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Abstract. We study numerically rogue waves in the two-component Bose-Einstein
condensates which are described by the coupled set of two Gross-Pitaevskii equa-
tions with variable scattering lengths. We show that rogue wave solutions exist
only for certain combinations of the nonlinear coefficients describing two-body
interactions. We present the solutions for the combinations of these coefficients
that admit the existence of rogue waves.

1 Introduction

Rogue waves [1,2] are waves occasionally appearing in the ocean that can reach the amplitudes
more than twice the value of those in the surrounding chaotic wave field [3,4]. Above descrip-
tion can roughly be taken as the definition although variety of interpretations is still possible
[5,6]. Being considered initially for ocean waves [7–10], nowadays the concept is shifted to other
fields of physics, that can be modeled by similar nonlinear wave equations. Once the equations
describing the phenomenon are established, understanding the features of rogue waves comes
through finding special solutions that have the properties of having high amplitudes and are
localized in space and in time [11,12]. From the experimental point of view it is much easier and
safer to deal with rogue waves in a laboratory than in the open ocean. In addition to oceanic
ones, rogue waves can be observed in variety of physical systems: optical fibers [13–15], arrays
of optical waveguides [16], superfluids [17], capillary waves [18], and Bose-Einstein condensates
(BEC) [19]. The latter system has the advantage that it admits variety of experimental condi-
tions thus allowing for several types of rogue waves.
A remarkable feature of the BEC applications of the rogue waves is a possibility of exper-

imental realization and observation of rogue waves in mixtures of several components which
interact with each other. This could be spinor binary mixtures of atomic hyperfine states or
condensates of atoms of different kinds: each type is nowadays routinely produced in many
laboratories. Moreover, the inter-species interaction itself can originate modulational instabil-
ity despite the fact that each component separately is modulationally stable (see e.g. [20]).
Another significant advantage for modelling the rogue waves in BEC was already mentioned
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in [19]. Namely, it is the possibility of starting an experiment with perfectly stable system and
switching it abruptly to an unstable state. The latter can be done with changing the sign of the
scattering length by means of Fesbach resonance. This way we can control the nonlinearity in
the governing Gross-Pitaevskii (GP) equation which is known beyond the BEC theory as non-
linear Schrödinger (NLS) equation. This unique possibility of preparation of the initial state for
observation of rogue waves in a laboratory does not seem possible in any other physical system.
At this point we should clarify what in this paper is understood under the term rogue wave.

We consider the deterministic phenomenon, i.e. the solutions that can be generated in the bi-
nary mixtures of BECs either by the phase and/or density engineering. These are solutions that
emerge from the almost homogeneous background and disappear in a short interval of time,
being followed by the developed instability pattern. Our rogue waves are characterised by the
localised increase of the density amplitude several times above the unperturbed background.
Mathematically, they correspond to the algebraic Peregrin’s solutions and Akhmediev breathers
[21–23] in the integrable limit. In our case, this limit is the Manakov set of equations [24].
In complex systems, we have to deal with several variables rather than a single wave ampli-

tude. For example, considering the rogue waves in the financial world [26,27] as an example, we
cannot restrict ourselves by only one variable – the amount of money. To describe the economy
and its evolution in time, we have to take into account multiplicity of other forms money can
take – shares, bonds and variety of other assets as well as all transformations between them.
Clearly such complicated systems would describe the extreme waves with much higher accuracy
than a single NLSE. Thus, our first task in modeling the rogue wave phenomenon is to consider
the simplest models that still have more than one variable involved into the dynamics.
In this work, we study numerically the rogue waves in the two-component BECs which are

described by the coupled set of two Gross-Pitaevskii (GP) equations with variable scattering
lengths, i.e. coefficients of nonlinearity. Specifically, we present the rogue wave solutions for
various combinations of these coefficients that admit such solutions. Among our major findings
we can mention:

– Nontrivial relation between the existence of vector Peregrine solutions and the characteristics
of the modulational instability of the system.

– Inhibition of the rogue waves due modulational stability induced by inter-atomic interaction
– Rogue waves induced by interatomic interactions in the mixture of condensates with positive
scattering lengths (i.e. positive intra-atomic interactions)

– Rogue waves that are accompanied by the exchange of particles between the two components
– Possibility of existence of dark rogue waves.

The organization of the paper is as follows. In Sec. 2 we introduce the model and present some
preliminary arguments of existence of vector rogue waves. In the subsequent sections 3 and 4 we
present numerical studies of the rogues waves in the coupled GP equations without the linear
coupling, i.e. without possibility of the conversion of the particles between the components and
with such a possibility, respectively. The outcomes are summarized in Sec. 5.

2 The model and preliminary arguments

To be specific, we consider a spinor BEC composed of two hyperfine states, say of the |F =
1,mf = −1〉 and |F = 2,mf = 1〉 states of 87Rb atoms [28] confined at different vertical
positions by parabolic traps and coupled by a time-dependent coupling field.
We assume the condensate to be quasi-one-dimensional (cigar-shaped). Then, in the mean-

field approximation the system is described by the GP equations [30,31]

i
∂ψ1

∂t
= −∂

2ψ1

∂x2
+
(
g1|ψ1|2 + g|ψ2|2

)
ψ1 + β(t)ψ2, (1a)

i
∂ψ2

∂t
= −∂

2ψ2

∂x2
+
(
g|ψ1|2 + g2|ψ2|2

)
ψ2 + β(t)ψ1. (1b)
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Equation (1) are written in dimensionless form: the coordinate x and time t are measured in

units of � =
√
�/mω and 2/ω, respectively, while the energies are measured in units of �ω/2,

ω being the trap frequency in the (y, z)-plane. The dimensionless nonlinear coefficients, for the
quasi-one-dimensional condensate, are given by gi ∼ aii/a12. The coefficient of proportionality
here depends on a particular choice of the transverse trap, and generally is either one or of the
order of one. Therefore we do no specify it here. The factor g can take two values g = ±1 due to
the fact that the dimensionless wavefunctions ψ1,2 are measured in the units of 1/2

√|a12|. The
values aij = aji are essentially the scattering lengths of inter-species (a12) and intra-species
(aii) in binary collisions. The last terms in Eq. (1) describe the possibility of conversion between
the two hyperfine states, which can be originated by the external magnetic field. In this case,
the factor β can be expressed in terms of such field. We emphasize that our results are not
restricted to the described case. The model allows us for direct generalization to other binary
mixtures consisting of spinor condensates [32,33] or of the condensates of atoms of two different
kinds. In this last case one should set β ≡ 0.
To limit the number of possibilities, in the present work we deal only with the case where the

intra-species interactions have the same signs of the scattering length, i.e. when g1g2 > 0. We
start some preliminary comments on the system (1), mentioning that an important parameter
of the theory is the determinant of the nonlinear coefficients:

Δ = g1g2 − g2 (2)

which is known to determine the thermodynamic (see e.g. [31]) or modulational (see e.g. [20])
instability. In particular, one can distinguish the two degenerate cases as follows.
The first case is Δ = 0 and gg1,2 > 0, i.e. the inter- and intra-species interactions all are

either attractive or repulsive. Then Eq. (1) are reduced to the well known Manakov system [24],
which we write down in the form

iut = −uxx + gu†uu (3)

where u = col(u1, u2). Eq. (3) naturally arises when g1 = g2 = g. Indeed, let us define the two
matrices describing SU(2) rotations

R0 =

(
cosα sinα
− sinα cosα

)
and R1 =

1√
2

(
eiB(t) −e−iB(t)
eiB(t) e−iB(t)

)
(4)

where α is a real constant and the real function B(t) is defined by B(t) = − ∫ β(t)dt. Then,
defining also ψ = R1R0u and taking into account that subject to this transformation the
norm is invariant, i.e. u†u = ψ†ψ, from Eq. (3) we arrive at the evolution equation for the
vector ψ

iψt = −ψxx + gψ†ψψ + β(t)σ1ψ. (5)

Hereafter σj (j = 1, 2, 3) are the standard Pauli matrixes.
Let us now suppose that we know a solution of Eq. (3), and more specifically, we choose it

in a form of the “one-component” rogue wave [34]

u = Ψ(x, t)

(
1
0

)
where Ψ(x, t) ≡ 1√−g

(
1− 4 1 + 2it

1 + 2x2 + 4t2

)
eit (6)

which is valid for g < 0. This immediately leads to the one-parametric family of the rogue wave
solutions of the system (5)

ψ =
1√−2gΨ(x, t)

(
cosαeiB(t) + sinαe−iB(t)

cosαeiB(t) − sinαe−iB(t)
)
. (7)

Another degenerate case corresponds to Δ = 0 and gg1,2 < 0, i.e. scattering lengths of the inter-
and intra-species interactions have different signs. Then for β(t) ≡ 0, Eqs. (1) are reduced to
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the following set

i
∂w1

∂t
= −∂

2w1

∂x2
+ g
(|w1|2 − |w2|2

)
w1 (8a)

i
∂w2

∂t
= −∂

2w2

∂x2
+ g
(|w2|2 − |w1|2

)
w2 (8b)

More compact form of (8) in terms of w =col(w1, w2) reads

iwt = −wxx + g(w†σ3w)σ3w. (9)

Now we define the unitary matrixes

P0 =

(
coshα sinhα
sinhα coshα

)
and P1 =

(
sinhα coshα
coshα sinhα

)
(10)

and introduce ψ = Pjw. Then this ψ solves the system

i
∂ψ1

∂t
= −∂

2ψ1

∂x2
+ (−1)jg (|ψ1|2 − |ψ2|2

)
ψ1 (11a)

i
∂ψ2

∂t
= −∂

2ψ2

∂x2
+ (−1)jg (|ψ1|2 − |ψ2|2

)
ψ2. (11b)

It is clear that this case does not support vector rogue waves of the type ψ1 ∼ ψ2, since
by proper choice of the constant α in one of the matrices P0,1 one can reduce (11) to (8)
with |w1|2 = |w2|2, which is a purely linear system. Below we will observe a signature of this
“linearization” in the evolution of rogue waves in more general models.

3 Rogue waves in binary mixtures without linear coupling

Now we turn to nondegenrate situations, where Δ �= 0 and start with the case of the two
components of the binary mixture without linear coupling. Thus, we take β(t) ≡ 0 in the
general model (1). Clearly, one still can construct an analog of the solutions (7) (now with
R1 ≡ 1) of Eqs. (1) in the form:

ψ1(x, t) = a1Ψ(x, t), ψ2(x, t) = a2Ψ(x, t)e
iδ (12)

where Ψ(x, t) is defined by (6), δ is a constant phase mismatch, and the amplitudes are given
by the relations

a21 =
g − g2
Δ

, a22 =
g − g1
Δ

. (13)

Since the solution (12) describes a synchronised evolution of the two components, we shall call
it a vector rogue wave.
Usually, a rogue wave is located on an unstable background. Thus, we first seek for the

conditions, when the background solution (ψ
(0)
1 , ψ

(0)
2 ) = (a1, a2) is unstable. To this end, we

represent the solution of Eq. (1) in the form of a constant background aj and a small excitation
with the wavenumber k and the frequency ω. We suppose that its amplitude αj , βj is much
smaller than the background αj , βj � aj (j = 1, 2):

ψj(x, t) =
[
aj + αj exp (ikx− iωt) + β̄j exp (−ikx+ iωt)

]
exp
[−i(gja2j + ga23−j)t

]
. (14)

Substituting the solution in the form (14) into Eq. (1) and linearizing with respect to αj , βj ,
we obtain the dispersion relation in the long-wave limit (see, e.g., [20] for details)

ω2 = k2
{
g1a

2
1 + g2a

2
2 ±
[(
g1a

2
1 + g2a

2
2

)2 − 4a21a22Δ
]1/2}

. (15)
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For the background to be unstable, Eq. (15) should have at least one imaginary root ω. It will
occur when either of two conditions i) g1,2 < 0 or ii) Δ < 0 is satisfied. All two-component
rogue waves, described below, necessarily correspond to one of these cases.
Comparing (15) with (13) one readily concludes that the conditions for the existence of exact

solutions in the form of the synchronised vector rogue waves are different from the conditions for
the modulational instability of the background. In the Table 1, we analyse all possible situations
for the cases where both types of the intra-species interactions have the same sign. To limit the
number of cases here we have excluded the situations when gj < g < g3−j with j = 1, 2. As it
is clear, for g1g2 < 0, the background is always unstable (now Δ < 0).

Table 1. Occurrence of modulational instability and vector rogue waves for different relations among
the parameters g characterizing inter- and intra-species interactions.

Intra-species Inter-species Unstable Vector rogue
interactions interactions branches wave

g < g1,2 (Δ < 0) 1 does exist
g1,2 < 0 |g| < |g1,2| (Δ > 0) 2 does exist

g > |g1,2| (Δ < 0) 1 does not exist
g < −g1,2 (Δ < 0) 1 does exist

g1,2 > 0 |g| < g1,2 (Δ > 0) stable does not exist
g > g1,2 (Δ < 0) 1 does not exist

3.1 Vector rogue waves

Let us first consider the situation when all two-body interactions are attractive, i.e. g, g1,2 < 0.
Then it is possible to construct either the solution with Δ < 0 (Fig. 1) or the solution with
Δ > 0, depicted in Fig. 2(a). In this case each of the components is modulationally unstable,
provided the other component has zero density. As it is evident from Fig. 1(a), the initial
conditions in the form of exact solution (12) indeed lead to the excitation of the two-component
rogue wave. The two components reach their maximum values simultaneously, approximately
at t = 0, and at the same location in the vicinity of x = 0. After reaching the maximum value,
the rogue wave disappears at t ≈ 3. The wave then returns back to the constant amplitude wave
function. At a later stages of evolution (t ≈ 8) the solution gains several chaotically located
peaks due to the fact that the plane wave is modulationally unstable. Remarkably, these peaks
appear simultaneously in the two components.
Now, after considering the exact solution (12) a natural question arises. How sensitive is the

evolution with respect to the perturbations of the exact initial conditions given by Eq. (12). To
answer this question, we performed simulations of Eq. (1) with initial conditions, when the two
components are shifted relative to each other in comparison to the profiles given by Eq. (12).
Specifically, the components have been shifted in opposite directions along the x-axis. Namely,
ψ1(x, t) = a1Ψ(x − 1, t), ψ2(x, t) = a2Ψ(x + 1, t). Despite the initial shift, the components
again reach their maxima simultaneously (see Fig. 1(b)) although at a later time t ≈ 0.25 in
comparison to the case of the exact solution. The coordinate of the maximum is also shifted to
x ≈ −0.3. This shift occurs due to the attraction of the weaker peak in the first component by
the stronger one in the second component (a1 ≈ 0.68, a2 ≈ 0.877). Another notable difference
is in the further evolution. Namely, the peaks arising due to the modulation instability appear
at earlier times, t ≈ 4, in comparison with the case reproducing the exact solution. Indeed, any
destruction of the exact solution makes a contribution to perturbations that lead to modulation
instability.
We also performed simulations using the initial conditions with the two components that

are slightly different from the exact solution. Fig. 1(c) shows that the rogue wave in this case
remains stable. The first peak in the evolution plot is very much similar to the ones in the
two previous cases except for the location of the maximum of the first component ψ1 which
occurs at t ≈ −0.165, while the maximum of the second component ψ2 is reached at t = −0.12
i.e. earlier in comparison with the exact solution. However, the noise caused by modulation
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Fig. 1. (Color online) Vector rogue waves for the case when the parameters are g1 = −0.5, g2 = −0.7,
g = −1 (Δ < 0). The numerical simulations are performed for the initial conditions given by Eq. (12)
with δ = 0 at t = −3 [panels (a)]; with shifted maxima of the components along the x-axis: ψ1(x, t) =
a1Ψ(x− 1, t), ψ2(x, t) = a2Ψ(x+1, t) [panels (b)]; and with the detuned amplitudes of the coefficients:
ψ1(x, t) = (a

2
1 − 0.3)1/2Ψ(x, t), ψ2(x, t) = (a22 + 0.3)1/2Ψ(x, t) [panels (c)].

instability that appears at t � 3 now is shifted from the sides of the numerical grid to the
centre close to the point x = 0. We can also notice that the shape of these new peaks is similar
to those for rogue waves although their amplitudes are lower.
Next we address the question of how the sign of the inter-species interactions influences the

effect. To this end we hold all intra-species interactions attractive, require Δ > 0, and change the
sign of g. Typical results of these simulations are presented in Fig. 2. In each case, there are two
unstable branches of the dispersion relation (see the Table 1) independent on the sign of inter-
species interaction. However one observes rather different behaviour of the modes shown in the
panels (a) and (b). In the case depicted in Fig. 2(a), attractive inter-species interactions result
in smaller amplitudes of the vector rogue waves (see (13)) and the evolution is qualitatively
similar to the one shown in Fig. 1(a). The latter is also obtained for all attractive interactions
although in this case only one of the branches is unstable. Despite the large perturbation, the
rogue wave survives and shows remarkable stability. The noise induced modulation instability
appears at t ≈ 8 i.e. at later stages of evolution similar to the case shown in Fig. 1(a). When,
however we consider interspecies interactions to be repulsive (g = 1), the vector rogue wave
requires much larger (compared to the case g = −1) initial amplitude. This results in significant
increase of the growth rate for modulation instability. Thus, the modulation instability noise
now appears right after the rogue wave (see Fig. 2(b)). The noise peaks have a structure different
from the rogue wave itself. Namely, the minimum of one component is located at the point of
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Fig. 2. (Color online) Vector rogue wave profiles when the parameters are: (a) g1 = −1.5, g2 = −2.0,
g = −1 and (b) g1 = −1.5, g2 = −2.0, g = 1. In each case Δ > 0. The initial conditions taken at
t = −3 are the form of exact solutions (12) with δ = 0. Thus, these are highly perturbed vector rogue
waves.

the maximum of the other one and vice versa. This is not surprising if we recall the repulsive
nature of the interspecies nonlinearity.

3.2 Vector rogue waves induced by the attractive interspecies interactions. Components
with a positive and a negative scattering lengths

Now we turn our attention to the case when the rogue wave can exist in the component with a
negative scattering length (we choose the first component, thus requiring g1 < 0), but cannot
exist in the other component with a positive scattering length (i.e. with g2 > 0). A numerical
example when this happens is shown in Fig. 3. Here Δ < 0. It can be clearly seen from
these numerical simulations that the rogue wave can now be excited, although there is a large
difference in the amplitudes between the “driving” first component, which alone allows for the
existence of the rogue waves, and the “driven” second component. The appearance of the rogue
wave in the second component can be understood, if we take into account that |ψ2|2 � |ψ1|2
and neglect the density of the second component, |ψ2|2 in Eqs. (1). Then ψ2 can be considered
as a linear wave-function of the second component [see Eq. (1b)] in a trap potential U = −|ψ1|2
created by the first component. In other words, this is the vector rogue wave induced by the
attractive inter-species interactions.

3.3 Nonexistence of rogue waves due to the strong inter-species interactions

Now we consider the case which is somehow opposite to the one considered in the previous
subsection 3.2. Namely, we show that sufficiently strong inter-species interaction suppresses the
existence of synchronised vector rogue waves, even though such waves can exist in each of the
components separately. Thus, we consider the case when g1,2 < 0 and g > |g1,2| (again Δ < 0).
What would be the physical mechanism responsible for this inhibition of vector rogue waves?

In order to answer this question, we notice that this example emerges from the second case con-
sidered in Sec. 3.1 when Δ crosses zero point and the system is described by the model (8)
[alternatively (9)]. Suppose, there is a vector solution, i.e. w2 = aw1, where a is a constant.
Then for |a| < 1 (or |a| > 1), one can always find a constant α, tanhα = a (or cothα = a)
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Fig. 3. (Color online) Vector rogue wave profiles when the parameters are g1 = −0.5, g2 = 1.5, g = −1
and the initial conditions taken at t = −3 are in the form of exact solutions (12) with δ = 0.

Fig. 4. (Color online) A vector rogue wave destroyed by the attractive interspecies interactions. Here
g1 = g2 = −0.95, g = 1 and the initial conditions are taken at t = −3 in the form ψ1(x, t) =

(−g1)−1/2Ψ(x, t), ψ2(x, t) = 0.01 Ψ(x, t).

such that using one of the two matrices P1,2, defined in (10), we can arrive to |ψ1|2 = |ψ2|2.
From here, we can see that the system displays pure linear dispersive dynamics. Indeed, the
equations (11) become linear.
In order to confirm that this is indeed the case, we made numerical simulations using the

initial condition in the form of the one-component rogue wave with slightly excited second
component. The results of the simulation are depicted in Fig. 4. The excited state is an almost
unperturbed rogue wave in the first component and a hole (or dark rogue wave) in the sec-
ond component. The locations of their extremal points (maximum and minimum respectively)
coincide. Clearly, the appearance of the dark rogue wave in the second component occurs due to
the repulsive nature of the inter-species nonlinearity. Indeed, neglecting much smaller density
values of the second component in Eq. (1b) we arrive at the linear Schrödinger equation with
the shape of the potential created by the first component. Contrary to the case considered in
Sec. 3.3 and depicted in Fig. 3, the potential has the opposite sign thus creating the potential
barrier for the second component.
The centre of the rogue wave does not have to be at the point t = 0. Indeed, the rogue

wave in Fig. 4 is excited earlier in time. Additional structures that appear as noise in this plot,
namely, lateral maxima of the second component (at t ≈ 0.5 and x ≈ ±3.85) are not synchro-
nised with the structures (lateral maxima at t = 0 and x ≈ ±1.2) in the first component. This
fact is also in agreement with our physical understanding of this case.

3.4 Rogue waves induced by the attractive interspecies interactions. Components with
positive scattering lengths

Quite an opposite situation occurs in the case g1,2 > 0, g < 0, and Δ < 0. No rogue waves
can exist in each of the components separately. However, the favorable conditions for rogue
waves are created due to inter-species interactions. Rogue waves in this case are even more
pronounced than in the case considered above in Sec. 3.2. The rogue wave profiles calculated
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Fig. 5. (Color online) Two-component rogue wave profiles in the system with the parameters
(a) g1 = 0.5, g2 = 0.7, g = −1 and (b) g1 = 13.0, g2 = 0.025, g = −1. The initial conditions for
these simulations are taken at t = −3 in the form of exact solutions Eq. (12) with δ = 0. Note the
difference in scales along vertical axis in (b).

for two different combinations of g1,2 are shown in Fig. 5. In the first case (Fig. 5(a)), the two
BEC components have approximately equal amplitudes while in the second case (Fig. 5(b)),
the two BEC components differ significantly in the amplitude. In each case, the attractive
interspecies nonlinearity g creates conditions for existence of stable vector rogue waves with
the two nonzero components.

4 Rogue waves in binary mixtures with linear coupling

The system becomes physically significantly different when we take into account time-dependent
linear coupling β(t) �= 0 in Eq. (1). This term is responsible for the particle exchange between
the two components. The number of particles in the first and in the second components relative
to the total number of particles can be expressed using Eq. (7) as

∫ |ψ1,2(x)|2dx∫ |Ψ(x)|2dx = − 1
2g
[1± sin (2α) cos (2B(t))] , (16)

where the signs + and − in the right hand side correspond to the first and the second compo-
nents, respectively. As it follows from Eq. (16), when α = π/4+nπ/2 with n being an integer, it
is possible that all particles are concentrated in one of the components. Moreover, if we choose
the linear dependence of the phase B(t) on time

B(t) =
π

4

[
1− b t− t0

t0

]
(17)

the particles are periodically swapped between the two components. In the following discussion
we concentrate on this case only.
Fig. 6 shows the results of numerical simulations of vector rogue waves in BECs with linear

coupling. The values of parameters chosen for these simulations are given in the figure caption.
In the first case, b = 1, shown in Fig. 6(a), the maximum of the rogue wave is located at the
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Fig. 6. (Color online) Vector rogue wave profiles for the case g1,2 = g = −1, α = π/4, t0 = −3, and
linear coupling (17) with (a) b = 1, (b) b = 2 and (c) b = 15.

maximum of the oscillating background. All particles at t = 0 are concentrated in the second
component. In the second case, b = 2, shown in Fig. 6(b), the maximum of the rogue wave
is located at the slope of the oscillating background. There is an equal number of particles
in the two components. The slope in the background results in the shift in time between the
location of maxima of the two components (t ≈ 0.154 in first component and t ≈ −0.154 in
second component). Finally, when the frequency of the oscillation of the particles between the
two components is high (b = 15), the background becomes fast oscillating as can be seen in
Fig. 6(c). Despite the fast oscillations, the shape of the rogue wave components in average is
little influenced by them.

5 Discussions

In this work, we showed that BEC is a perfect system that allows us to study two-component
rogue waves and the effect of nonlinear interactions on their dynamics. We have shown that
there is a diversity of vector rogue waves in coupled systems. The possibility of external control
of the interaction coefficients adds flexibility in our ability to switch between various rogue wave
appearances when we want it. Moreover, when the linear interspecies interactions are added,
their variation appears to be an effective tool for manipulating vector rogue waves, thus, allow-
ing us to observe many different scenarios.
Adding to discussions suggested by the editors of this special issue we can say that ap-

pearance of vector rogue waves in this problem is naturally related to modulation instability.
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As soon as modulation instability is turned on, the rogue wave solution also appears as a result.
This may be a specific feature of this model as it is a natural extension of the NLS equation.
However, some kind of instability is a necessary condition for appearance of rogue waves pro-
vided that the model itself is nonlinear. Clearly, in any linear problem, rogue wave is just the
result of the constructive wave interference [35] rather than growth of instability. The phenom-
enon observed in [35] is more related to Anderson localisation than to rogue waves.
Our study is only the first step in exploring rogue waves in mixtures of condensed quan-

tum gases. Advanced analytical description of the phenomenon will allow us to solve more
complicated problems. We can mention, in this respect, evolution of rogue waves in variety of
trapping potentials. These may include a parabolic trap or an optical lattice. First studies in
this direction performed with the one-component Bose-Einstein condensate were done in [19].
We can also mention vector rogue waves in more than one dimension. We can take into account
quantum fluctuations which are expected to be enhanced when a rogue wave achieves its max-
imum. Another possibility is managing rogue waves by means of time and/or space dependent
external forces.
We can consider two-component Bose-Einstein condensate as a first step to generalisations

of the simple one component model. Multi-component dynamical systems are naturally oc-
curring in the complex world surrounding us. They may appear in biology when considering
several interacting species or in the world of finance [36]. Depending on the particular situation,
perhaps, we would like to avoid any extreme events or disasters. The problem that we solved,
allows us to make the first steps in the direction of controlling such complicated systems using
interactions between the components. For example, wouldn’t it be nice to prevent catastrophes
in economy just controlling transformations between various forms the money can take? Indeed,
controlling the interactions seems to be the simplest way of governing the complicated world of
finances. The problem that we solved here can be considered as the first step in this direction.
Further understanding of extreme events (rogue waves) is the natural way to make the world
we are living in to be better.
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