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�e two-dimensional (2D) discrete Fourier transform (DFT) in the sliding window scenario has been successfully used for
numerous applications requiring consecutive spectrum analysis of input signals. However, the results of conventional sliding DFT
algorithms are potentially unstable because of the accumulated numerical errors caused by recursive strategy. In this letter, a
stable 2D sliding fast Fourier transform (FFT) algorithm based on the vector radix (VR) 2 × 2 FFT is presented. In the VR-2 ×
2 FFT algorithm, each 2D DFT bin is hierarchically decomposed into four sub-DFT bins until the size of the sub-DFT bins is
reduced to 2 × 2; the output DFT bins are calculated using the linear combination of the sub-DFT bins. Because the sub-DFT
bins for the overlapped input signals between the previous and current window are the same, the proposed algorithm reduces the
computational complexity of the VR-2 × 2 FFT algorithm by reusing previously calculated sub-DFT bins in the sliding window
scenario. Moreover, because the resultant DFT bins are identical to those of the VR-2 × 2 FFT algorithm, numerical errors do
not arise; therefore, unconditional stability is guaranteed. �eoretical analysis shows that the proposed algorithm has the lowest
computational requirements among the existing stable sliding DFT algorithms.

1. Introduction

�e two-dimensional (2D) discrete Fourier transform (DFT)
has been widely used for spectrum analysis of 2D input
signals in the �eld of signal processing. �e vector radix
(VR) 2 × 2 FFT [1] is one of the most practical approaches
to performing the 2D DFT. �e VR-2 × 2 FFT algorithm
hierarchically decomposes each DFT bin into sub-DFT bins
until the size of the DFT bins becomes 2 × 2. Because the
DFT bins can be e	ciently obtained from the sub-DFT bins
using a butter
y structure, the computational cost of the DFT
can be signi�cantly reduced. Additionally, various VR FFT

algorithms including VR-4 × 4, split VR, and VR-22 × 22 have
been introduced to further enhance the e	ciency of the VR-2× 2 FFT by more �nely decomposing the DFT bins [2–5].

�e existing VR-based 2D FFT algorithms are widely
applied in various �elds of signal processing with satisfactory
computing speed. However, these algorithms have computa-
tional redundancies when the transform window is shi�ed
to the next sample because the input signals in the previous
and current windows overlap. To reduce the redundancies

in the sliding window scenario, numerous algorithms have
been introduced over the past several years. �e sliding DFT
(SDFT) algorithm signi�cantly reduces the computational
load of the 1D DFT for the shi�ed window using the circular
shi� property [6]. �e hopping DFT (HDFT) applies the
SDFT to the hopping window scenario; HDFT can reduce the
number of complex multiplications and additions in inter-
mediate calculations [7]. Recently, the 2D SDFT proposed in
[8] further reduced the number of computations of the SDFT
using recursive strategy for a 2D input signal. �e moving
FFT (MFFT) algorithm proposed in [9] introduced a fast
implementation of the 2D FFT by updating the previously
calculated FFT bins when the current window is shi�ed.
It is noteworthy that the recursive strategy adopted in the
aforementioned sliding algorithms signi�cantly reduces the
number of complex multiplications and additions. How-
ever, the recursive implementation causes error propagation.
Because, in practice, the complex numbers used in the DFT
are represented in 
oating-point format with �nite precision,
the output DFT bins of the sliding algorithm and those
of the traditional algorithm are not the same, although
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they are mathematically equivalent. Furthermore, the errors
accumulate and, thus, can increase in the worst case.

To address this issue, several stable DFT algorithms
have been proposed. �e stable SDFT proposed in [10],
called rSDFT, reduces the numerical error by multiplying the
twiddle factor by the damping factor �, where 0 ≪ � < 1.
In the modulated SDFT (mSDFT) [11], the unstable twiddle
factor is multiplied recursively by the previous output DFT
bin, which is considered to be the cause of numerical errors.
�erefore, the mSDFT removes the twiddle factor from the
feedback loop, thereby guaranteeing unconditional stability.
Recently, the guaranteed-stable SDFT (gSDFT) was proposed
for fast, stable DFT [12]. �e gSDFT not only guarantees the
stability by removing the twiddle factor from the feedback
of the resonator but also reduces the computational require-
ments by adopting the butter
y structure of the traditional
FFT algorithm to obtain the bins of the updating vector
transform.Nevertheless, the output DFT bins still contain the
numerical error because the recursive strategy is used. On
the other hand, the sliding FFT (SFFT) algorithm introduced
by Farhang-Borojueny and Gazor in [13] does not adopt the
recursive strategy. �e SFFT calculates the bins of the shi�ed
window by exploiting delayed intermediate calculations of
the previous window. �erefore, the SFFT has the advantage
that numerical errors do not occur as the transform window
slides. However, because the SFFT is designed to handle
1D input data, its computational complexity can be further
reduced for the 2D input data.

In this letter, we propose a novel stable, fast 2D sliding
FFT algorithm. Because the 2D butter
y structure used in
the VR-2 × 2 FFT algorithm is comprised of the 1D butter
y
structure, the proposed VR-2 × 2 SFFT adopts the concept of
the SFFT to guarantee the stability. In addition, we consider
the 2D sliding window to move in only one direction, that
is, column-wise or row-wise, to reduce the computational
complexity. �e rest of this letter is organized as follows.
In Section 2, we �rst analyze the computational relationship
between the sub-DFT bins and the DFT bins of the VR-
2 × 2 FFT. �en, we explain how the proposed VR-2 × 2
SFFT algorithm reduces the amount of computation in the
sliding window scenario while guaranteeing the computa-
tional stability. Section 3 presents the performance of the
VR-2 × 2 SFFT by analyzing its arithmetic complexity and
stability, making a comparisonwith those of the conventional
algorithms. Finally, conclusions are given in Section 4.

2. Proposed VR-2 × 2 SFFT Algorithm

Because the proposed VR-2 × 2 SFFT algorithm reduces the
computational complexity of the VR-2 × 2 FFT in the sliding
window situation, we �rst explain the structure of the VR-2 ×
2 FFT. �e VR-2 × 2 FFT can be derived only for an� × �
data sequence, where� is an integer power of two. Let �(�, �)
and�(�, 	) denote the (�, �)th bin of the�×� input data and
the (�, 	)th bin of the � × � output DFT bins, respectively.
�en, the� ×�-point DFT is de�ned as

� (�, 	) = �−1∑
�=0

�−1∑
�=0

� (�, �)���+��� , (1)

where �, 	 = 0, 1, . . . , � − 1, and�� is a twiddle factor equal
to �−�2�/�.

�e VR-2 × 2 FFT algorithm �rst decomposes (1) into 2 ×
2 partial sums as follows:

� (�, 	) = �−1∑
�=0

�−1∑
�=0

� (�, �)���+���
= 1∑
	=0

1∑
�=0

�/2−1∑

=0

�/2−1∑
�=0

� (2� + �, 2� + �)�(2
+	)�+(2�+�)��

= 1∑
	=0

1∑
�=0
�	�+���

⋅ {�/2−1∑

=0

�/2−1∑
�=0

� (2� + �, 2� + �)�
�+���/2 }

= 1∑
	=0

1∑
�=0
�	�+��� �	� (�, 	) .

(2)

Note that each partial sum denoted by �	�(�, 	) is a 2D DFT of
size (�/2) × (�/2).�	�(�, 	) has a period of�/2 along both � and 	; that is,

�	� (�, 	) = �	� (� + �2 , 	) = �	� (�, 	 + �2 )
= �	� (� + �2 , 	 + �2 ) .

(3)

Combining (2) and (3), the following relationship can be
obtained:

[[[[[[[[[
[

� (�, 	)
� (� + �2 , 	)
�(�, 	 + �2 )

�(� + �2 , 	 + �2 )

]]]]]]]]]
]

= [[[[[
[

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

]]]]]
]

[[[[[[
[

�00 (�, 	)
����10 (�, 	)
����01 (�, 	)
��+�� �11 (�, 	)

]]]]]]
]
,

(4)

where �, 	 = 0, 1, . . . , (�/2) − 1, and ��+�/2� = −���. �e
matrix relationship shows that the sub-DFT bins are shared
to calculate multiple DFT bins, resulting in the VR-2 × 2
FFT algorithmhaving less computational complexity than 2D
DFT.�is relationship has generally been illustrated with the
butter
y diagram, as shown in Figure 1.

It is obvious that the conventional butter
y diagram
represents the computational relations betweenDFTbins and
sub-DFT bins. However, because the butter
y diagram has
been developed to illustrate the data 
ow of the 1D FFT, it is
di	cult to present both the 2D spatial position of the input
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Figure 1: 2D butter
y diagram for the VR-2 × 2 FFT algorithm.
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Figure 2: 3D butter
y diagram for the VR-2 × 2 FFT algorithm.

and output data and the spatial relations between DFT bins
and sub-DFT bins. Although the index of each sub-DFT bin
can indicate its 2D spatial location, the diagram becomes
complicated as the amount of data increases.

For visual comprehension of the VR-2 × 2 FFT algorithm,
we introduce a new 3D diagram, as shown in Figure 2.

Unlike for the conventional 2D butter
y diagram, the 2D
spatial location of the input sub-DFT bins and the output
DFT bins can be clearly illustrated, as in Figure 2. In addition,
because the X-shaped pairs of arrows do not overlap with
each other, it is easier to discriminate the relations between
input and output DFT bins. However, the diagram still
becomes complicated as the amount of data increases. To
make the diagram simpler, let us omit the X-shaped arrows

and twiddle factors ��, ��, and ��+� from Figure 2. �en,
the 3D diagram of the VR-2 × 2 FFT can be simpli�ed as
shown in Figure 3.

�e decimation procedure repeats log2� times until the
size of �	� is reduced to 2 × 2. Let �� denote the �th
decimation stage, where � is an integer in the range of[1, log2�], and the input data bins appear at stage �1. �e

sizes of �	� and � at stage �� are 2�−1 × 2�−1 and 2� ×2�, respectively. �e twiddle factors multiplied with �00(�, 	),�01(�, 	), �10(�, 	), and �11(�, 	), �, 	 = 0, 1, . . . , 2�−1, at �� are
1,��,��, and��+�, respectively. An example of the twiddle
factors required for the 8 × 8-point VR-2 × 2 FFT is shown in
Figure 4.

Now, let us consider the computational relationship
between the input data and the values of �	�(�, 	). As in (2),
the VR-2 × 2 FFT algorithm computes the DFT bins using the
decomposed 2 × 2 �	�, which means that the input data give
hierarchical dependencies to the output DFT bins through all
decimation stages.

�is technique can best be explained via an example.
Figure 5 shows a 
ow graph of the 8 × 8-point VR-2 × 2 FFT
algorithm. For the 8× 8-pointVR-2× 2 FFT, three decimation
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Figure 3: Simpli�ed version of the 3D butter
y diagram.

stages, that is, �1, �2, and �3, are required, and, thus, there
are four data layers, as shown in Figure 5. Let  	, � = 1, 2, 3, 4,
denote the �th data layer, where  1 and  4 consist of the
input data and the output DFT bins, respectively. Note that
the input data are arranged in bit-reverse order. First, the 2× 2 input data indicated by black circles in  1 are linearly
combined at stage�1 to obtain the corresponding 2 × 2 DFT
bins indicated by gray circles in  2.�en, 4× 4 data including
the resultant 2 × 2 DFT bins in  2 are used at stage �2 to
calculate 4 × 4 DFT bins indicated by gray circles in  3.
Finally, the 8 × 8 DFT bins in  4 are obtained at stage �3
using all of the data in  3. Here, it is noteworthy that the data
indicated by white circles in  1 and  2 are not involved in
calculating the sub-DFT bins indicated by gray circles in  2
and  3.

Based on this observation, we derive the proposed algo-
rithm, which can reduce the computational complexity of the
VR-2 × 2 FFT in the sliding window scenario. Assume that all
calculations in the structure shown in Figure 5 have already
been performed for the previous data and that the resultswere
stored. Furthermore, assume that the 8 × 8 window on the
input data shi�s by one column and that the same process
must be performed at the current state.

Figure 6 shows 2D 
ow graphs of the VR-2 × 2 SFFT at
both the previous and the current state by projecting the 3D

ow graph in Figure 5 onto the column-layer plane. Denote a

set of data of the �th column in the �th layer by 	�	 . �en, the

number of data corresponding to 		 is 2	−1. Figure 6(a) shows
that the 8 × 8-point VR-2 × 2 FFT is performed using the
input data from the 0th to the 7th column from the previous
state. All of the calculated data in  2 and  3 represented by
gray circles are stored. At the current state, the input data of
the 0th column are removed from the window and those of
the 8th column are newly included. A�er the input data of
the current window are arranged in bit-reverse order, they are
transformed using the 8 × 8-point VR-2 × 2 FFT.

Here, note that the data in {1st, 5th}, {3rd, 7th}, and {2nd,
6th} columns are paired, becoming the input of �1 at the
current state, as they were at the previous state. �en, the

values of {	12 , 	52 , 	32 , 	72 , 	22 , 	62} in  2 and {	13 , 	53 , 	33 , 	73} in  3 at the
previous state are the same as those at the current state, and,
thus, they can be reused. As a result, only the data indicated
by white circles in Figure 6(b) need to be calculated in the
sliding scenario.

In addition, the computations for the data indicated by
white circles can be further reduced, based on the fact that
the 2D window is shi�ed column-wise. �e structure of the
2D butter
y is composed of two stages, where each stage has
two 1D butter
ies, as shown in Figure 7.
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In the �rst stage, two sets of the data {!, "} and {�, #}
are the inputs of the single butter
y. �e resultant {!�, ��}
and {"�, #�} are used as the input to the butter
ies in the
second stage. Here, it can be observed that the data set{!, "} is not used to calculate {��, #�}. �is means that if
the data {!�, "�} have already been calculated, they do not
need to be recalculated.�en, the complexity of one complex
multiplication ($) and two complex additions ($�’s) can be
reduced.

In Figure 6(b), the input data of the 4th and 8th columns
are used together as the input to stage �1. Because the

calculations for the data in the 4th column were already
performed for the previous state, the results can be reused
for the current state. Next, 	22 and 	62 are paired with 	42 and	82 , respectively, as the input at stage �2, and the 2D butter
y

is performed for each pair. Because 	22 and 	62 have also been
calculated, the number of computations for the 2D butter
ies
can be reduced. �e complexity reductions can be achieved
at stage�3 in the same manner.

Consequently, each 2D butter
y of the proposed algo-
rithm requires only two $’s and six $�’s, whereas that of
the VR-2 × 2 FFT algorithm needs three $’s and eight $�’s.
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W
1
2

W
1
2

W
2
2

a

b

c

d

−1

−1

−1

−1

a
�

b
�

c
�

d
�

A

B

C

D

Figure 7: 2× 2 butter
y diagram composed of two stageswhere each
stage has two 1D butter
ies.

Moreover, because the output DFT bins of the proposed algo-
rithm are identical to those of the VR-2 × 2 FFT algorithm,
numerical errors do not accumulate.�erefore, the proposed
VR-2 × 2 SFFT algorithm can guarantee stability. Next, we
analyze the computational complexity of the proposed VR-
2 × 2 SFFT and compare it to that of the conventional
algorithms.

3. Complexity and Stability Analysis of the
VR-2 × 2 SFFT Algorithm

3.1. Complexity Analysis. For�×� input data, the VR-2 × 2
FFT is comprised of log2� decimation stages. Each decima-

tion stage has�2/4 2 × 2 butter
ies, and each 2 × 2 butter
y
needs three $’s and eight $�’s. Hence, for the� ×� input

data, the VR-2 × 2 FFT requires 3(�2/4)log2� $’s and8(�2/4)log2� $�’s. Among the butter
ies in the structure
of the VR-2 × 2 FFT, the 2 × 2 butter
ies related to only the
newly imported input datamust be calculated in the VR-2 × 2
SFFT. For the�×� input data, the number of 2× 2 butter
ies

calculated at �� is � ⋅ 2�/4. �en, the total number of 2 × 2
butter
ies required by the VR-2 × 2 SFFT is

log2�∑
�=1

� ⋅ 2�−2 = �4
log2�∑
�=1

2� = �4 ⋅ 2 (� − 1)
= � (� − 1)2 .

(5)

As mentioned in Section 2, a 2 × 2 butter
y needs two $’s
and six$�’s, and theVR-2× 2 SFFT requires�2−� $’s and3(�2 − �) $�’s for� ×� input data. Because the proposed
VR-2 × 2 SFFT computes only some of the butter
ies among
those of the VR-2 × 2 FFT structure, the computational
requirements of the proposed algorithm are lower than those
of the VR-2 × 2 FFT algorithm.

A computational comparison of various window sizes
is shown in Table 1, where one $ is counted as four real
multiplications (%’s) and two real additions (%�’s) and one$� is counted as two %�’s. �e 2D MFFT [9], SFFT [13],
and 2D SDFT [8] are chosen for the existing fast DFT/FFT
algorithms. In addition, the rSDFT [10], mSDFT [11], and
gSDFT [12] are chosen for the existing stable DFT algorithms.
Considering that the SFFT, rSDFT, mSDFT, and gSDFT are
proposed for the 1D input signal, we assume that each 1D
transform is horizontally performed on the 2D input signal,
and, then, the 1D FFT is vertically applied to the results.
All the algorithms listed in Table 1 were implemented using
the ANSI-C code and the performance was evaluated on
a 3.3-GHz CPU with 8GB of RAM. In our simulation,
the size of transform window was set to 16 × 16 and we
measured the processing time required for performing the

sliding transform process 106 times. For each algorithm, we
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Table 1: Computational requirements of the 2D DFT/FFT algorithms for� ×� input data in the sliding window scenario.

Algorithm Operation
Window size4 × 4 8 × 8 16 × 16 32 × 32 64 × 64 � × �

1D DFT ×2 % 512 4,096 32,768 262,144 2,097,152 8�3%� 448 3,840 31,744 258,048 2,080,768 8�3 − 4�2
1D FFT ×2 % 128 768 4,096 20,480 98,304 4�2log2�%� 192 1,152 6,144 30,720 147,456 6�2log2�
1D SFFT + 1-D FFT

% 112 608 3,008 14,208 65,280 2�2log2� + 4�2 − 4�%� 168 912 4,512 21,312 97,920 3�2log2� + 6�2 − 6�
VR-2 × 2 FFT

% 96 576 3,072 15,360 73,728 3�2log2�%� 176 1,056 5,632 28,160 135,168 (11/2)�2log2�
2D MFFT

% 80 304 1,152 4,416 17,152 4�2 + 2�log2�%� 92 336 1,232 4,608 17,600 4�2 + 3�log2� +�
2D SDFT

% 80 288 1,088 4,224 16,640 4 (�2 + �)%� 78 282 1,074 4,194 16,578 4�2 + 3� + 2
1D rSDFT + 1-D FFT

% 160 768 3,584 16,384 73,728 6�2 + 2�2log2�%� 192 960 4,608 21,504 98,304 6�2 + 3�2log2�
1D mSDFT + 1-D FFT

% 256 1,152 5,120 22,528 98,304 12�2 + 2�2log2�%� 256 1,216 5,632 25,600 114,688 10�2 + 3�2log2�
1D gSDFT + 1-D FFT

% 64 512 2,816 14,336 69,632 3�2log2� −�2%� 134 912 4,768 23,616 112,768 (9/2)�2log2� +�2/2 + 2�
VR-2 × 2 SFFT

% 48 224 960 3,968 16,128 4 (�2 − �)%� 96 448 1,920 7,936 32,256 8 (�2 − �)

measured the processing time 10 times and averaged the
measured values. �e resultant values are listed in Table 2.
�e complexity of the proposed VR-2 × 2 SFFT is higher than
that of the 2D SDFT and 2D MFFT. However, the proposed
algorithm achieves &(�2) complexity in both % and %�,
which is the lowest among the existing stableDFT algorithms.

Further, we present the memory requirements of all the
algorithms in Table 2. For each algorithm, we examined the
amount of requiredmemory for performing the�×� sliding
transform. For the sake of the clarity, the memory to store
the input and output signals is not considered. In Table 2,
we see that the memory requirements of the algorithms vary
depending on the window size. In general, 2D SDFT and
2D MFFT need a relatively small amount of memory as
compared to the other algorithms. Note that the size of the
transform window is usually much smaller than those of the
input and output signals.�erefore, in general, the amount of
memory required to performing the sliding transformmay be
not a big burden for real-world applications.

3.2. Stability Analysis. We investigated the stability of the
proposed VR-2 × 2 SFFT algorithm using a complex test
signal, which was zero-mean Gaussian noise with a standard
deviation of one. �e simulation was performed in 64-bit
double-precision arithmetic; � was set to 16. In our simu-
lation, the numerical errors are generated by the recursive
strategy of the sliding DFT/FFT algorithms. �erefore, we
evaluate the stability of the algorithm by computing the
di�erences between the output DFT bins of the sliding
algorithm and those of the reference algorithm.�e reference

algorithm denotes the original algorithm from which the
sliding algorithm was derived, for example, the reference
algorithm of the VR-2 × 2 SFFT is the VR-2 × 2 FFT. All

algorithms were tested over 106 iterations. �e error '� at
time index � is calculated as

'� = �−1∑
�=0

�−1∑
�=0

*****�Reference
� (�, 	) − �Algorithm

� (�, 	)***** , (6)

where �Reference
� (�, 	) represents the (�, 	)th DFT bin of the

reference algorithm and �Algorithm
� (�, 	) is the bin of the test

algorithm.
�en, it is observed that the errors in the 2D MFFT and

the 1D rSDFT + 1D FFT are accumulated as � increases, as
shown in Figure 8. For the rSDFT, the damping factor � is set
to 1−10−12. In our simulation, the average'� of the 2DMFFT

is 4.41×10−9 and that of the 1D rSDFT+ 1D FFT is 3.53×10−9.
In terms of the average increasing ratio of '�, the 2D MFFT

and 1D rSDFT + 1D FFT are 6.36 × 10−15 and 5.14 × 10−15,
respectively.

�e measured '� values of the 1D mSDFT + 1D FFT,
1D gSDFT + 1D FFT, and VR-2 × 2 SFFT are presented
in Figure 9. �e errors of the 1D mSDFT + 1D FFT and
the 1D gSDFT + 1D FFT did not accumulate; however, they


uctuated in the range of [1.08 × 10−11, 1.75 × 10−11] and[1.11×10−11, 1.80×10−11], respectively.�e average'� values
of the 1D mSDFT + 1D FFT and 1D gSDFT + 1D FFT are1.425 × 10−11 and 1.418 × 10−11, respectively. On the other
hand, as mentioned in Section 2, the outputs of the proposed
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Table 2: Comparison of the processing time and the additional memory requirements.

Algorithm
Processing time over 106 iterations

for 16 × 16 size window (ms)
Ratio versus 1D DFT ×2 (%)

Additional memory requirement
for� ×�-points transform

1D DFT ×2 23,908.47 100.00 �2 + 1
1D FFT ×2 4,711.57 19.71 �2 + 1
1D SFFT + 1-D FFT 3,582.43 14.98 �2log2� +� + 1
VR-2 × 2 FFT 1,563.67 6.54 2�2 + 3
2D MFFT 678.89 2.84 � + 1
2D SDFT 532.51 2.23 2� + 1
1D rSDFT + 1-D FFT 3,388.33 14.17 �2 + � + 1
1D mSDFT + 1-D FFT 4,213.01 17.62 �2 + � + 2
1D gSDFT + 1-D FFT 3,812.58 15.95 (5/4)�2 + � + 1
VR-2 × 2 SFFT 876.87 3.67 �2 (2log2� − 1) + 1
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Figure 8: Numerical errors of the 2DMFFT and the 1D rSDFT + 1D
FFT algorithm which accumulate over 106 iterations.
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Figure 9: Numerical errors of the 1DmSDFT + 1D FFT and the VR-
2 × 2 SFFT algorithm for 106 iterations.

algorithm are exactly the same as those of the VR-2 × 2 FFT,
and errors do not accumulate. �erefore, the proposed VR-
2 × 2 SFFT outperforms the other algorithms in terms of
stability.

4. Conclusion

In this letter, a new stable SFFT based on the VR-2 × 2
FFT algorithm was presented for 2D input data. We �rst
analyzed the computational relationship between the sub-
DFT bins of the structure of the VR-2 × 2 FFT. �en, we
adopt the concept of the 1D SFFT, which calculates the bins
of the shi�ed window by exploiting the delayed intermediate
calculations of the previous window. �e proposed VR-2 ×
2 SFFT algorithm achieves &(�2) complexity, which is the
lowest among the existing stableDFT algorithms. Because the
outputDFT bins of the proposedmethod are exactly the same
as those of the VR-2 × 2 FFT algorithm, the numerical errors
do not accumulate in the sliding transform process.
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