coordinate evaluated along �n, the unit vector normal to ∂�.

3 Stokes flow dynamics

3.1 General relation for unsteady flows

Let us write down the generic relation which characterizes the solutions of (1)–(5). To this end we consider
any surface S, delimited by a closed contour C , and crossed by the flow whose net local volumetric flux per
second is

∫

(S)

∂�v
∂t

· �dS =
∫

(C)

∂ �ψ
∂t

· �dl. (10)

By the first equation of (1) this flux is also given by

∫

(S)

∂�v
∂t

· �dS =
∫

(S)

(

ν �∇2�v − �∇
(

p

ρ

))

· �dS. (11)

The first r.h.s. term is easily transformed, using the incompressibility constraint, to become the vorticity cir-
culation along C , namely

∫

(S)

�∇2�v · �dS = −
∫

(S)

�∇ × �ω · �dS = −
∫

(C)

�ω · �dl. (12)
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The pressure gradient flux through �dS also leads, via the pressure-gradient vector potential �� introduced by
Eq. (3), to a contour integral:

∫

(S)

�∇
(

p

ρ

)

· �dS =
∫

(C)

�� · �dl. (13)

From Eq. (11), taking into consideration that Eqs. (10,12,13) imply an arbitrary closed contour C , the local
differential relationship follows:

∂ �ψ
∂t

+ ν �ω + �� = 0, for x ∈ � , t > 0 . (14)

3.2 Steady Stokes flows

In this case, the relation (14) simplifies to

ν �ω + �� = 0 , for x ∈ � .

As a matter of a first illustration of �� for this kind of flow, let us consider the steady (êx , êy)-plane Poiseuille

flow given by �v = U
(

1 −
( y

H

)2
)

êx and �∇
(

p
ρ

)

= Gêx , with U a velocity scale and G a constant pressure

gradient, related by G = − 2νU
H2 . Both ν �ω and �� have only one component, normal to the flow plane, that is

along êz , given by ±Gy, respectively, as expected.

3.3 Stokes eigenmodes

Applying this relation to a Stokes eigenmode verifying Eq. (6) yields the local algebraic relationship

λ �ψ + ν �ω + �� = 0 , for x ∈ � . (15)

A systematic analysis of the consequences of this general vectorial relation is provided in the next sections. It

leads, through the introduction of the �� field, to a full understanding of the already published scalar relation-
ships (ψ, ω) in the square [9,15,16].

4 Stokes eigenmodes dynamics

This section aims to illustrate and interpret the relation (15), with, in particular, a first use of the �� vector
potential. Three cases which can be analytically handled, the fully space-periodic Stokes eigenmodes and those
defined in a disk and in a plane channel, are considered. They are taken as a guide to prepare the analysis

of the numerically computed ( �ψ, �ω) relationship obtained for Stokes eigenmodes that cannot be analytically
determined, such as in squared or cubical domains. This section ends with a generalization of the analysis
results to the Stokes eigenmodes dynamics in any closed domain.

4.1 Fully space-periodic Stokes eigenmodes

The fully space-periodic Stokes eigenmodes, those that are not constrained to verify any boundary conditions,

are well known. First, by harmonicity of the pressure, they are isobaric, that is such that �∇
(

p
ρ

)

= 0 everywhere.

To be periodic in all the space directions, the pressure can only be constant. Correlatively, these eigenmodes

satisfy exactly the functional relationship ν �ω = −λ �ψ everywhere, thanks to the fact that the vector potential
�ψ is not subjected to vanish on any closed contour (2D case) or surface (3D case).
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4.2 Stokes eigenmodes in the disk and plane channel

4.2.1 Stokes eigenmodes in the disk

In a disk of unit radius with φ ∈ [0, 2π[, the stream function ψ(r, φ) and the pressure p(r, φ) are given by

ψ(r, φ) =
[

Jm

(

√

−λ/ν r
)

− Jm

(

√

−λ/ν
)

rm
]

eimφ, (16)

p(r, φ)

ρ
= iλJm

(

√

−λ/ν
)

rmeimφ, (17)

where m must be an integer (m = 0, . . . ,∞) because the fundamental wavelength is fixed to 2π , and Jm is a
Bessel function of the first kind.

√−λ/ν are the roots of

√

−λ/ν J ′
m

(

√

−λ/ν
)

= m Jm

(

√

−λ/ν
)

.

These roots are of infinite number for each m. The vorticity ω is thus given by

ν ω(r, φ) = −λ Jm

(

√

−λ/ν r
)

eimφ = −λ

[

ψ(r, φ) + Jm

(

√

−λ/ν

)

rmeimφ
]

. (18)

This relation gives the expression for �, the only nonzero component of ��, �� = �(r, φ) êz ,

�(r, φ) = λ Jm

(

√

−λ/ν
)

rmeimφ, (19)

as can be checked using the definition (3) of ��. For subsequent use, let us write this component in the case
m = 0. It is constant:

�m=0(r, φ) = λ J0

(

√

−λ/ν

)

. (20)

4.2.2 Stokes eigenmodes in the plane channel

The one-dimensional confined (in x ∈ [−1,+1]) Stokes eigenmodes are presented in detail in [12]. They are
expressed according to

(

u
p

)

=
(

ũ(x)

p̃(x)

)

eimy+λ t ,

where (ũ(x), p̃(x)) are complex functions and m is any real number, since, contrary to the disk case, there is
no fundamental wavelength in the channel. The associated stream functions can be cast into two parts, each
one of given symmetry with x , the symmetric being denoted by ψe(x, y), and the antisymmetric by ψo(x, y).
Their expressions are given by

ψe(x, y) =
(

cosh(mx)

cosh(m)
− cos(µex)

cos(µe)

)

sin(my),

ψo(x, y) =
(

sinh(mx)

sinh(m)
− sin(µox)

sin(µo)

)

cos(my) .

The corresponding eigenvalues λ = −ν (m2 + µ2) are obtained by imposing that their normal flux should
cancel on the boundary, x = ±1. This leads to transcendental relations in µe or µo,

µe tan(µe) = −m tanh(m), µo cot(µo) = m coth(m) .

The first eigenvalues are listed in [12] for m = 1, 10. The corresponding vorticities are then

ν ωe(x, y) = λ
cos(µex)

cos(µe)
sin(my) = −λ

(

ψe(x, y) − cosh(mx)

cosh(m)
sin(my)

)

(21)

ν ωo(x, y) = λ
sin(µox)

sin(µo)
cos(my) = −λ

(

ψo(x, y) − sinh(mx)

sinh(m)
cos(my)

)

. (22)
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Fig. 1 a
(

− ν
λ

)

ω(r, φ = 0), b − 1
λ
�(r, φ = 0) and c ψ(r, φ = 0) for the (m = 10,

√−λ/ν = 43.368) disk eigenmode

Here again, one directly gets the expression of �e and �o, the only nonzero components of ��e and ��o,
��e

o
= �e

o
(x, y) êz , with

�e(x, y) = −λ
cosh(mx)

cosh(m)
sin(my) (23)

and

�o(x, y) = −λ
sinh(mx)

sinh(m)
cos(my), (24)

as can be checked using the �� definition relation (3).

4.2.3 Analysis

The stream function–vorticity (ψ, ω) relationships (18), (21), (22) exhibit a deep analogy. Let us describe the
behavior of the functions � = − (ν ω + λψ). They are periodic, like ψ and ω, with m as a wavenumber along
the direction tangential to the boundary. The stream function is imposed to be an arbitrary constant on the
boundary, a constant usually chosen to be zero, in contrast with the vorticity which has no prescribed value

there. Balancing the boundary value of ω, according to
(

νω+�
−λ

)

= ψ , is made possible by the presence of �.

This is illustrated, in the disk and channel (even-mode) cases, with the 10th eigenmode of m = 10 respectively

computed for φ = 0 and y = π
2m

. Figures 1 and 2 show the functions − νω
λ

, −�
λ

and ψ , respectively, for√−λ/ν = 43.368 and 32.7740 (µ = 31.2111 for the channel mode). The effect of the −�
λ

and ψ boundary

compensation is obvious, but −�
λ

damps progressively into the domain from the boundary, as shown by the

−�
λ

function in curves (b) of Figs. 1 and 2; this damping becomes increasingly pronounced as m increases, in
the disk and the channel, as given by Eqs. (19), (23), and (24).

4.2.4 The (ψ, ω) relationship in the disk

Let us start with the axisymmetric eigenmodes in the disk, m = 0. They of course satisfy the exact relationship

λψ + ν ω + �m=0 = 0 , for r ∈ [0, 1], ∀ φ, (25)

with �m=0 given by (20). This linear relationship between ψ and ω exhibits a constant offset, �m=0, which
gives ω a constant value, noted ω0, at each radial location where ψ cancels. The Stokes eigenvalue λ governs
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(b)
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(a)

Fig. 2 a
(

− ν
λ

)

ω(x, y = π
2m

), b − 1
λ
�(x, y = π

2m
) and c ψ(x, y = π

2m
) for the (m = 10, µ = 31.2111) channel eigenmode

the number of the radial zeroes of ψ , as well as the ω0 value. In this particular case, the exact (ψ, ω) linear
relationship is

λψ + ν (ω − ω0(λ)) = 0 , for r ∈ [0, 1], ∀φ,

with ν ω0(λ) = −λ J0

(√−λ/ν
)

.
Let us follow the same approach to describe the (ψ, ω) relationships associated with the non-axisymmetric

eigenmodes. The only difference comes from the fact that the offset is now a function of r and φ, �(r, φ) as
given by Eq. (19). The φ dependence factorizes in the general relation

λψ(r, φ) + ν ω(r, φ) + �(r, φ) = 0 , for r ∈ [0, 1] × φ ∈ [0, 2π[, (26)

and can be discarded from the discussion.
The left part of Fig. 3 shows a (ψ, ω) scatter plot made from the disk eigenmode depicted in Fig. 1. The

plot contains 1,001 values of
(

− ν
λ

)

ω(r, φ = 0) and ψ(r, φ = 0) obtained on a uniform meshing of r ∈ [0, 1].
The characteristic locations of this correlation plot are the zeroes of ψ(r, φ = 0) listed in Table 1. At all

these locations, we have
(

− ν
λ

)

ω(r, φ = 0) = �(r,φ=0)
λ

, with �(r, φ = 0) decreasing monotonically from the
boundary toward the center of the disk. Reading the correlation plot is made easy by following the way each
arc [curve (c) in Fig. 1] joining two successive zeroes of ψ(r, φ = 0) transforms in the (ψ, ω) plot.

For instance, the first arc, between r = 1 and r = 0.89, leads to the first curved branch of this scatter
plot, with

(

− ν
λ

)

ω(r, φ = 0) going from −0.12 to −0.036. The same occurs with the next arcs, but each time
with less effect from �(r, φ = 0), which leads to a stacking up of the curved branches onto a limit straight-
line branch, like that presented in the right part of Fig. 3. This plot only contains the data corresponding to
r ∈ [0, 0.75], that is the internal region of the disk wherein �(r, φ = 0) gets very small (see Table 1). This
limit branch still possesses a structure whose amplitude is so small that this branch can be practically described
by the average relation ν ω = −λ ψ . Here, no offset comes into this relation, since �(r, φ) vanishes for r → 0.
The reference [9], dedicated to the Stokes eigenmodes in the square, introduced RC for denoting the core part
of the confined domain where this simple (ψ, ω) relationship holds. In the other region of the flow, denoted

by RB , the �
λ

contribution is essential for the previously mentioned boundary compensation. This occurs in a
layer going along the boundaries, whose thickness decreases with m.

4.2.5 The (ψ, ω) relationship in the plane channel

The (ψ, ω) correlation plot (not shown) of the plane channel case is similar to that of the disk case. The pre-
vious description also holds, but with a slight modification in the x-symmetric ψe(x, y) situation. Indeed, an
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ψ

−
(ν

ω
/λ

)

-0.2 -0.1 0.1 0.2 0.30

-0.2

-0.1

0 0

0.1

0.2

0.3

ψ
-0.2 -0.1 0.1 0.2 0.30

-0.2

-0.1

0.1

0.2

0.3

−
(ν

ω
/λ

)

Fig. 3 Scatter plot of values of
(

− ν
λ

)

ω(r, φ = 0) and ψ(r, φ = 0) for the (m = 10,
√−λ/ν = 43.368) disk eigenmode; (left)

1,001 values in r ∈ [0, 1], (right) 751 values in r ∈ [0, 0.75]

Table 1 Radial locations of the zeros of ψ(r, φ = 0) and the corresponding values taken by −100
�(r,φ=0)

λ

r 0 0.33 0.43 0.51 0.59 0.67 0.74 0.82 0.89 1

−100 �(r)
λ

0 2.0 ×10−4 0.002 0.014 0.06 0.21 0.6 1.7 3.6 12

offset is present in the core of the domain, |x | → 0, and the linear relationship reads ν (ω − ω0(y)) = −λψ ,

where, according to Eq. (23), ν ω0(y) = −�e(x → 0, y) = −λ
sin(my)
cosh(m)

. This offset is modulated in y, but

with an amplitude that decreases exponentially with m.

4.3 The Stokes eigenmodes in the square

These Stokes eigenmodes are not accessible by analytical means, but can only be determined by numerical
tools [10]. Two eigenmodes of the square are chosen in order to show that they exhibit the same behavior
as those of the disk and plane channel eigenmodes. They are noted E1, (λ/ν = −13.086172791), and E2,
(λ/ν = −331.966266), where E1 is the fundamental mode presented in [9,13].

For each eigenmode, a figure (Fig. 4 for E1 and Fig. 5 for E2) shows contours in the (x, y) plane of
(

− ν
λ

)

ω(x, y) in (a), ψ(x, y) in (b) and
�(x,y)
(−λ)

in (c), with the same scales and levels in these three plots.

Plots (c) of Figs. 4 and 5 clearly show that the
�(x,y)
(−λ)

fields of E1 and E2 have a quasi-periodic behavior

along the boundary and an exponential decrease of their amplitude moving into the domain from the boundary.
This supplies a way of quantitatively comparing the plots (a) and (b) of the same figures, and completes the
comment made in Sect. 8.2.2 of [9].

Figure 6 gives the functions
(

− ν
λ

)

ω(x, y = y0), ψ(x, y = y0) and
�(x,y=y0)

(−λ)
, with y0 = 0 for E1 and

y0 = −0.259 for E2. They should be compared to those given in Fig. 2, except that, for reasons of symmetry,

the E2 curves are odd with x , giving the functional
�(x,y=y0)

(−λ)
a sinh(mx) shape, instead of the cosh(mx)

present in Fig. 2. It should be noticed that the hyperbolic decrease of
�(x,y=y0)

(−λ)
with x is almost as pronounced

for the fundamental E1 and E2 eigenmodes. As expected, these modes mainly differ by the number of internal
zeroes of the ψ(x, y = y0) functions.

A third set of figures is proposed for each of the E1 and E2 modes, Figs. 7 and 8, respectively. Each
figure contains three scatter plots, based on 972 Chebyshev nodal values distributed in the square, of (ψ, ω)
correlations respectively obtained: (a) along the line y = y0, (b) in the whole square and (c) in the internal
part of the square, RC = (x, y) ∈ [−0.6, 0.6]2. The parts (a) confirm the description made of the left chart
of Fig. 3. There is no internal zero of the E1’s ψ(x, y = y0) function (Fig. 6), and therefore no arc in the
corresponding (ψ, ω) correlation scatter plot [chart (a) of Fig. 7], while E2’s ψ(x, y = y0) function (Fig. 6)
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(−λ)

, for the fundamental (E1, λ/ν = −13.086172791) eigenmode in the square. The

26 contours correspond to values uniformly distributed between −0.01 and 0.007 at steps of 7.1 × 10−4. Solid and dashed lines
correspond, respectively, to positive (and zero) and negative levels
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ω(x, y), b ψ(x, y) and c
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, for the (E2, λ/ν = −331.966266) eigenmode in the square. The 25 contours

correspond to values uniformly distributed between −0.002 and 0.002 at steps of 1.67×10−4. Solid and dashed lines correspond,
respectively, to positive (and zero) and negative levels
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Fig. 6 The functions
(

− ν
λ

)

ω(x, y = y0), ψ(x, y = y0) and
�(x,y=y0)

(−λ)
, with y0 = 0 for (E1, λ/ν = −13.086172791) and

y0 = −0.259 for (E2, λ/ν = −331.966266)
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Fig. 7 Scatter plot of values of
(

− ν
λ

)

ω(x, y) and ψ(x, y) for the (E1, λ/ν = −13.086172791) eigenmode in the square; a along

the cut at y = y0, b in the whole square, c in the internal part of the square, RC = (x, y) ∈ [−0.6, 0.6]2

ψ

(−
ν

/λ
)ω
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-0.002

-0.001

0

0.001

0.002

ψ
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ν

/λ
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Fig. 8 Scatter plot of values of
(

− ν
λ

)

ω(x, y) and ψ(x, y) for the (E2, λ/ν = −331.966266) eigenmode in the square; a along

the cut at y = y0, b in the whole square, c in the internal part of the square, RC = (x, y) ∈ [−0.6, 0.6]2

generates arcs on the (ψ, ω) correlation scatter plot [chart (a) of Fig. 8]. It is now easy to understand the origin
of the butterfly shape of the (ψ, ω) correlation scatter plots published in [15,16], and shown in charts (b) of
Figs. 7 and 8. The correlations that come from the y = y0 lines are indeed simply reproduced after modulation
by a function of y, and the wings generated in this way are bordered by the ψ(x, y) = 0 points associated
with a given range of values of ω(x, y). A large part of these wings can be suppressed if the correlation is only

taken with internal nodal values, where the
�(x,y)
(−λ)

amplitude becomes negligible. In charts (c) of Figs. 7 and

8, restricting the domain to RC = (x, y) ∈ [−0.6, 0.6]2 leads to the almost linear (ψ, ω) relationships quoted
in [9]. These relationships have the general expression

ν (ω − ω0) = −λ ψ,

where the offset ω0 is only numerically measurable, provided the data are accurate enough. This offset cancels
exactly for given symmetry properties, as with E2 according to Fig. 6.

4.4 The Stokes eigenmodes in the cube

Computing the Stokes eigenmodes in the cube is not an easy task, nor is the assessment of their physical
relevance. Preliminary data regarding their computation can be found in [11]. Three components are here to

be considered for the: the vorticity, �ω, and vector potentials, �ψ and ��. Since these eigenmodes enjoy various

symmetry properties, like those in the square [9], the ( �ψ , �ω) correlation can be presented equivalently with
any of its three components. It is therefore chosen to consider only the x-component of this correlation for
one eigenmode (λ/ν = −45.366354) computed with the PrDi numerical scheme [9] using 653 Chebyshev
Gauss–Lobatto nodes.

Figure 9 shows a 3D plot of the fields
(

− ν
λ

)

ωx (x, y, z), ψx (x, y, z) and
�x (x,y,z)

(−λ)
where the surfaces of

values ±2.5×10−4 and ±5×10−4 are represented. The extreme absolute value, 8×10−4, occurs as a boundary

value of the
(

− ν
λ

)

ωx and �x

(−λ)
fields. The similarity between the

(

− ν
λ

)

ωx (x, y, z) and ψx (x, y, z) internal
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Fig. 9
(

− ν
λ

)

ωx (x, y, z), ψx (x, y, z) and
�x (x,y,z)

(−λ)
for the λ/ν = −45.366354 eigenmode in the cube. Four surfaces are repre-

sented, corresponding to the values −5 × 10−4 (green), −2.5 × 10−4 (blue), 2.5 × 10−4 (cyan), and 5 × 10−4 (yellow)1
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Fig. 10 Cross sections, at z0 = 0.243,
(

− ν
λ

)

ωx (x, y, z = z0), ψx (x, y, z = z0) and
�x (x,y,z=z0)

(−λ)
, for the λ/ν = −45.366354

eigenmode in the cube. The 25 contours correspond to values uniformly distributed between −0.001 and 0.001 at steps of

8.33 × 10−5. Solid and dashed lines respectively correspond to positive (and zero) and negative levels

structures is clearly observable, as are their differences which mainly occur near the walls and correspond

to the significant contribution of the
�x (x,y,z)

(−λ)
field. This field becomes negligible with respect to the scale

of both the others in the internal part of the cube, as shown in Fig. 10 where cross sections at z0 = 0.243,
(

− ν
λ

)

ωx (x, y, z = z0), ψx (x, y, z = z0) and
�x (x,y,z=z0)

(−λ)
are presented with the same scales and levels. The

qualitative features exhibited by these plots are similar to those of Figs. 4 and 5, in particular in terms of the

confinement near the boundary of the dominant �
(−λ)

values.

Figure 11 shows the scatter plots of the correlations of
(

− ν
λ

)

ωx (x, y, z) versus ψx (x, y, z), in the whole

cube [plot (a)] and in two slightly different core domains RC , namely RC = [−0.5967,+0.5967]3 in plot (b)
and RC = [−0.5556,+0.5556]3 in plot (c).

The behaviors of these correlations are quite similar to those of the square case, in particular comparing
the plots (b) and (c) of Fig. 8 respectively with plots (a) and (b), (c) of Fig. 11. The butterfly shape again
comes out, firstly, with a vertical line at ψx = 0 and

∣

∣

(

− ν
λ

)

ωx

∣

∣ ≤ 8 × 10−4, associated with the zeroes of
ψx , its boundary values and its internal zeroes, and, secondly, with a thick horizontal zone about ωx = 0. The

respective vertical and horizontal extensions of these line and zone give the exact �x (that is ��) amplitude
that is located on the boundary and in its neighborhood, as observed on chart (c) of Fig. 9. The butterfly wings

together with a major part of these line and zone disappear when the correlation is taken in the internal part of

the cube. The ( �ψ, �ω) correlation then tends toward the approximate linear relationship:

ν ( �ω − �ω0) = −λ �ψ,

1 The color version of this figure can be found in the online version at http://dx.doi.org/10.1007/s00162-006-0037-7
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Fig. 11 Scatter plot of
(

− ν
λ

)

ωx (x, y, z) versus ψx (x, y, z), for the λ/ν = −45.366354 eigenmode in the cube. Plots a, b and c

respectively come from the whole cube [−1, +1]3, from RC = [−0.5967, +0.5967]3 and from RC = [−0.5556, +0.5556]3

where, again, the offset �ω0 is only numerically measurable, unless fixed to be exactly zero by symmetry
considerations.

Plots (b) and (c) of Fig. 11 allow one to gauge the sensitivity of this relationship to the definition of RC .
Reducing its extension on both sides by 0.04 in each space direction leads to narrower linear scatter plots.

4.5 Generalizing to the Stokes eigenmodes in any closed 2D/3D domain

From these particular cases, a general conclusion clearly emerges, already announced by the analysis of the
dynamics made for the eigenmodes in the square (see paragraph 8.2.2 in [9]).

The key point is that the pressure is harmonic, �∇2 p = 0, a property shared with the field ��. In the case
of the fully periodic Stokes eigenmodes (Sect. 4.1), this demands that the pressure gradient be exactly zero
everywhere, since the spatial periodicity is realized in all directions.

When no-slip boundary conditions are imposed on the velocity over a boundary of any shape, a quasi-

periodic pattern occurs for �ω and �ψ along the boundary, a pattern which becomes increasingly periodic, in all

space directions, as one moves into the domain. Accordingly, the vector potential ��, the presence of which
serves to compensate for the vorticity on the boundary, has the same quasi-periodic pattern on the boundary
and therefore has to decrease towards some small value (possibly zero by symmetry) as one moves into the
domain.

5 Conclusion

The general ( �ψ, �ω) correlation characterizing any unsteady harmonic-pressure viscous flow is given by the
exact relation

∂ �ψ
∂t

+ ν �ω + �� = 0,

where the field �� is the pressure-gradient vector potential defined by

�∇
(

p

ρ

)

= �∇ × ��.

Applied to the Stokes eigenmodes, of (real and negative) eigenvalue λ, satisfying no-slip boundary condition
on the closure ∂� of any open domain �, this relation becomes

λ �ψ + ν �ω + �� = 0 , everywhere in � and on ∂�.

The field �� evolves in a quasi-periodic way along the boundary in order to balance the �ω field through the

arbitrarily imposed (zero) value of �ψ . As a consequence of its harmonicity, �� accordingly has to decrease in

amplitude, as one moves into the internal part of �, toward some small (and possibly zero) value, ��core, in the
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core of this domain. An asymptotic ( �ψ, �ω) relationship then emerges that characterizes the dynamics of each
Stokes eigenmode in the internal part of the domain. It reads

ν ( �ω − �ω0) = −λ �ψ,

where the offset �ω0 is given by ν �ω0 = − ��core.

6 Annex: brief survey of the eigenmode Chebyshev spectral solver

The Stokes eigenmodes in the squared and cubical domains were obtained by a Chebyshev spectral collocation
solver dealing with the primitive variables formulation given by Eq. (6). The spatial discretization is based
on the usual Chebyshev Gauss–Lobatto collocation method [4,6]. The velocity–pressure uncoupling is made
by using the projection-diffusion (PrDi) algorithm ([3,8]). Section 3.2 in [8] provides all the details about the
discrete PrDi scheme. This scheme is known to be consistent with the continuous uncoupled problem [8] and is
one of the two solvers involved in the computation of the Stokes eigenmodes in the square [9,10] or in the cube
[11]. The latter solvers, which are based on very different conceptual approaches to the PrDi method, were
used to assess the results reliability and accuracy. Indeed, the Reid–Harris decomposition for the biharmonic
stream-function problem and a lattice Boltzmann solver were implemented, respectively, for the square and
cube cases.

The accuracy of the computed eigenvalues and eigenmodes has been documented in detail for the square
case in [10]. For the cube configuration, the convergence of the eigenvalues with node number is reported in
[11]. The 3D eigenmode that this paper uses in Sect. 4.4 has an eigenvalue determined with a relative error of
about 2 × 10−6, when going from a 333 to a 653 collocation grid.
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