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Vector-pseudoscalar two-meson distribution amplitudes in three-body B meson decays
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We study three-body nonleptonic decays B! VVP by introducing two-meson distribution ampli-
tudes for the vector-pseudoscalar pair, such that the analysis is simplified into the one for two-body
decays. The twist-2 and twist-3 �K two-meson distribution amplitudes, associated with longitudinally
and transversely polarized � mesons, are constrained by the experimental data of the �! �K� and
B! �K� branching ratios. We then predict the B! �K� and B! ��K decay spectra in the �K
invariant mass. Since the resonant contribution in the �K channel is negligible, the above decay spectra
provide a clean test for the application of two-meson distribution amplitudes to three-body B meson
decays.
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Viewing the experimental progress on three-body non-
leptonic B meson decays [1,2], it is urgent to construct a
corresponding framework. In [3] we have proposed a
formalism based on the collinear factorization theorem
in perturbative QCD (PQCD), in which new nonpertur-
bative inputs, the two-meson distribution amplitudes,
were introduced [4]. On one hand, a direct evaluation of
hard kernels for three-body decays, which contain two
virtual gluons at lowest order, is not practical due to the
enormous number of diagrams. On the other hand, the
region with the two gluons being hard simultaneously is
power suppressed and not important. Therefore, the new
nonperturbative inputs are necessary for catching domi-
nant contributions in a simple manner. In our formalism
the collinear factorization formula for a B! h1h2h3
decay amplitude is written, in general, as

M � �B �H ��h1h2 ��h3 ; (1)

where �B;h3 are the B; h3 meson distribution amplitudes,
�h1h2 the h1h2 two-meson distribution amplitude, and �

represents the convolution in longitudinal momentum
fractions x. �h1h2 and �h3 include not only the twist-2
(leading-twist), but two-parton twist-3 (next-to-leading-
twist) components. The computation of the hard kernelH,
basically the same as in two-body B meson decays, is
restricted to leading order in the coupling constant s
so far.

There are two types of factorization theorems: col-
linear factorization [5–9] and kT factorization [10,11].
For a comparison of the two types of theorems, refer to
[12,13]. Collinear factorization works, if it does not de-
velop an end-point singularity from x! 0. If it does,
collinear factorization breaks down, and kT factorization
is more appropriate. It has been known that collinear
factorization of charmed and charmless two-body B me-
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son decays suffers the end-point singularities [14]. This is
the motivation to develop the PQCD formalism for two-
body B meson decays based on kT factorization [15–17].
This approach has been shown to be infrared finite, gauge
invariant, and consistent with the factorization assump-
tion in the heavy-quark limit [18–20]. For three-body B
meson decays, the end-point singularities are smeared by
the two-meson invariant mass [3], and collinear factori-
zation in Eq. (1) holds. Moreover, it has been demon-
strated that both nonresonant contributions and resonant
contributions through two-body channels can be included
by means of an appropriate parametrization of �h1h2 [3].

One of the challenges in the studies of three-body
heavy meson decays is the evaluation of the matrix ele-
ments for heavy meson transition into two hadrons. There
are already several theoretical approaches to this subject
in the literature. The naive factorization [21] for three-
body B meson decays has been adopted in [22], in which
the B meson transition into two hadrons was simply
parametrized by a power-law behavior and then fit to
experimental data. The matrix elements for the above
transition were calculated using the pole model [23–
25], in which intermediate-state decays into two hadrons
were described by effective weak and strong Lagrangians.
The naive factorization has been improved in a so-called
QCD-factorization framework [26]. However, only the
current-produced amplitudes, i.e., those which can be
expressed as products of two form factors in the factori-
zation limit, were studied. The challenging subject of the
B meson transition into two hadrons was not addressed
[26]. Compared to the above methods, our approach does
not rely on the naive factorization, since the nonfactoriz-
able contribution is taken into account through nonfac-
torizable hard kernels. It is complete in the sense that
various topologies of amplitudes, such as the B meson
transition into two hadrons and the current-induced one,
are analyzed in the same framework. It is also more
systematic, because subleading corrections can be eval-
uated order by order in s and power by power in the
06-1  2004 The American Physical Society
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ratiosw=mB andmh3=mB, wherew is the invariant mass of
the two-meson system, and mB (mh3) the B (h3) meson
mass.

In [3] we have applied Eq. (1) to the modes, in which
both h1 and h2 are pseudoscalar mesons P. The modes
with h1 being a vector meson V and h2 a pseudoscalar
meson P have been observed recently [27]. Hence, we
shall extend our formalism to three-body decays involv-
ing the B! VP transition, taking B! ��K as an ex-
ample. We shall first define the �K two-meson
distribution amplitudes, which are more complicated
than the PP ones. A simple parametrization is then pro-
posed, and constrained by the experimental data of the
�! �K� and B! �K� branching ratios. Afterwards,
we predict the decay spectra of the B! �K� and B!
��K modes in the �K invariant mass. The resonant
contribution through the �K channel is expected to be
negligible: the K1�1650�, K2�1770�, and K�1830� mesons
decay into the �K pair with the branching ratios not yet
available in [28]. Therefore, the above spectra provide a
clean test for the application of two-meson distribution
amplitudes to three-body B meson decays.

Label the momenta of the � and K mesons from the B
meson transition as P1 and P2, respectively. The B meson
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momentum PB and the total momentum of the �K pair,
P � P1 � P2, are chosen, in the light-cone coordinates,
as

PB �
mB���
2

p �1; 1; 0T�; P �
mB���
2

p �1; �; 0T�; (2)

with the variable � � w2=m2
B. Define � � P�

1 =P
� as the

� meson momentum fraction and r� � m�=mB as the �
meson-B meson mass ratio, in terms of which the other
kinematic variables are expressed as

P�
2 � �1� ��P�; P�

1 � 	�1� ���� r2�
P
�;

P�
2 � ���� r2��P

�;

Px1 � �Px2 �
�����������������������������������������
��w2 �m2

���1� ��
q

;

�Px1�
2 � �Px2�

2 � P2
T:

(3)

The polarization vectors ���� of the � meson are ob-
tained from the orthogonality ���� � P1 � 0 and from the
normalization ����2 � �1. The exact expressions are
given, in the light-cone coordinates � � ���; ��; �x; �y�,
by
�L��� �
1

r�

0
@ �	� � �1� ���� r2�
 � 2r2����

2
p ������������������������������������������������������������

	� � �1� ���� r2�

2 � 4r2�

q ;
	�1� ���� r2�
	� � �1� ���� r2�
 � 2r2����

2
p ������������������������������������������������������������

	� � �1� ���� r2�

2 � 4r2�

q ;


	� � �1� ���� r2�


�������������������������������������
���� r2���1� ��

q
������������������������������������������������������������
	� � �1� ���� r2�


2 � 4r2�
q ; 0

1
A;

��1�T ��� �

0
@�

���
2

p �������������������������������������
���� r2���1� ��

q
������������������������������������������������������������
	� � �1� ���� r2�


2 � 4r2�
q ;

���
2

p �������������������������������������
���� r2���1� ��

q
������������������������������������������������������������
	� � �1� ���� r2�


2 � 4r2�
q ;

	� � �1� ���� r2�
������������������������������������������������������������
	� � �1� ���� r2�


2 � 4r2�
q ; 0

1
A;

��2�T ��� � �0; 0; 0; 1�:

(4)
The terms proportional to r� will be neglected eventually.
The kaon is treated as a massless particle. The � meson
emitted from the weak vertex then carries the momentum
P3 � �mB=

���
2

p
��0; 1� �; 0T�. Another equivalent, but

more general, representation of ���� is given by

��L ��� �
P2
T � P�

1 �P
�
1 � P�

1 ����
2

p
m�p

;

�xL��� �
PT�P�

1 � P�
1 ����

2
p
m�p

; ��1��T ��� �
�PT���
2

p
p
;

��1�xT ��� �
P�
1 � P�

1���
2

p
p

; (5)

with p �
�������������������������������������������
P2
T � �P�

1 � P�
1 �

2=2
q

.
The three-body B meson decays are dominated by the

contribution from the region, in which the �K pair pos-
sesses the invariant mass w2 �O� ��mB� [3], �� represent-
ing a hadronic scale. The orders of magnitude of the
components,

P� �O�mB�; P� �O� ���; PT �O�
�����������
��mB

q
�;

(6)

are then implied. It is easy to obtain the power counting
rules of the polarization vectors from Eq. (4),

��L ��� �
1

r�
O�1�; �xL��� �

1

r�
O�

�������������
��=mB

q
�;

��L ��� �
1

r�
O� ��=mB�;

��1��T ��� � ��1��T ��� �O�
�������������
��=mB

q
�;

��1�xT ��� �O�1�:

(7)
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In the heavy-quark limit the hierarchy P� � PT � P�

corresponds to a collinear configuration, and suggests the
employment of the new nonperturbative inputs, the �K
two-meson distribution amplitudes. For the PP system,
there is only a single twist-2 distribution amplitude asso-
ciated with the structure ��, and two two-parton twist-3
distribution amplitudes associated with the structures I
(the identity) and ��� [3,4,29]. Here a higher-twist dis-
tribution amplitude means that its contribution is sup-
pressed by powers of w=mB. For the VP system, the
relevant structures are more complicated: three twist-2
distribution amplitudes are associated with ���5 and
����5, and five twist-3 distribution amplitudes with
���5, ����5, �5, and ��. To decompose the two-meson
distribution amplitudes into the components of different
twists, we introduce the polarization vectors of the �K
system,

�L �
1������
2�

p �1;��; 0; 0�; ��1�T � �0; 0; 1; 0�;

��2�T � �0; 0; 0; 1�:
(8)
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A two-pion distribution amplitude has been related to
the pion distribution amplitude through a perturbative
calculation of the process ��� !  � � at large invariant
mass w2 [30]. In this work we adopt a similar trick: we
calculate perturbatively the matrix elements,

h�	P1; ����
K
��P2�j �u�y

��s�0�j0i; (9)

using the�meson and kaon distribution amplitudes up to
twist 3 [31,32], where  represents a structure among I,
�5, ��, ���5, and ����5. The matrix elements can be
expressed as the products of the corresponding form
factors with the kinematic factors. For example, the ma-
trix element for  � ���5 is written as the product of the
form factor Fk with the kinematic factor �P1 � P2��. The
kinematic factors are then approximated in terms of the
momentum P and the polarization vectors � of the �K
system according to the power counting rules in Eqs. (6)
and (7). The resultant �-dependent coefficients in the
approximation contribute to the � dependence of the
�K two-meson distribution amplitudes.

We then derive the decomposition up to O�w=mB�,
h�K�j �u�y�����5s�0�j0i � P�
Z 1

0
dz eizP�y�k�z; �; w�; (10)

h�K�j �u�y������5s�0�j0i � �i
�
��T�P� � �T�P��

Z 1

0
dz eizP�y�T�z; �; w� �

2

w
�P1�P2� � P1�P2��


Z 1

0
dz eizP�y�3�z; �; w�

	
; (11)

h�K�j �u�y���5s�0�j0i � w
Z 1

0
dz eizP�y�p�z; �; w�; (12)

h�K�j �u�y����s�0�j0i � i
w

P � n�
���(���TP

(n��
Z 1

0
dz eizP�y�v�z; �; w�; (13)
h�K�j �u�y��Is�0�j0i � 0; (14)

where z is the momentum fraction carried by the specta-
tor u quark, and n� � �0; 1; 0T� a null vector. We have
adopted the convention �0123 � 1 for the Levi-Civita
tensor ���(*. The above decomposition applies to other
VP systems, such as K� , (K, . . . .

Below we present some details of the expansion of the
kinematic factors. For Eq. (10), we have applied

�P1 � P2�� � �2� � 1�P�; (15)

where the coefficient 2� � 1 is absorbed into the distri-
bution amplitude �k, giving its � dependence. Similarly,
we have approximated the kinematic factor for the matrix
element in Eq. (11),

�T����P1� � �T����P1� � ���T�P� � �T�P��; (16)

where the coefficient � is absorbed into �T , and �T� is a
transverse polarization vector of the �K system. The
contribution from another distribution amplitude �3

can be combined with that from �T via the approxima-
tion,

2

w
�P1�P2� � P1�P2�� � 2

������������������
��1� ��

p
���1�T�P� � ��1�T�P��;

(17)

where the coefficient
������������������
��1� ��

p
comes from Px1 in the

m� ! 0 limit. Since the branching ratio is a sum over the

transverse polarizations ��1�T� and ��2�T�, we omit the coef-

ficient 2, and replace ��1�T� by the two possible �T�. We
have employed the approximation for the matrix element
in Eq. (13),

2

w
���(��

�
T���P

(
1P

�
2 �

w
P � n�

����(��
�
TP

(n��: (18)
-3
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For this structure, the � meson emitted from the weak
vertex must carry a transverse polarization, and a non-
vanishing hard kernel demands that the subscript � de-
notes a transverse component. The coefficient � is then the
sum of � , � � 1, and 1� � from the combinations
[��1��T ��� � ��1�?T ���, P( � P�, P�2 � P�

2 ], [��1��T ��� �
��1�?T ���, P( � P�, P�2 � P�

2 ], and [��1��T ��� � ��1��T ���,
P( � P�, P�2 � P?

2 ], respectively. A coefficient 2 for the
last combination has been omitted for the same reason.

Our strategy does not provide the z dependence.
Assuming the z dependence of each �i�z; �; w� to be
asymptotic, we propose the parametrization,

�k�z; �; w� �
3Fk�w����������

2Nc
p z�1� z��2� � 1�;

�T�z; �; w� �
3FT�w����������

2Nc
p z�1� z��;

�3�z; �; w� �
3F3�w����������

2Nc
p z�1� z�;

�p�z; �; w� �
3Fp�w����������

2Nc
p z�1� z�;

�v�z; �; w� �
3Fv�w����������

2Nc
p z�1� z��:

(19)

The timelike form factors Fk;T;3;p;v�w� define the normal-
ization of the �K two-meson distribution amplitudes.
Note that these form factors are normalized to
Fk;T;3;p;v�m�� � 1 in order to respect the kinematic
threshold of decay spectra. Our strategy also reveals the
power behaviors of the form factors in the asymptotic
region with large w, Fk;T�w� � 1=w2, and F3;p;v�w� �
m0=w3, m0 � 1:7 GeV [16,33] being the chiral scale.
Therefore, we further parametrize the form factors in
the whole range ofw for the evaluation of the nonresonant
contribution:

Fk�w� �
m2

k

�w�m��
2 �m2

k

;

FT�w� �
m2
T

�w�m��
2 �m2

T

;

F3�w� � Fp�w� �
m0m

2
k

�w�m��
3 �m0m

2
k

;

Fv�w� �
m0m2

T

�w�m��
3 �m0m

2
T

;

(20)

where the two free parameters mk;T , expected to be few
GeV [3], are determined by the fit to the measured �!
�K� and B! �K� branching ratios [28]. The form
factors depending on the parameter mk (mT) are associ-
ated with the longitudinally (transversely) polarized �
meson.

We stress that Eqs. (10) and (11) contain not only the
twist-2 distribution amplitudes, but the twist-3 ones. The
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expansion in Eq. (15) corresponding to the component
� �? generates

w�T�
Z 1

0
dz eizP�y�a�z; �; w�;

�a�z; �; w� �
3Fk�w2����������

2Nc
p z�1� z�

������������������
��1� ��

p
:

(21)

Similarly, we extract two twist-3 distribution amplitudes
from Eqs. (16) and (17) corresponding to the components
�; � � �;�, given by

��L�P� � �L�P��
Z 1

0
dz eizP�y	�2� � 1��3�z; �; w�

��t�z; �; w�
;

�t�z; �; w� �
3FT�w

2����������
2Nc

p z�1� z�
������������������
��1� ��

p
:

(22)

For the �K system, the above twist-3 distribution ampli-
tudes lead to smaller contributions compared to �p and
�v, and have been ignored: because of m2

�=w
2 � 1, the

range in Eq. (28) below indicates � � 1, and that the
contribution from �a is suppressed by the factor������������
1� �

p
. There exists a strong cancellation in Eq. (22).

For other systems, such as (K, these twist-3 distribution
amplitudes could be numerically important, because of
m2
(=w2 � 1 in this case.
For the B meson distribution amplitude, we use the

model [16],

�B�x� � NBx
2�1� x�2 exp

�
�
1

2

�
xmB
!B


2
�
; (23)

with the shape parameter !B � 0:40� 0:04 GeV [34],
and the normalization constant NB being related to the
decay constant fB � 190 MeV (in the convention f �
130 MeV) via

R
1
0 �B�x� dx � fB=�2

���������
2Nc

p
�. The range of

!B is determined from a fit to the values of the B!  
form factor from light-cone sum rules [35,36]. The
above �B is identified as �� of the two leading-twist B
meson distribution amplitudes �� defined in [37,38].
Equation (23), vanishing at x! 0, is consistent with the
behavior required by equations of motion [39]. It has been
shown that the Bmeson distribution amplitude is normal-
izable in kT factorization theorem [40], contrary to the
conclusion drawn in the framework of collinear factori-
zation theorem [41,42]. Another distribution amplitude
��B, identified as ��B � ��� ����=

���
2

p
with a zero nor-

malization, contributes at the next-to-leading power of
��=mB [34]. It has been verified numerically [43] that the
contribution to the B!  form factor from �B is much
larger than from ��B.

In summary, we calculate the hard kernels by contract-
ing the quark-level diagrams with the matrix elements,
-4
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h0j �b�0�ld�y��jjB�PB�i �
1���������
2Nc

p
Z 1

0
dx e�ixP�y	�6PB �mB��5
lj�B�x�;

h�K�P; �L�j �u�y
��js�0�lj0i �

1���������
2Nc

p
Z 1

0
dz eizP�yf��5 6P�lj�k�z; �; w� � ��5�ljw�p�z; �; w�g;

h�K�P; �T�j �u�y
��js�0�lj0i �

1���������
2Nc

p
Z 1

0
dz eizP�y

�
��5 6�T 6P�lj	�T�z; �; w� ��3�z; �; w�

������������������
��1� ��

p



� i
w

P � n�
���(�����lj��TP

(n���v�z; �; w�
	
; (24)
which follow Eqs. (10)–(13). The calculation of hard
kernels is as simple as of two-body decays. It is observed
that the distribution amplitudes �k;T;3 give leading con-
tributions, and those from �p;v are suppressed by a power
of w=mB.

The �! �K� differential decay rate in the �K in-
variant mass is written as

d
dw

�
G2
Fm

4
�

384 3 jVusj
2 ����
�

p
�1� ��2F2

k
; (25)
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with m� being the � lepton mass, and Vus the Cabibbo-
Kobayashi-Maskawa matrix element. The B! �K� de-
cay spectrum is written as

d
dw

�
G2
Fm

4
B

256 3

����
�

p
�1� ��

Z 1

m2
�=w

2
d� jM��; w�j2; (26)

with the amplitude,
M��; w� �
e

4 2 VtsVtbmbA��; w�;

A��; w� � h�Kj �b��������q��1� �5�sjBi

� 8 CFm
2
B�T��� � �T

Z 1

0
dx1 dz

�B�x1�

x1zm
2
B � P2

T

�
	�1� z���T�z; �; w� ��3�z; �; w�

������������������
��1� ��

p
�

�
����
�

p
�1� 2z��v�z; �; w�


s�t
�1�
e �Ceff

7� �t
�1��

zm2
B � P2

T

�
����
�

p
�v�z; �; w�

s�t
�2�
e �Ceff

7� �t
�2��

x1m
2
B

	
: (27)
���� and q� represent the photon polarization vectors and
the photon momentum, respectively. mb is the b quark
mass, and Ceff

7� the corresponding effective Wilson coeffi-
cient [44]. All the terms of O��� in M have been ne-
glected for consistency. The requirement P2

T � 0 leads to
the bounds of � as shown in Eq. (26),

m2
�=w

2 � � � 1: (28)

The hard scales are chosen as the maximal virtuality in
each quark-level diagram [3,16],

t�1� �
���������������������
zm2

B � P2
T

q
; t�2� �

������������������������
x1m

2
B � P2

T

q
: (29)

The above collinear factorization formula is well defined,
since the invariant mass of the two-pion system, appear-
ing through PT , smears the end-point singularities from
z! 0. Even if one adopts a model of the B meson
distribution amplitude, which vanishes only linearly in
x1, Eq. (27) is still well defined due to the presence of PT .

Because there exists only an upper bound for the mea-
sured �! �K� branching ratio, we also consider the
�! K� � branching ratio, when constraining the pa-
rameter mk. That is, we assume that mk in the two decay
modes, i.e., the timelike�K andK� form factors, do not
differ much. The experimental data and the theoretical
prediction from chiral perturbation theory are
(Refs. [28,45,46], respectively)

B��! �K��< 6:7 10�5;

B��! K� �� � 2:7 10�4;

B�B! �K�� � �3:4� 0:9� 0:4�  10�6:

(30)

For the application of our formalism to the � decays, we
shall trust it up to the order-of-magnitude accuracy, since
the ratio � � w2=m2

� in this case is not a small parameter.
With mk;T � 2 GeV, we obtain from Eqs. (25) and (27)

B��! �K�� � 6:8 10�5;

B��! K� �� � 4:5 10�4;

B�B! �K�� � �2:9�0:7
�0:5�  10�6;

(31)

consistent with Eq. (30) (up to order of magnitude for the
� decay data as stated above). Our results are stable with
respect to the variation of mk and mT around few GeV.
Therefore, the theoretical error in Eq. (31) comes from the
variation of the shape parameter !B, which can be re-
garded as an estimate of the uncertainty from hadronic
dynamics. The predicted B! �K� decay spectrum is
-5
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FIG. 1. B! �K� and B! ��K decay spectra in the �K invariant mass.
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shown in Fig. 1, which exhibits a maximum at the �K
invariant mass around 1.3 GeV, consistent with our power
counting rules.

After constraining the two-meson distribution ampli-
tudes, we predict the B! ��K decay spectrum in the
�K invariant mass. For this mode, the amplitude M is
written as

M � f�V
�
tbVts

X5
i�3

	F P�s�
Li � �T � �3T���F

P�s�
Ti 
; (32)

F P�s�
Li � 8 CFm

2
B

Z 1

0
dx1 dz

�B�x1��k�z; �; w�

x1zm2
B � P2

T

�
	�1

� z��k�z; �; w� �
����
�

p
�1� 2z��p�z; �; w�



s�t

�1�
e �a�s�i �t�1��

zm2
B � P2

T

� 2
����
�

p
�p�z; �; w�


s�t�2��a

�s�
i �t�2�e �

x1m2
B

	
; (33)

F P�s�
Ti � 8r� CFm

2
B

Z 1

0
dx1 dz

�B�x1�

x1zm2
B � P2

T



�
	�T�z; �; w� ��3�z; �; w�

������������������
��1� ��

p

� z
����
�

p
�v�z; �; w�


s�t
�1�
e �a�s�i �t�1��

zm2
B � P2

T

�
����
�

p
�v�z; �; w

2�
s�t�2��a

�s�
i �t�2��

x1m2
B

	
; (34)

where �3T��� denote the polarization vectors of the �
meson emitted from the weak vertex. The definitions of
the Wilson coefficients a�q�i �t� are referred to [47]. For a
similar reason, we have dropped all the O��� terms.
Equations (27), (33), and (34) represent the amplitudes
of the Bmeson transition into a VP meson pair associated
with different effective operators. We display the pre-
dicted B� ! ��K� decay spectrum in Fig. 1, which
also exhibits a maximum at the �K invariant mass
054006
around 1.3 GeV. Integrating the spectrum over �, we
obtain the branching ratio without the resonant contribu-
tion in the �� channel,

B�B� ! ��K�� � �1:3�0:4
�0:3�  10�6: (35)

The uncertainty arises from the variation of the shape
parameter !B of the B meson distribution amplitude.

We have examined other sources of theoretical uncer-
tainty. The correction to the branching ratios from the
neglected O��� terms is about 10%. To investigate the
uncertainty from different parametrization of meson dis-
tribution amplitudes, we have tried

�0
B�x� � N0

Bx�1� x� exp
�
�

1

2

�
xmB
!0
B


2
�
: (36)

First, the shape parameter !0
B � 0:9 GeV is determined

from the fit to the value of the B!  transition form
factor about 0.3. The model �0

B�x� is then employed to fix
the �K two-meson distribution amplitudes from the data
of the B! �K� branching ratios. It is observed that the
symmetric z dependence in Eq. (19) should be modified
into

z�1� z� ! z�1� z�	1� 0:5�1� 2z�
; (37)

which is reasonable since the � meson is heavier than the
kaon. After going through the above procedure, we pre-
dict the B! ��K branching ratio using the distribution
amplitudes in Eqs. (36) and (37), and find that the result
increases only by 8%.We have also checked the sensitivity
of our prediction to the parametrization of the timelike
form factors. Obeying the normalization and the asymp-
totic behavior required by PQCD, the models with �w�

m��2 [�w�m��3] being replaced by w2 �m2
� [�w2 �

m2
��

3=2] are also allowed. Adopting the B meson distri-
bution amplitude in Eq. (23), the �! �K� and B!
�K� data just imply a slight increase of the parameters
mk and mT to 3–4 GeV. Then we predict the B! ��K
branching ratio using the new parametrization, which is
enhanced only by 12%. The above investigations indicate
that the PQCD predictions will be insensitive to the
-6
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parametrization of meson distribution amplitudes, if the
procedure of determining meson distribution amplitudes
is followed.

Note that the B� ! ��K� branching ratio has been
measured to be B�B� ! ��K�� � �2:6�1:1

�0:9 � 0:3� 
10�6 for a �� invariant mass below 2.85 GeV [27]. We
suggest that the decay spectrum in the�K invariant mass
should also be measured (only the spectrum in the ��
invariant mass was presented in [27]), such that the
054006
dynamics of the B! VP transition can be explored. To
derive the spectrum in the�� invariant mass, we need to
define the VV two-meson distribution amplitudes, which
will be discussed in the future.
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