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Vector-Valued Approximation
and its Application to Fitting
Exponential Decay Curves*

By Geneva G. Belford

Abstract. This paper deals with characterization of best approximations to vector-valued

functions. The approximations are themselves vector-valued functions with components

depending nonlinearly on the approximation parameters. The constraint is imposed that

certain of the parameters should be identical for all components. An application to exponen-

tial approximation is discussed in some detail.

1. Introduction. The work reported in this paper was motivated by the following

problem: Suppose a set of experimentally determined exponential decay curves is given.

It is desired to approximate the curves by functions of the form a exp(ftx), where

ß should be the same for the entire set of curves and a may vary from curve to curve.

The problem is to determine how such approximation might best be made. This

problem arises in a number of physical situations. In chemical kinetics, for example,

monitoring of a chemical reaction which obeys a first-order rate law leads to just

such exponential data, from which one wishes to extract a best ß although the initial

amount of material (a) varies from experiment to experiment.

In a previous paper [1], this type of constrained vector-valued approximation was

studied for the simpler situation where the approximating functions depend linearly

on the parameters. In this paper, results for nonlinear approximation are presented.

Section 2 contains a precise formulation of the problem and a characterization theorem

applicable to the construction of best approximations from general classes of nonlinear

families. In Section 3, the particular problem discussed in the preceding paragraph

is taken up. A very simple alternation theorem is obtained, as well as an interesting

theorem on uniqueness.

2. Formulation of the Problem and a Characterization Theorem. Let

gu g2, • • • , gibe a given set of real functions continuous on a closed interval / of the

real line and let g denote the /-dimensional vector-valued function with components

{g,}. Let V be an «-parameter family of functions in C(T). Denote an arbitrary element

of F by <p(a¡, ■ ■ ■ , <*„; x), where (a,, • ■ • , a„) £ R" is the parameter vector, and assume

that <p depends continuously on the a, as well as on x. For any integer m (0 ^ m ^ ri),

we then define the family of approximating vectors
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180 GENEVA G. BELFORD

F=  {(/its,*), f2(a,x), ■■■ ,f,(a,x)):

a = (an, ai2, ■ • ■  , alm, a2l,  • • • , a2m, ■ ■ ■  , alm, am + 1, ■ ■ ■  , a„) G R",

q =  m(l —  1) + n,    and /¡(a, x) = <p(an, ■ ■ ■  , aim, am+1, • • • , a„; x)\.

For example, the approximating family for a set of exponential decay curves (as

described in the introduction) would be defined by <f> = a, exp(a2x) and m = 1.

In order to avoid the double-subscript notation, we will henceforth write a =

(ct\, a2, ■ ■ ■ , a,).

The norm used in this paper is the usual uniform norm; that is, if / is any vector-

valued function with components /, in C(I), the norm N(j) is defined by

N(f) = max HAH
i

where ||/,|| = maxl£/ \f¡(x)\. An element / in F is then called a best approximation

to g from F if

N(g - f)=   inf N(g - f) = p(g).

One does not in general expect the existence of such a best approximation, since

best approximations to a single function from nonlinear families often fail to exist.

Uniqueness of the best approximation is also the exception rather than the rule, as is

the case for the simpler situation when F is a linear subspace [1]. Comments on

existence and uniqueness can be provided in particular cases, however, as will be

seen in the next section.

In order to obtain characterization results, we first define the notion of "extremal."

Definition 1.   The pair (x, k) is called an extremal of the approximation f(a, ■ )

to g if

\gk(x) - fk(a,x)\ =  N(g- f(a, •)).

Let Ek(a) m {x : (x, k) is an extremal}.

Assuming that the partial derivatives dfk(a, x)/da, all exist and are continuous

for (a, x) G R" X /, we then extend the representation condition of Krabs [4] to the

vectorial case as follows.

Definition 1. The family F is said to satisfy the representation condition if,

for every pair of functions f(a, x), f(b, x) in F, there exist real numbers c,(a, b)

(j = 1, • • • , q) and functions \pk(a, b; x) (k = 1, ■ ■ ■ , /) positive on /. such that

(1) fk(a, x) - fk(b, x) = Ma, b; x) £ c,(a, b) dU<?' x)    for   k = 1, • • • , /.
Í-I "«I

Extending familiar arguments given by Meinardus [5] and Krabs [4] for single function

approximation, one then obtains the characterization theorem:

Theorem 1. Let F satisfy the representation condition and suppose that p(g) > 0.

Then f(a, x) is a best approximation to g if and only if there exists nob = (ft, • • • , ft)

G R" such that, for all k and all x G Ek(d),

(2) [gk(x) - fk(a, x)]\Ts ßi dfkia, *)/¿>a,J > 0.
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3. Application to Constrained Exponential Approximation. In this section, we

consider the particular case of approximation by one-term exponentials (elements of

E, = \a exp(ftc) : (a, ft) G R2!), with the exponential factor ß constrained to be the

same for all components. That is, as noted before, we take fk = ak e\p(aQx) for

k = I, ■ ■ ■ , I = q — 1; the resulting family of vector-valued approximating functions

will be denoted by Fexp. For simplicity, we shall take the interval / to be [0, 1]. The

existence of best approximations from FexD is readily demonstrated. The compactness

of any bounded set {/ : / G Fexp; N(j) S M\ is easily deduced from the known com-

pactness result for / = 1 [6]. The usual existence argument then goes through.

In order to apply Theorem 1, we must first verify that the representation condition

holds for Fe!lD. (The smoothness condition prefacing Definition 2 is clearly satisfied.)

The representation condition is known to hold for exponential functions [4], but

extension from scalar to vector-valued functions is certainly not obvious, because of

the requirement that the coefficients c, not vary with k. Letting a = («,, • • • , «,)

and b = (ft, • • • , ft), we need (from (1))

ak exp(a„*) — ft exp(ftx) = exp(aax)\¡/k(a, b; x)\ck(a, b) + akcQ(a, b)x\

for    k =  X, 2, ■ ■ • , g — 1.

For \¡/k to be nonvanishing on [0,1] as required, the linear factor on the right (in braces)

must have a zero at the same point as does the left side. This condition leads to

(4) ck/ca =  -ak log(Wft)/(ft -a.)        (k =  X, 2, ■ ■ ■ , g - X).

(Equation (4) is obtained under the assumptions that akßk > 0 (k = I, ■ ■ ■ , q — 1)

and ft — a, ^ 0. The other cases are readily handled by similar arguments.) Further-

more, the positivity of \j/k requires also that the signs of both sides of (3) should match

at any point x. Taking Jc = 0, we arrive at the condition

(5) sgn(at — ft) = sgnfct)        (k = I, ■ ■ ■ , g — I).

Now since sgn(afc — ft) = sgn[at log(at/ft.)], it is clear that by choosing any cq

such that sgn c„ = — sgn(ft — a„) and then solving (4) for c, , • • • , c„_,, a set of

scalars cu • • ■ , cQ satisfying (4) and (5) may be found. The functions \//k(a, b) are then

defined to be

,        ak exp(qajc) - ft exp(ft*)
^* = -;—w—T-i— >       k = 1, ••• ,g — 1,

exp(aQx)\ck + ctkcQx\

and the representation condition is verified.

Theorem 1 therefore is applicable. In order to deduce an alternation theorem from

it, we first note the following familiar facts. Firstly, consistency or inconsistency of

the inequalities (2) does not depend on the magnitude of the approximation error

(N(g — f(a, ■))) but only on the signs sgn[gk(x) — fk(a, x)], which we shall denote

by uk(x). Secondly, a necessary and sufficient condition for the inconsistency of the

set of inequalities (2) (where (x, k) runs over all extremals) is that the origin 6 =

(0, • • • , 0) of R" should lie in the convex hull of the set of ¿/-vectors

(6) S = {'k(x)(^j^ ,■■■ , &g^) : (x, k) is an extremal}-
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(This result on linear inequalities may be found in Cheney's book [3, p. 19].) Finally,

note that by Carathéodory's theorem [3, p. 17] the condition that the origin 0 of R"

should be in the convex hull of S may be replaced by the condition that 6 should be

a convex linear combination of some q + 1 (or fewer) elements of S. For our ex-

ponential approximation, then, the condition is that there exist extremals (xki, k)

(with k = I, ■ ■ ■ , I, i = I, ■ ■ ■ , ¡>k, and ^ vk ̂  q + 1) and nonnegative constants

A« satisfying J^k £,- \ki = 1 such that

'a

"52 A*,»», exp(aQxki) =0        (k = 1, • • • , q — 1),

(7)
q-l     vk

X IL, Vki^kiOtkXki exp(aQxki) = 0.
t-l       7-1

(Here we have used aki to denote ak(xki).) Of course, only those extremals (xti, k)

for which Xti is nonzero play a role in actually characterizing a best approximation.

Thus, one immediately sees from (7) that any k for which vk = 1 does not enter into

the characterization. Considering the various possibilities involving indices k for which

vk > 1, one quickly arrives at the following alternation theorem.

Theorem 2. The vector-valued function f is a best approximation from Fexp to g

on [0, 1] if and only if one of the following conditions holds.

(I) For some index k, fk is a best unconstrained approximation to gkfrom Ex (i.e.,

there are three points of alternation if ak ¿¿ 0 and two points of alternation if ak = 0

[5,p.m])and\\gk-fk\\ = N(g-f).
(II) There exist two indices (say k = 1,2) with four associated extremals (xn, 1),

(x¡2, 1), (x21, 2), (x22, 2) such that a, 9e 0, a2 ^ 0, xn < x12, x2l < x22, and

0hCi2 = — 1,

ö-210'22    = 1 »

ffiiOîi =  — sgn(a, a2).

Example. Let g = (1, x). The best approximation from Fexp to g on [0, 1] is given

by /, = \e9x, f2 = %eßx with ß = log 2. One readily verifies that N(f - g) = f, ex-

tremals are (0, 1), (1, 1), (0, 2), (1, 2), and the alternation requirements of condition (II)

of Theorem 2 are satisfied.

The problem of finding a best approximation to a general g is simplified enormously

by the knowledge (from Theorem 2) that one need not consider more than two of the

component functions simultaneously. Notice that the key problem is to determine

a best aQ, since then a set of aks may be determined from the condition that ak exp(aax)

should be the best approximation to gk from the linear family j a exp(a„x) : a G R} •

Thus one would proceed by constructing best unconstrained approximations from

Fj to each gk. If none of the exponential factors obtained in this way serves as a best a„

the next step is to examine all pairs gk„gk,. For many of these pairs, the best approx-

imation is characterized by condition (I) of Theorem 2 and is therefore of no further

interest. If best approximations fkl, fk, characterized by condition (II) are then con-

structed for the remaining pairs, one of these necessarily yields a best au.

This last step—construction of best approximations to a pair of functions j g,, g2}—

deserves further discussion. We have first tried the straightforward approach based
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on the fact that if (2) has a solution, a better approximation may be constructed from

that solution. That is, with any extremal (x, k) of an approximation j(a, x) there is

associated a linear inequality (from (2)) of the form

(8) «r*(*){0* + ft«**} > 0.

If the set of all such linear inequalities (associated with all extremals) has a solution

ft, ft, ft, then, for some « > 0, j(a', x) provides a better approximation, where

a' = (cti + eft, a2 + eft-, a3 + eft). Thus by iteratively searching for extremals,

solving inequalities (8), and correcting the approximation, one may hope to arrive

eventually at a best approximation. In trials, this method has never failed to converge.

A Remez-type algorithm has also been coded and limited trials to date show rapid

convergence.

Further computational details and test results are available in [2]. One test may

be worth mentioning here. We artificially generated "experimental" data by adding

random errors e (|e| ^ .01) to a set of three exponential curves of the form ae~x with

a = 0.5, 1.0, 1.5. ("Data" points were computed for 20 equally spaced x-values

on [0, 2].) Our program, which identified extremals with a tolerance of 10~4, recovered

the exponential factor ß = — 1 as — 1.0000. The traditional way of analyzing ex-

ponential data (least-squares straight-line fit to the logarithms of the function values)

led to ß = —0.9988. The difference is largely ascribable to the weighting induced by

taking logarithms; direct least-squares fitting of exponentials is, however, a trouble-

some nonlinear problem even for a single function. Simultaneous uniform approxima-

tion appears to be a very practicable alternative.

Finally, we take up the question of uniqueness. It is obvious that the factors

ak (k = 1, 2, • • ■ , q — 1) are not in general unique. However, it is likely to be the

parameter a, that is of principal interest, and, as the following theorem shows, this

parameter is (with a trivial exception) uniquely determined.

Theorem 3. Let f(a, x) be a best approximation from Fexp to g. Let a = (a,, • • • , a,).

Suppose that either (i) condition (I) of Theorem 1 holds for some k such that ak j¿ 0, or

(ii) condition (II) of Theorem 1 holds for some pair of indices k¡, k2 such that akl ¿¿ 0,

ak, j¿ 0. Then iff(b, x), with b = (ft, • • • , ft) is any other best approximation, aq = ft.

Proof. If (i) holds, the result is an immediate consequence of the uniqueness of

best approximants from F, [5, p. 178]. Now suppose that (ii) holds and for brevity

let ki = \, k2 - 1. Assuming that axa2 > 0, either the following set of inequalities

or the set with all inequalities reversed must hold.

(9) ft exp(ft*,,) - <*! expioyc,,) è 0,

(10) ft exp(ftjc12) — ax exp(a,x12) g 0,

(11) ft exp(ftjc21) — a2 exp(cvc21) ^ 0,

(12) ft exp(ft*22) — a2 exp(avc22) ^ 0.

If equality holds in all four cases, then clearly a, = ft. Hence, assume that one of

these, say (9), is a strict inequality. Under the assumption that ax > 0, (9) and (10)

can only be compatible if

exp[(a„ - ft)*!,] < exp[(a„ - ft>12],

or, since xn < xX2, a, — ft > 0. But if aa — ft > 0, (11) and (12) are inconsistent.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



184 GENEVA  G.   BELFORD

Reversing all inequalities or making the other assumptions on the signs of a¡, a2

leads in the same way to inconsistency if at least one inequality is strict. Hence,

we conclude that the equalities hold, and aQ = ft.

The argument above also shows that a, = ft and a2 = ft. Therefore although the

coefficients ak (k = 1, • • • , q — 1) are in general not all unique, certain of the aks,

in particular those entering into the characterization of a best approximation, are

unique.

The theorem of Section 2 should also be found useful in constructing constrained

vector approximations based on nonlinear families other than F,. The especially

simple alternation theorem for Fexp depends heavily, however, on the nice properties

of the exponential function and the fact that each fk depends on only two parameters.
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