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VECTOR VALUED DE BRANGES SPACES OF ENTIRE FUNCTIONS

BASED ON PAIRS OF FREDHOLM OPERATOR VALUED FUNCTIONS

AND FUNCTIONAL MODEL

SUBHANKAR MAHAPATRA AND SANTANU SARKAR

ABSTRACT. In this paper, we have considered vector valued reproducing kernel

Hilbert spaces (RKHS) H of entire functions associated with operator valued ker-

nel functions. de Branges operators E = (E
−
, E+) analogous to de Branges ma-

trices have been constructed with the help of pairs of Fredholm operator valued en-

tire functions on X, where X is a complex seperable Hilbert space. A few explicit

examples of these de Branges operators are also discussed. The newly defined

RKHS B(E) based on the de Branges operator E = (E
−
, E+) has been character-

ized under some special restrictions. The complete parametrizations and canonical

descriptions of all selfadjoint extensions of the closed, symmetric multiplication

operator by the independent variable have been given in terms of unitary operators

between ranges of reproducing kernels. A sampling formula for the de Branges

spaces B(E) has been discussed. A particular class of entire operators with infinite

deficiency indices has been dealt with and shown that they can be considered as

the multiplication operator for a specific class of these de Branges spaces. Finally,

a brief discussion on the connection between the characteristic function of a com-

pletely nonunitary contraction operator and the de Branges spaces B(E) has been

given.
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1. INTRODUCTION

This article aims to develop a general framework of the de Branges theory of vector

valued entire functions and establish its connections with the M. G. Krein’s theory

of a class of entire operators with infinite deficiency indices. The basic theory of

reproducing kernel Hilbert spaces (RKHS) was developed by the contribution of

many authors (see: [5], [9], [33], [36]). It has been observed that the theory of vec-

tor valued reproducing kernel Hilbert spaces associated with operator valued kernel

functions arise naturally in many areas like probability and stochastic process, ma-

chine learning, statistics, etc., and is an active area of research. For example, the

articles ( [34], [35]) connecting the machine learning theory with the vector valued

RKHS theory are motivating. Here we mainly work with RKHS, whose reproduc-

ing kernels (RK) are operator valued entire functions. Throughout this article, X is

a complex seperable Hilbert space, and H is an RKHS of X-valued entire functions.

For any β ∈ C, we denote

Hβ = {g ∈ H : g(β) = 0}.

Also, by the multiplication operator on H, we mean the operator of multiplication

by the independent variable.

In 1959 with the help of three axioms, L. de Branges introduced the Hilbert spaces

of entire functions (C-valued), which were actually RKHS (see [10]) and are now

known as the de Branges spaces. In later years, de Branges published several arti-

cles (see, e.g., [11], [12]) and developed the theory as a generalization of Fourier

analysis. He also extended his theory for the vector valued analytic functions (see

[13], [14], [15]) and vector valued entire functions ([17]). Over the time this the-

ory has thrived and made connections with several areas of mathematical analysis,

such as the spectral theory of canonical systems, interpolation and sampling. His

initial studies can be found in a combined form in the book ([16]). The theory of

de Branges spaces B(E) consisting of Cp-valued entire functions based on a p× 2p

entire matrix valued function E = [E− E+], called the de Branges matrix, is also

a well developed theory and appeared to be very crucial for answering direct and
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inverse problems for canonical systems of differential equations and Dirac-Krein

systems . The components of E satisfy the following conditions:

detE+(z) 6≡ 0 and F := E−1
+ E− is a p× p inner matrix valued function. (1.1)

The reproducing kernel of B(E) is given by

KE
ξ (z) :=

{
E+(z)E+(ξ)∗−E−(z)E−(ξ)∗

ρξ(z)
if z 6= ξ

E
′

+
(ξ)E+(ξ)∗−E

′

−
(ξ)E−(ξ)∗

−2πi
if z = ξ,

(1.2)

which is a p× p matrix valued entire function. The notation ρξ(z) is clarified later.

A comprehensive study of these de Branges spaces with matrix valued reproduc-

ing kernels can be found in [6], [7]. Also a characterization of the space B(E),

analogous to problem 50 of the book [16], and it’s connection with entire operators

having deficiency indices (p, p) are present in [21].

M. G. Krein also studied the Hilbert spaces of entire functions, though his approach

was different from de Branges. He introduced the notion of entire operators and

observed the multiplication operator as an operator model of entire operators with

arbitrary finite and equal deficiency indices as well as with infinite deficiency in-

dices in a Hilbert space of entire functions (see: [30], [31]). In recent works for

entire operators with (1, 1) deficiency indices, these spaces were identified as the

de Branges spaces of C-valued entire functions (see [42]), and for entire operators

with (p, p) deficiency indices (p is arbitrary and finite); these spaces were identified

as the de Branges spaces of Cp-valued entire functions (see [21]).

Our primary goal is to make sense of de Branges operators, likewise the de Branges

matrices, i.e., to find a pair of B(X)-valued entire functions E = (E−, E+) such that

the components of E would satisfy the conditions like (1.1) and the kernel function

given by (1.2) should be positive. The undertone of this paper is to observe the

transition of the theory of de Branges spaces based on matrix valued reproducing

kernels to B(X)-valued reproducing kernels. The two prime operators we shall

be considering on H are the multiplication operator T by the independent variable

with domain D = {g ∈ H : Tg ∈ H} and the generalized backward shift operator

defined by

(Rzg)(ξ) :=

{
g(ξ)−g(z)

ξ−z
if ξ 6= z

g′(z) if ξ = z
(1.3)

for every ξ, z ∈ C. Observing the intimate connections between H, Hβ, T and Rβ

is also one of the main aims of this article.

1.1. Plan of the paper. The paper is organized as follows: The first three sections

are dedicated to reviewing the preliminaries for the proposed construction of de

Branges operators. Though most of the results in these sections are available in the
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literature in the matrix setting, to maintain the flow of the study, we mention all

the essential results in the operator setting. The main construction of de Branges

operators E = (E−, E+) has been accomplished in section 5. One of the crucial

observations is to consider the components E± of E as the Fredholm operator val-

ued entire functions. A particular form of analytic Fredholm theorem (see [24],

[23]), which we have mentioned in Theorem 5.2, turned out to be very crucial for

our study. For the basic theory of operator valued holomorphic functions, see [28],

[3], [25]. In section 6, we present several examples of de Branges operators. An

example of the Fredholm operator valued holomorphic function from the book [24]

appeared to be very motivating for constructing our example. Section 7 reviews

some results, connecting Hβ, T and Rβ . Also, we discuss the condition for Hβ

and Hβ to be isometrically isomorphic. Section 8 discusses a characterization of

the newly constructed de Branges spaces B(E) corresponding to the de Branges

operator E = (E−, E+), where E+(β) and E−(β) both are self-adjoint for some

β ∈ C+. This characterization is the vector generalization of problem 50 in [16]

and Theorem 7.1 in [21].

In Section 9, under general consideration, we mention the complete parametriza-

tions and canonical descriptions of all selfadjoint extensions of the symmetric mul-

tiplication operator T. Also, a sampling formula for the de Branges spaces has been

observed in terms of the eigenfunctions of a selfadjoint extension of T. The con-

nection between entire operators with infinite deficiency indices and the de Branges

spaces B(E) is presented in section 10. Mainly, a particular class of entire opera-

tors with infinite deficiency indices have been dealt with and shown that they can be

considered as the multiplication operator for a specific class of de Branges spaces

with operator valued RKs. Finally, in the last section, a brief discussion on the con-

nection between the characteristic function of a completely nonunitary contraction

operator and de Branges spaces B(E) has been given.

1.2. Notations. The following notations will be used throughout the paper:

C the complex plane; C+ (resp., C−) the open upper (resp., lower) half-plane. D is

the open unit disc and T is the unit circle in the complex plane.

B(X) denotes the collection of all bounded linear operators on X.

ρξ(z) = −2πi(z − ξ).

For an operator A; A∗ denotes the adjoint operator, the notation A ≻ 0 and A � 0

means that A is positive definite and positive semi-definite respectively and σ(A)

denote the spectrum of A.

A point β ∈ C is a point of regular type of A if there exists dβ > 0 such that

||(A− βI)g|| ≥ dβ||g||
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for every g in the domain of A. π(A) denotes the collection of all points of regular

type for A.

kerA denotes the kernel of A; rng A denotes the range of A, and rng A denotes the

closure of the range of A.

∔ (resp., ⊕) denotes the direct sum (resp., orthogonal direct sum) between two

subspaces and ⊖ denotes the orthogonal complement.

A function g : R → X is said to be integrable if it is Bochner integrable and square

integrable if it satisfies the following condition
∫ ∞

−∞

||g(t)||2dt < ∞.

The Fourier transformation of a square integrable function g : R → X is denoted

by ĝ and is defined as

ĝ(t) =

∫ ∞

−∞

e−istg(s)ds.

2. OPERATOR VALUED KERNELS AND VECTOR VALUED REPRODUCING

KERNEL HILBERT SPACES (RKHS)

This section briefly recalls a few basic facts regarding vector valued RKHS. Since

our goal is to work with RKHS of vector valued entire functions, we present all the

results by assuming H to be the RKHS of X-valued entire functions. A detailed and

general study can be found in [38].

Let H be a Hilbert space of X-valued entire functions. Then we call H a reproduc-

ing kernel Hilbert space if there exists a B(X)-valued function Kξ(z) on C × C,

which satisfies the following two conditions:

(1) Kξu ∈ H for all ξ ∈ C and u ∈ X.

(2) 〈f,Kξu〉H = 〈f(ξ), u〉X for all f ∈ H, ξ ∈ C and u ∈ X.

The B(X)-valued function Kξ(z) is known as reproducing kernel (RK) for H.

Equivalently, H is an RKHS if for all ξ ∈ C, the point evaluations

δξ : H → X, f 7→ f(ξ)

are bounded. The function Lξ(z) = δzδ
∗
ξ satisfies the two conditions of a repro-

ducing kernel. For an RKHS, the reproducing kernel is unique. The supplementary

calculation after assuming two reproducing kernels Kξ(z) and Gξ(z) for H

||Kξu−Gξu||
2
H = 〈Kξu−Gξu,Kξu〉H − 〈Kξu−Gξu,Gξu〉H

= 〈Kξ(ξ)u−Gξ(ξ)u, u〉X − 〈Kξ(ξ)u−Gξ(ξ)u, u〉X

= 0

serves to verify our last statement. Thus the B(X)-valued function Kξ(z) = δzδ
∗
ξ is

the reproducing kernel for H. Clearly, for ξ, z ∈ C, Kξ(z)
∗ = Kz(ξ). In an RKHS
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H norm convergence of a sequence of functions implies point wise convergence, i.e.

if {gn} ⊆ H converges to g ∈ H in the norm, then for every z ∈ C, gn(z) → g(z).

The linear span of the collection {Kξu : ξ ∈ C, u ∈ X} is dense in H. If there exist

countable sets {ξ1, ξ2, . . .} ⊂ C and {u1, u2, . . .} ⊂ X such that {Kξnun : n ∈ N} is

an orthogonal basis of H, then we shall say that the RKHS has the Kramer sampling

property which will appear in section 9.

The reproducing kernel Kξ(z) is positive in the sense that, for every choice of n ∈

N, ξ1, ξ2, . . . , ξn ∈ C and u1, u2, . . . , un ∈ X the following is true

n∑

l,m=1

〈
Kξm(ξl)um, ul

〉

X

=

∥∥∥∥∥
n∑

l=1

δ∗ξl(ul)

∥∥∥∥∥

2

H

≥ 0.

Clearly, for every ξ ∈ C, Kξ(ξ) � 0. The set {ξ ∈ C : Kξ(ξ) is invertible} is an

open subset of C. The proof of the last assertion is the same as Lemma 2.4 in [21].

A B(X)-valued function Kξ(z) on C×C is called a positive kernel if it is positive in

the sense as mentioned above. The operator version of Moore’s theorem (Theorem

6.12, [38]) ensures that corresponding to every positive kernel, there exists a unique

RKHS H. The next lemma gives a criterion to construct RKHS of entire functions.

Lemma 2.1. Let H be an RKHS of X-valued functions defined on C with RK Kξ(z).

Then H is an RKHS of X-valued entire functions if and only if Kξ(z) is an entire

function in z for all ξ ∈ C and ||Kξ(ξ)|| is bounded on every compact subset of C.

Proof. The proof is similar to Lemma 5.6 in [6]. �

Next, we give an example of an RKHS of X-valued entire functions, which is a

vector version of the Paley-Wiener space.

Definition 2.2. An entire function g : C → X is said to be of exponential type at

most a if for each ǫ > 0 there exists a constant L, independent of ξ such that

||g(ξ)||X ≤ L e|ξ|(a+ǫ).

If g : R → X is a square integrable function, vanishes outside the compact

interval [−a, a], for some a > 0, then ĝ and g satisfy the Plancherel’s theorem and

ĝ can be extended as an entire function

ĝ(ξ) =

∫ ∞

−∞

e−iξtg(t)dt

which is of exponential type at most a. These follow from Theorem 1.8.2 and

Theorem 1.8.3 of the book [3].
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Example 2.3 (Paley-Wiener spaces of vector valued entire functions). For a > 0,

the set of X-valued entire functions

PWa = {ĝ : g is square integrable and vanishes outside the interval [−a, a]}

(2.1)

is a Hilbert space with respect to the inner product

〈ĝ, ĥ〉PWa
=

∫ ∞

−∞

〈ĝ(t), ĥ(t)〉Xdt. (2.2)

Also PWa is an RKHS with the reproducing kernel

Ka
ξ (z) =

sin(z − ξ)a

π(z − ξ)
IX,

where IX is the identity operator on X. Since for every u ∈ X and ξ ∈ C

Ka
ξ (z)u =

∫ ∞

−∞

e−iztQa
ξ(t)dt,

where Qa
ξ(t) is a square integrable function defined as

Qa
ξ(t) :=

{
1
2π
eiξtu if |t| ≤ a

0 otherwise
(2.3)

and for ĝ ∈ PWa,

〈ĝ, Ka
ξ u〉PWa

= 〈ĝ, Q̂a
ξu〉PWa

[ ∵ Ka
ξ u = Q̂a

ξu ]

= 2π〈g,Qa
ξu〉L2 [ by Plancherel’s theorem ]

= 2π

∫ a

−a

〈g(t),
1

2π
eiξtu〉Xdt

=

〈∫ a

−a

g(t)e−iξtdt, u

〉

X

= 〈ĝ(ξ), u〉X.

3. SPACES OF VECTOR VALUED HOLOMORPHIC FUNCTIONS

In this section, we recall some crucial spaces of vector valued holomorphic func-

tions. As most of the results are well known, we mention them here without proof.

Details about these spaces can be found in [41], [37]. As we have considered earlier,

X is a complex seperable Hilbert space, and B(X) is the algebra of bounded linear

operators on X. We denote

L2
X(R) :=

{
f : R → X | f is weakly measurable and

∫ ∞

−∞

||f(t)||2X dt < ∞

}
,

H2
X(C+) :=

{
f : C+ → X | f is holomorphic and supy>0

∫ ∞

−∞

||f(x+ iy)||2X dx < ∞

}
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and

H∞
B(X)(C+) := {f : C+ → B(X) | f is bounded and holomorphic} .

It is known that :-

(1) L2
X(R) is a Hilbert space with respect to the inner product

〈f, g〉L2 =

∫ ∞

−∞

〈f(t), g(t)〉Xdt

for all f, g ∈ L2
X(R).

(2) The Hardy space over the upper half-plane H2
X(C+) is a Hilbert space with

respect to the inner product

〈f, g〉H2 =

∫ ∞

−∞

〈f0(x), g0(x)〉Xdx

where f0, g0 ∈ L2
X(R) are the boundary functions of f and g respectively,

which are mentioned in the next theorem.

(3) H∞
B(X)(C+) is a Banach space with the norm

||F ||∞ = supy>0||F (x+ iy)||B(X)

for all F ∈ H∞
B(X)(C+).

We also denote

S =
{
F ∈ H∞

B(X)(C+) : ||F (z)|| ≤ 1 for all z ∈ C+

}
.

The following two theorems give the boundary behaviour of the functions, respec-

tively, in H2
X(C+) and H∞

B(X)(C+).

Theorem 3.1. Let f ∈ H2
X(C+), then there exists a (unique) nontangential bound-

ary limit f0 ∈ L2
X(R) such that

f0(x) = lim
y↓0

f(x+ iy)

pointwise a.e. on R. Also, f0 satisfies the following identities

f(z) =
1

2πi

∫ ∞

−∞

f0(t)

t− z
dt , y > 0 (3.1)

and
1

2πi

∫ ∞

−∞

f0(t)

t− z
dt = 0 , y < 0 (3.2)

where z = x+ iy.

Conversely, every f0 ∈ L2
X(R) satisfying (3.1) and (3.2) gives the corresponding

function f ∈ H2
X(C+) such that f0 is the boundary function of f .

The identity in (3.1) is known as the Cauchy integral formula.
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Theorem 3.2. If F ∈ H∞
B(X)(C+), then for a.e. x ∈ R there exists F0(x) ∈ B(X)

such that for all u ∈ X

F (x+ iy)u → F0(x)u as y ↓ 0

and

||F0(x)|| = lim
y↓0

||F (x+ iy)||.

We denote Sin (resp., Sin
∗ ) as the collection of all functions F ∈ S such that the

corresponding boundary function F (x) ∈ B(X) is an isometry (resp., co-isometry)

for a.e. x ∈ R. It is easy to observe that a B(X)-valued holomorphic function

F (z) on C+ belongs to Sin (resp., Sin
∗ ) if and only if IX − F (z)∗F (z) � 0 (resp.,

IX − F (z)F (z)∗ � 0) for all z ∈ C+ with equality a.e. on R. The operator valued

functions F ∈ Sin (resp., Sin
∗ ) are called inner (resp., ∗-inner) functions. Functions

belong to both Sin and Sin
∗ are called inner from both sides.

It is known that the characteristic function of a contraction operator A ∈ B(X),

CA(z) = −A + z(I −AA∗)
1

2 (I − zA∗)−1(I − A∗A)
1

2

is an inner (resp., ∗-inner) function on the disc if and only if A∗n → 0 (resp.,

An → 0) strongly as n → ∞ (see [37]). Henry Helson studied in [27], the inner

functions F (z) from both sides, which are norm differentiable on the real line and

satisfy the following differential equation

F ′(x) = i V (x) F (x),

where V (x) is B(X)-valued norm continuous function, V (x) � 0 and self adjoint

for all x ∈ R. Also, Stephen L. Campbell studied B(X)-valued inner functions (see

[18]), which are analytic on the closed unit disc. If A ∈ B(X) with the spectral

radius r(A) < 1, ||A|| ≤ 1 and AA∗ 6= IX, then the corresponding Potapov inner

function

VA(z) = −A∗ + z(IX −A∗A)
1

2 (IX − zA)−1(IX − AA∗)
1

2

is also analytic on the closed unit disc. We can consider inner functions on the disc

as an inner function on the upper half-plane by using the conformal map C(z) = z−i
z+i

between the upper half-plane and the disc.

We denote H2
X(R) as the collection of all nontangential boundary limits of elements

of H2
X(C+). Thus we can consider H2

X(C+) as a closed subspace of L2
X(R) in terms

of H2
X(R). If we consider Hardy space over the lower half-plane, i.e., H2

X(C−), a

similar result as Theorem 3.1 will also hold. The identity in (3.2) implies that the

orthogonal complement of H2
X(C+) can be identified with H2

X(C−).
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Theorem 3.3. The Hardy space over the upper half-plane H2
X(C+) and over the

lower half-plane H2
X(C−) are RKHS of X-valued holomorphic functions on C+ and

C− respectively. The corresponding reproducing kernels are

Kξ(z) =
IX

ρξ(z)
ξ, z ∈ C+ (3.3)

and

K(−)
α (λ) = −

IX

ρα(λ)
α, λ ∈ C−. (3.4)

Proof. A simple calculation shows that for every u ∈ X and ξ ∈ C+, Kξu ∈

H2
X(C+). Also, from the Cauchy integral formula, the reproducing property

〈g,Kξu〉H2
=

∫ ∞

−∞

〈
g0(x),

1

−2πi(x− ξ)
u

〉

X

dx

=

〈
1

2πi

∫ ∞

−∞

g0(x)

x− ξ
dx, u

〉

X

= 〈g(ξ), u〉X

holds for any g ∈ H2
X(C+), ξ ∈ C+ and u ∈ X. In the similar way the case for

H2
X(C−) can also be proved. �

Suppose F ∈ H∞
B(X)(C+) with ||F (z)|| ≤ M for all z ∈ C+, then we can define

a function MF : H2
X(C+) → H2

X(C+) defined by

(MF g)(z) = F (z)g(z) for g ∈ H2
X(C+). (3.5)

The following evaluation shows that MF is well defined. For g ∈ H2
X(C+)

∫ ∞

−∞

||F (x+ iy)g(x+ iy)||2Xdx ≤

∫ ∞

−∞

||F (x+ iy)||2||g(x+ iy)||2Xdx

≤ M2

∫ ∞

−∞

||g(x+ iy)||2Xdx

≤ M2||g||2H2
X
(C+).

Proposition 3.4. If MF is defined as (3.5) for some F ∈ H∞
B(X)(C+), then the

following implications are true:

(1) MF is a bounded operator on H2
X(C+) with ||MF || = ||F ||∞.

(2) M∗
F

u
ρξ

= F (ξ)∗ u
ρξ

for all u ∈ X and ξ ∈ C+.

Moreover, if F ∈ S then MF is a contractive operator.

Proof. Boundedness of MF and ||MF || ≤ ||F ||∞ follows from the preceding calcu-

lations. Also a simple use of the Cauchy integral formula shows that for all u, v ∈ X

and ξ ∈ C+ the following inequality is true

|〈F (ξ)u, v〉X| ≤ ||MF || ||u|| ||v||.
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This implies for all ξ ∈ C+, ||F (ξ)|| ≤ ||MF ||. Therefore, ||MF || = ||F ||∞.

Since the RK for H2
X(C+) is Kξ(z) =

IX
ρξ(z)

. To show (2) it is sufficient to show that

for all u, v ∈ X and ξ, z ∈ C+

〈MF

u

ρξ
,
v

ρz
〉H2 = 〈

u

ρξ
, F (z)∗

v

ρz
〉H2,

which can be shown by a simple calculation using the Cauchy integral formula. If

F ∈ S then MF is a contractive operator follows from (1). �

In view of the preceding proposition, for any F ∈ S and any n ∈ N

n∑

l,m=1

〈
IX − F (zl)F (zm)

∗

ρzm(zl)
um, ul

〉

X

≥ 0 (3.6)

for every choice of u1, u2, . . . , un ∈ X and z1, z2, . . . , zn ∈ C+. Thus the B(X)-

valued function

Γξ(z) =
IX − F (z)F (ξ)∗

ρξ(z)

is a positive kernel on C+×C+, and we denote the corresponding unique RKHS of

X-valued holomorphic functions on C+ as H(F ).

4. CHARACTERIZATION AND EXTENSION OF THE RKHS H(F )

In this section, we recall an analogues characterization of the space H(F ), which

has been mentioned in [16], and extend H(F ) as an RKHS of X-valued holomor-

phic functions on a domain possibly larger than C+. We denote P as the orthogonal

projection of L2
X(R) onto H2

X(R) and Q = IL2
X
(R)−P. For F ∈ S and f ∈ H2

X(C+),

we denote

ν(f) = sup
{
||f +MF (g)||

2
H2 − ||g||2H2 : g ∈ H2

X(C+)
}
.

Theorem 4.1. For F ∈ S

H(F ) =
{
f ∈ H2

X(C+) : ν(f) < ∞
}

and ||f ||2H(F ) = ν(f).

Moreover, if F ∈ Sin, then

H(F ) = H2
X(C+)⊖ rngMF and ||f ||2H(F ) = ||f ||2H2.

Proof. For proof, see Theorem 2.2 and its second corollary in [20]. �

In view of Theorem 3.2, for every F ∈ S and b ∈ L2
X(R) the function defined by

x 7→ F0(x)b(x) for x ∈ R

belongs to L2
X(R), where F0 is the nontangential boundary limit of F . We denote

this function as Fb.
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Lemma 4.2. Let F ∈ S, b ∈ L2
X(R) ⊖ H2

X(R) and f ∈ H2
X(C+) be such that

f0 = −PFb is the corresponding nontangential boundary limit. Then for all g ∈

H2
X(C+)

||f +MF (g)||
2 − ||g||2 ≤ ||b||2 − ||QFb||2,

with equality if F ∈ Sin.

Proof. Since f and MF (g) both belong to H2
X(C+),

||f +MF (g)||H2 = ||f0 + Fg0||L2,

where g0 is the nontangential boundary limit of g. Now,

|| − PFb+ Fg0||
2
L2 = ||QFb+ F (g0 − b)||2L2 = −||QFb||2L2 + ||F (g0 − b)||2L2

as 〈QFb, Fg0〉L2 = 0 and 〈QFb, F b〉L2 = ||QFb||2
L2 . Thus the lemma follows from

the following fact that

||F (g0 − b)||2L2 ≤ or = ||g0||
2
L2 + ||b||2L2

according as F belongs to S or Sin. �

The next theorem is motivated from [20] (Theorem 2.3), where we replaced the

matrix valued kernels with operator valued kernels. Since these results are crucial

for the rest of this article, we include the proof with suitable modifications.

Theorem 4.3. If F ∈ S, then for every choice of n ∈ N, z, z1, z2, . . . , zn ∈ C+ and

u, u1, u2, . . . , un ∈ X the following implications hold:

(1) (RzF )u ∈ H(F ).

(2) ||
∑n

l=1(RzlF )ul||2H(F ) ≤ 4π2
∑n

l,m=1

〈
IX−F (zm)∗F (zl)

ρzm(zl)
ul, um

〉
X

with equal-

ity if F ∈ Sin.

(3) H(F ) is invariant under Rz for all z ∈ C+.

(4) Rz is a bounded operator on H(F ) for all z ∈ C+ and for all g ∈ H(F )

Rz satisfy the following assertion

||Rzg||
2 ≤

Im(〈Rzg, g〉)− π||g(z)||2

Im(z)
. (4.1)

Proof. Consider

b =
n∑

l=1

ul

ξ − zl
.

Clearly, b ∈ H2
X(C−). Thus it’s nontangential boundary function b (say) belongs to

L2
X(R)⊖H2

X(C+). Now

(RzF )(ξ)u =
F (ξ)u− F (z)u

ξ − z
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is analytic in C+, and the nontangential boundary function (RzF )(t)u belongs to

H2
X(R) as

1

2πi

∫ ∞

−∞

(RzF )(t)u

t− α
dt = 0

for all α ∈ C−. Since F (t)b(t) ∈ L2
X(R) and

F (t)b(t) =

(
n∑

l=1

F (t)ul − F (zl)ul

t− zl

)
+

(
n∑

l=1

F (zl)ul

t− zl

)
,

then
n∑

l=1

(RzlF )ul = PFb

and
n∑

l=1

F (zl)ul

t− zl
= QFb.

Now applying the preceding lemma, we have for all g ∈ H2
X(C+)

||
n∑

l=1

(RzlF )ul +MF (g)||
2 − ||g||2 ≤ ||b||2 − ||QFb||2. (4.2)

Thus (1) follows from (4.2) in association with Theorem 4.1.

A simple calculation by using the Cauchy integral formula gives

||b||2 − ||QFb||2 = 4π2
n∑

l,m=1

〈
IX − F (zm)

∗F (zl)

ρzm(zl)
ul, um

〉

X

. (4.3)

Thus (2) follows from (4.2) with g ≡ 0 and (4.3).

Since for every z ∈ C+, Rz is linear, and H(F ) is an RKHS, to show (3) and (4)

it is sufficient to show that they are valid for Γαu for every choice of u ∈ X and

α ∈ C+. Since

RzΓα(ξ)u =
2πi

ρα(z)
Γα(ξ)u−

1

ρα(z)
(RzF )(ξ)F (α)∗u (4.4)

and both the terms in RHS of (4.4) belongs to H(F ). Thus RzΓαu ∈ H(F ) and

Γαu satisfies (4.1). �

Suppose F ∈ S is inner from both sides and consider A−
F = {z ∈ C− :

F (z) is invertible}. Since F is invertible at one point implies it is invertible in a

certain open neighbourhood of that point, A−
F is an open subset of C−. Now we can

extend F as a B(X)-valued holomorphic function on A−
F by the following formula

F (z) = {F (z)∗}−1 for z ∈ A−
F . (4.5)

Also, for almost every x ∈ R

F (x) = lim
y↓0

F (x+ iy) = lim
y↓0

F (x− iy).
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Now, for a function F ∈ S and inner from both sides, we denote F as the extension

of F and AF (containing C+ ∪ A−
F ) as the domain of holomorphy of F.

Once we have the above extension F of F , we can think H(F ) as the RKHS of

X-valued holomorphic functions on AF, which we denote as H(F). The following

lemma provides more details of H(F).

Lemma 4.4. If F ∈ S is inner from both sides and F is the corresponding extension

of F as defined in (4.5), the kernel function KF
ξ (z) defined by

KF
ξ (z) :=

{
IX−F(z)F(ξ)∗

ρξ(z)
if z 6= ξ

F′(ξ)F(ξ)∗

2πi
if z = ξ

(4.6)

on AF × AF is positive.

Proof. To show that KF
ξ (z) is positive, we need to show that for every choice of

n ∈ N, z1, z2, . . . , zn ∈ AF and u1, u2, . . . , un ∈ X

n∑

l,m=1

〈
KF

zm
(zl)um, ul

〉
X
≥ 0. (4.7)

Here we only show the case where some points belong to C+∩AF and others belong

to C−∩AF. The remaining cases can be deduce from this. Without loss of generality

we may assume that z1, z2, . . . , zi ∈ C+ ∩ AF and ξ1, ξ2, . . . , ξj ∈ C− ∩ AF with

i + j = n and ξk = zi+k for every k = 1, 2, . . . , j. Also we assume that vk = ui+k

for all k = 1, 2, . . . , j.

Since F(ξ)F(ξ)∗ = IX, for z 6= ξ the followings are true

KF
ξ (z) =

IX − F(z)F(ξ)∗

ρξ(z)

=
{F(ξ)− F(z)}F(ξ)∗

−2πi(z − ξ)

=
1

2πi
(RξF)(z)F(ξ)

∗ (4.8)

and

KF
ξ (z)

∗ =
1

2πi
(RzF)(ξ)F(z)

∗. (4.9)

Now we divide the sum in (4.7) into four parts and simplify them with the help of

(4.8) and (4.9). The first part is

i∑

l,m=1

〈KF
zl
(zm)ul, um〉X. (4.10)
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The second part is

j∑

t=1

i∑

l=1

〈KF
zl
(ξt)ul, vt〉X =

j∑

t=1

i∑

l=1

〈ul,
1

2πi
(Rξt

F)(zl)F(ξt)
∗vt〉X

=

j∑

t=1

i∑

l=1

〈ul, (Rξt
F)(zl)xt〉X, (4.11)

where xt =
1
2πi

F(ξt)
∗vt for all t = 1, 2, . . . , j.

The third part is

j∑

m=1

i∑

s=1

〈KF
ξm
(zs)vm, us〉X =

j∑

m=1

i∑

s=1

〈
1

2πi
(Rξm

F)(zs)F(ξm)
∗vm, us〉X

=

j∑

m=1

i∑

s=1

〈(Rξm
F)(zs)xm, us〉X. (4.12)

The fourth part is

j∑

t,m=1

〈KF
ξm
(ξt)vm, vt〉X =

j∑

t,m=1

〈
IX − F(ξt)F(ξm)

∗

ρξm(ξt)
vm, vt〉X

=

j∑

t,m=1

〈
F(ξt){F(ξt)∗F(ξm)− IX}F(ξm)∗

−2πi(ξt − ξm)
vm, vt〉X

=

j∑

t,m=1

〈
{F(ξt)∗F(ξm)− IX}F(ξm)∗

−2πi(ξt − ξm)
vm,F(ξt)

∗vt〉X

= 4π2

j∑

t,m=1

〈
IX − F(ξt)

∗F(ξm)

ρξt(ξm)
xm, xt〉X. (4.13)

In view of Theorem 4.3, we have

j∑

t,m=1

〈KF
ξm
(ξt)vm, vt〉X ≥ ||

j∑

m=1

(Rξm
F)xm||

2. (4.14)

Thus the above calculations ensure that

n∑

l,m=1

〈
KF

zm
(zl)um, ul

〉
X
≥ ||

i∑

l=1

KF
zl
ul +

j∑

m=1

(Rξm
F)xm||

2 ≥ 0.

This completes the proof. �

Since for every ξ ∈ AF, KF
ξ (ξ) is bounded, every f ∈ H(F) are X-valued holo-

morphic functions on AF.
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5. CONSTRUCTION OF DE BRANGES SPACES BASED ON PAIRS OF FREDHOLM

OPERATOR VALUED ENTIRE FUNCTIONS

This section consists of some of our main results. Our goal is to construct the de

Branges operator E = (E−, E+), likewise the de Branges matrix, as mentioned in

the introduction. Here we shall see that the Fredholm operator valued holomorphic

functions will play a significant role. In particular, it will be apparent that the com-

ponents E± of the de Branges operator E should be Fredholm operator valued entire

functions with some additional properties to make the theory compatible with the

existing theory of de Branges spaces based on de Branges matrices. Let us first see

some basic results about Fredholm operators and Fredholm operator valued holo-

morphic functions. An operator A ∈ B(X) is said to be a Fredholm operator if it

satisfies the following conditions:

(1) dim(ker(A)) < ∞.

(2) rng(A) is closed in X.

(3) dim(ker(A∗)) < ∞.

We denote the collection of all Fredholm operators in B(X) as Φ(X). For every

A ∈ Φ(X) the corresponding Fredholm index is defined by

ind(A) = dim(ker(A))− dim(ker(A∗)).

Lemma 5.1. If A,B ∈ B(X), then the following assertions are true

(1) A ∈ Φ(X) ⇐⇒ A∗ ∈ Φ(X).

(2) A,B ∈ Φ(X) implies the composition AB ∈ Φ(X).

For more details about Fredholm operators, see [29]. The next theorem is a par-

ticular form of analytic Fredholm theorem, which can be found in (Theorem 3.3,

[23], [24]) and references therein.

Theorem 5.2. Suppose A ⊆ C be open and connected and F : A → B(X) is

analytic such that for all z ∈ A, F (z) ∈ Φ(X). Then one of the two following

assertions is always true

(1) F (z)−1 6∈ B(X) for any z ∈ A.

(2) F (z)−1 ∈ Φ(X) for all z ∈ A, possibly except for a discrete set D. Also,

the function F (.)−1 is holomorphic on A \D and meromorphic on A.

Now we can start the process of constructing the new RKHS with operator valued

RK. Let E+, E− : C → B(X) be two entire functions such that E+(z), E−(z) ∈

Φ(X) for all z ∈ C. Also, assume that E+ and E− both are invertible at least at one

point and

F := E−1
+ E− ∈ Sin ∩ Sin

∗ .
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Since E+ and E− are invertible at least at one point, from the preceding theorem,

we can find two discrete subsets, D1 and D2 of C, such that E+ is invertible for

every z ∈ C \D1 and E− is invertible for every z ∈ C \D2. Also, F ∈ Sin ∩ Sin
∗

implies that for every z ∈ C+

E+(z)E+(z)
∗ − E−(z)E−(z)

∗ � 0

and for every z ∈ R

E+(z)E+(z)
∗ −E−(z)E−(z)

∗ = 0,

which can be extended to

E+(z)E+(z)
∗ −E−(z)E−(z)

∗ = 0 for every z ∈ C. (5.1)

We call the pair of operator valued functions

E(z) = (E−(z), E+(z)) for every z ∈ C (5.2)

as de Branges operator. Now corresponding to the de Branges operator E(z) we

define the kernel

KE
ξ (z) :=

{
E+(z)E+(ξ)∗−E−(z)E−(ξ)∗

ρξ(z)
if z 6= ξ

E
′

+(ξ)E+(ξ)∗−E
′

−
(ξ)E−(ξ)∗

−2πi
if z = ξ

(5.3)

on C× C.

Now we intend to show that the kernel defined in (5.3) is positive on C × C. Here

we follow the process of extension as mentioned in the previous section. We denote

the extended function of F as F and the extended domain as AF. Observe that AF is

dense in C. Also, for all ξ, z ∈ AF

KE
ξ (z) = E+(z)K

F
ξ (z)E+(ξ)

∗ (5.4)

holds, which can be shown with the help of (5.1). Since KF
ξ (z) is positive on AF ×

AF and AF is dense in C, KE
ξ (z) is positive on C× C. Thus, we can have a unique

RKHS of X-valued entire functions corresponding to the positive definite kernel

KE
ξ (z). We denote this RKHS as B(E), and by observing the structure of the RK,

we call it de Branges space. In particular, in a de Branges space B(E), if for some

β ∈ C+, E+(β) and E−(β) are self adjoint, then we denote the space as Bβ(E). A

characterization of the space Bβ(E) can be found in Section 8.

Remark 5.3. If X ∈ B(X) is any Fredholm operator and XX∗ = I , then the pair

of operators

EX(z) = (E−(z)X,E+(z)X) for every z ∈ C

is again a de Branges operator and B(E) = B(EX).



18 MAHAPATRA AND SARKAR

Remark 5.4. It is known that corresponding to the Fredholm operator valued holo-

morphic function F (z) on a domain A the index function defined by

z 7→ indF (z) for all z ∈ A

is an integer valued continuous function. Thus corresponding to the de Branges op-

erator E(z) = (E−(z), E+(z)), there exists a pair of integers. It is easy to observe

that the pair of integers is always (0, 0) for de Branges operators.

The following theorem provides the connection between B(E) and the Hardy

space.

Theorem 5.5. If B(E) is a de Branges space as defined above with respect to the

de Branges operator E(z) = (E−(z), E+(z)) for every z ∈ C. Then

B(E) = {f : C → X | f is entire, E−1
+ f ∈ H2

X(C+) and E−1
− f ∈ (H2

X(C+))
⊥}.

(5.5)

Also with respect to the inner product

〈f, g〉B(E) =

∫ ∞

−∞

〈E−1
+ f(x), E−1

+ g(x)〉X dx, (5.6)

B(E) is an RKHS, and the reproducing kernel is given by (5.3).

Proof. For proof, see Theorem 3.10 in [7]. �

6. FEW EXAMPLES

In this section, we present a few examples of the de Branges spaces which we

have constructed in the last section.

Example 6.1. Consider E+(z) = e−izaIX and E−(z) = eizaIX for some a > 0.

Then, the corresponding de Branges space is actually the vector valued Paley-

Wienner space as mentioned in example 2.3.

The next example is motivated by a Fredholm operator valued holomorphic func-

tion from [24] (chap. XI, sec. 2 & 8). Here we briefly mention this Fredholm

operator valued holomorphic function. We denote L2([s, t]) as the collection of all

complex valued square integrable functions on [s, t]. Let us consider the boundary

value problem {
g′(µ) = P g(µ) + h(µ), s ≤ µ ≤ t

Q1 g(s) +Q2 g(t) = u,
(6.1)

where h ∈ Ln
2 ([s, t]), u ∈ C

n are given and P,Q1, Q2 are n× n matrices. The task

is to find a solution in G = (W 1
2 ([s, t]))

n
, where

W 1
2 ([s, t]) = {g ∈ L2([s, t]) : g is absolutely continuous, g′ ∈ L2([s, t])} (6.2)



DE BRANGES SPACES BASED ON OPERATOR VALUED REPRODUCING KERNELS 19

is the Sobolev space of order one on [s, t]. The operator form of (6.1) is

Ag :=

[
g′ − P g

Q1 g(s) +Q2 g(t)

]
=

[
h

u

]
. (6.3)

In [24], it has been proved that A : G → Ln
2 ([s, t])⊕ C

n is a Fredholm operator of

index zero.

Suppose G ⊆ C is open and connected. Let P (z), Q1(z) and Q2(z) are n×n matrix

valued holomorphic functions on G. The following boundary value problem gives

rise to a Fredholm operator valued holomorphic function
{

g′(µ) = P (z) g(µ) + h(µ), s ≤ µ ≤ t

Q1(z) g(s) +Q2(z) g(t) = u,
(6.4)

Let A(z) : G → Ln
2 ([s, t])⊕ Cn, the corresponding operator with parameter z ∈ G

will be of the form

A(z)g :=

[
g′ − P (z) g

Q1(z) g(s) +Q2(z) g(t)

]
. (6.5)

A(.) is a Fredholm operator valued holomorphic function on G with index zero at

every point. The boundary value problem considered in (6.4) is called the boundary

eigenvalue problem. The details of this kind of problem can be found in [32].

Example 6.2. Keeping all the notations same as in the above discussion we con-

sider G = C and

E+(z)g :=

[
g′ − P+(z) g

Q+
1 (z) g(s) +Q+

2 (z) g(t)

]

with the fact that, there exists z+ ∈ C such that

Q+
1 (z+) = In and Q+

2 (z+) = 0n,

where In is the n× n identity matrix and 0n is the n× n zero matrix. Also consider

E−(z)g :=

[
g′ − P−(z) g

Q−
1 (z) g(s) +Q−

2 (z) g(t)

]

with the fact that, there exists z− ∈ C such that

Q−
1 (z−) = In and Q−

2 (z−) = 0n.

Now it is easy to observe that E+(z+), E−(z−) : G → Ln
2 ([s, t]) ⊕ Cn both are

invertible and the corresponding inverse operators are

E+(z+)
−1

(
g

v

)
(µ) = e(µ−s)P+(z+)v +

∫ µ

s

e(µ−x)P+(z+)g(x) dx
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and

E−(z−)
−1

(
g

v

)
(µ) = e(µ−s)P−(z−)v +

∫ µ

s

e(µ−x)P−(z−)g(x) dx

where g ∈ Ln
2 ([s, t]) and v ∈ Cn. Now at this point, if we have the B(G)- val-

ued function F := E−1
+ E− belongs to Sin ∩ Sin

∗ , then the pair of operator valued

functions

E(z) = (E−(z), E+(z)) for every z ∈ C

will represent a de Branges operator.

We construct the next example with the help of linear operator pencils. More

about linear operator pencils can be found in [24], [32]. Let A,B ∈ B(X), then the

linear operator pencil

S(z) = A− zB

is a B(X)-valued entire function. Now suppose for some z0 ∈ C, S(z0) is invertible,

then we can express S(z) as

S(z) = A− zB = (z0 − z)(A− z0B)
[
(z0 − z)−1I + (A− z0B)−1B

]
. (6.6)

Now along with the invertible condition, if we choose A ∈ B(X) and B is compact,

it is clear from (6.6) that S(z) is a Fredholm operator valued entire function with

index zero.

Example 6.3. SupposeE+(z) = A−zB and E−(z) = C−zD, where A,C ∈ B(X)

and B,D are compact operators. Also, E+ and E− both are invertible at least at

one point in C. If E∗
−(z)E−(z) = I for all z ∈ C and E+(.)

−1 ∈ Sin ∩ Sin
∗ , then the

pair of operator valued functions

E(z) = (E−(z), E+(z)) for every z ∈ C

will represent a de Branges operator.

The following example involves the system of differential equations of operator

valued functions.

Example 6.4. Let us consider the following initial value problem

dFr(z)

dr
= izFr(z)jH + Fr(z)Q(r) 0 ≤ r ≤ a, z ∈ C (6.7)

with the initial condition (given in the matrix form)

F0(z) = [IH IH ], (6.8)

where H is a complex seperable Hilbert space,

Fr(z) = [Er
−(z) Er

+(z)] : H ⊕H → H
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and

jH =

[
IH 0

0 − IH

]
.

Also

Q(r) =

[
0 q(r)

q(r)∗ 0

]
: H ⊕H → H ⊕H,

Where q(r) is a B(H)-valued continuous function on [0, a]. Suppose the solution

Fr(z) of (6.7) has the property that both Er
−(z) and Er

+(z) are Fredholm operator

valued entire functions for all 0 ≤ r ≤ a. Now for every ξ ∈ C it can be easily

shown that
d

ds
{Fs(z)jHFs(ξ)

∗} = i(z − ξ)Fs(z)Fs(ξ)
∗. (6.9)

Observe that F0(z)jHF0(ξ)
∗ = 0. Now integrating both sides of (6.9) from 0 to r,

we get

Fr(z)jHFr(ξ)
∗ = i(z − ξ)

∫ r

0

Fs(z)Fs(ξ)
∗ds. (6.10)

Now if we use the matrix form of Fr(z) in (6.10), we get

Er
+(z)E

r
+(ξ)

∗ − Er
−(z)E

r
−(ξ)

∗

ρξ(z)
=

1

2π

∫ r

0

Fs(z)Fs(ξ)
∗ds. (6.11)

Now if we have
∫ r

0
Fs(ξ)Fs(ξ)

∗ds ≻ 0 for ξ ∈ C+ ∪ C− and there exists ξ0 ∈ C+

such that
∫ r

0
Fs(ξ0)Fs(ξ0)

∗ds,
∫ r

0
Fs(ξ0)Fs(ξ0)

∗ds both are invertible and Er
−(ξ0),

Er
+(ξ0) both are self adjoint, then the pair of operator valued functions Er(z) =

(Er
−(z), E

r
+(z)) will represent de Branges operator for all r ∈ [0, a].

For a clear explanation of the last example, see the converse part of the Theorem

8.2.

Remark 6.5. The system of differential equations that appeared in the last example

was studied widely in the literature. For example, see [2], where the functions under

consideration were scalar and matrix valued.

7. CONDITION FOR Hβ AND Hβ TO BE ISOMETRICALLY ISOMORPHIC

In this section, we consider an RKHS H of X-valued entire functions with RK

Kξ(z) and for some β ∈ C

Hβ = {g ∈ H : g(β) = 0}.

It is clear that Hβ is a closed subspace of H and thus an RKHS. Our main goal

is to find a condition such that Hβ and Hβ are isometrically isomorphic for some

β ∈ C+. Recall that T is the multiplication operator in H where the multiplication

is by the independent variable with domain D, which is also a closed operator. The

idea of the Moore-Penrose inverse of a bounded linear operator with closed range
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will be used in this section, and details about it can be found in [39]. Some of the

results of this section can be found in [8], where the operator Kβ(β) is invertible.

Lemma 7.1. Suppose H is an RKHS of X-valued entire functions with RK Kξ(z)

and assume that Kβ(β) has closed range for some β ∈ C. Then the following

assertions are true:

(1) The RK of Hβ can be expressed as

K
β
ξ (z) = Kξ(z)−Kβ(z)Kβ(β)

†Kξ(β), (7.1)

where Kβ(β)
† is the Moore-Penrose inverse of the operator Kβ(β).

(2) If Πβ is the orthogonal projection of H onto H⊥
β then

Πβ(g) = KβKβ(β)
†g(β) for all g ∈ H (7.2)

and

H⊥
β = {Kβu : u ∈ X} = {KβKβ(β)

†v : v ∈ X}. (7.3)

(3) The following equivalence condition hold:

RβHβ ⊆ H if and only if RβHβ = D. (7.4)

(4) rngKβ(β) = rng(δβ).

Moreover, if Kβ(β) is invertible, then Kβ(β)
† can be replaced by Kβ(β)

−1 in (7.1)

and (7.2).

Proof. For details of the proof see Lemma 2.6 in [21]. �

Lemma 7.2. If in the setting of lemma 7.1, the equivalence condition in (7.4) also

holds, then the following implications are true:

(1) Rβ ∈ B(Hβ,H).

(2) Hβ = rng(T− βI) and

rng(T− βI)⊥ = {Kβu : u ∈ X} = {KβKβ(β)
†u : u ∈ X}. (7.5)

(3) If Kβ(β) ≻ 0, then there exists a unitary operator Tβ from rng(T− βI)⊥ to

rngKβ(β).

Proof. It is clear that Rβ is linear. To verify (1), we first show that Rβ is a closed

operator, and the rest of the arguments will be clear from the closed graph theorem.

Let {gn : n ∈ N} ⊆ Hβ be such that gn → g and Rβgn → h as n → ∞. Then

g ∈ Hβ as in RKHS norm convergence implies pointwise convergence. Also, for

ξ 6= β,

g(ξ)− g(β)

ξ − β
= lim

n→∞

gn(ξ)− gn(β)

ξ − β
= lim

n→∞
Rβgn(ξ) = h(ξ).
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Thus h(ξ) = Rβg(ξ) for all ξ ∈ C as h and Rβg are entire functions. This implies

that the operator Rβ is closed.

For every g ∈ Hβ ,

(T− βI)Rβg = g, (7.6)

as for ξ 6= β the following holds

(T− βI)Rβg(ξ) = ξ

[
g(ξ)− g(β)

ξ − β

]
− β

[
g(ξ)− g(β)

ξ − β

]
= g(ξ).

This implies

rng(T− βI) = {(T− βI)g : g ∈ D} = {(T− βI)Rβf : f ∈ Hβ} = Hβ. (7.7)

Thus the first assertion of (2) holds. Also from the preceding lemma (7.5) is

straightforward.

Since Kβ(β) ≻ 0 and has closed range, rngKβ(β) = rngKβ(β)
1

2 (see [22]). Now,

in view of (7.5), we consider a map Tβ : rng(T− βI)⊥ → rngKβ(β) defined by

Tβ(Kβu) = Kβ(β)
1

2u for all u ∈ X. (7.8)

It is clear that Tβ is linear and bijective and for any u ∈ X

||Kβu||
2
H = 〈Kβu,Kβu〉H = 〈Kβ(β)u, u〉X

= 〈Kβ(β)
1

2u,Kβ(β)
1

2u〉X

= ||Kβ(β)
1

2u||2X.

Hence Tβ is a unitary operator. �

Lemma 7.3. In addition to the setting of Lemma 7.2, if we assume D to be dense

in H, then for all u ∈ X, Kβu are the eigen functions of T∗ corresponding to the

eigenvalue β. Also, if we assume T to be symmetric, then for some u ∈ X, the

following equivalence condition holds

ρβKβu ∈ H iff Kβu = 0. (7.9)

Proof. Let g ∈ D and u ∈ X, then

〈Tg,Kβu〉H = 〈(Tg)(β), u〉X = 〈βg(β), u〉X = 〈g(β), βu〉X = 〈g, βKβu〉X.

Therefore, 〈Tg,Kβu〉H = 〈g, βKβu〉X for all g ∈ D, which proves the first asser-

tion.

To show the equivalence condition in (7.9), it is sufficient to show that for some

u ∈ X, ρβKβu ∈ H implies Kβu = 0, as the opposite direction is self-evident.

Now ρβKβu ∈ Hβ and RβρβKβu = −2πiKβu ∈ H, which implies Kβu ∈ D. Let

g ∈ D and g = Rβh for some h ∈ Hβ and observe that

ρβKβu = −2πi(T− βI)Kβu. (7.10)
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Then,

〈g, ρβKβu〉H = 2πi〈g, (T− βI)Kβu〉H

= 2πi〈(T− βI)Rβh,Kβu〉H

= 2πi〈h,Kβu〉H

= 2πi〈h(β), u〉X

= 0.

Therefore, ρβKβu ⊥ D. Now, due to the additional density condition on D, it is

clear that ρβKβu = 0. Thus ρβKβu ∈ H ⇒ Kβu = 0. �

The next lemma characterizes one of the conditions mentioned by de Branges in

[16] in terms of the symmetric condition of T.

Lemma 7.4. Let H be a nonzero RKHS of X-valued entire functions with RK Kξ(z).

If for some β ∈ C+, Kβ(β), Kβ(β) have closed range and RβHβ ⊆ H, RβHβ ⊆

H. Then

(T− βI)Rβ : Hβ → Hβ (7.11)

is an isometrically isomorphism iff the operator T is symmetric on D.

In particular, if Kβ(β) and Kβ(β) are invertible, then also the above equivalence

holds.

Proof. Observe that

(T− βI)Rβ(T− βI)Rβ = IH
β

and (T− βI)Rβ(T− βI)Rβ = IHβ
. (7.12)

Now to prove the lemma, we only need to show that (T− βI)Rβ satisfies the norm

preserving property if and only if T is symmetric, i.e., for all g ∈ Hβ

||(T− βI)Rβg||H = ||g||H (7.13)

if and only if T is symmetric. In view of (7.6) and by using polarization identity, it

is easy to observe that (7.13) holds if and only if

〈(T− βI)Rβg, (T− βI)Rβh〉H = 〈g, h〉H (7.14)
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for every g, h ∈ Hβ . Also, for every g, h ∈ Hβ, the following evaluation

〈(T− βI)Rβg, (T− βI)Rβh〉H = 〈g, h〉H

m

〈{(T− βI) + (β − β)I}Rβg, {(T− βI) + (β − β)I}Rβh〉H = 〈g, h〉H

m

〈(T− βI)Rβg, (T− βI)Rβh〉H + 〈(T− βI)Rβg, (β − β)Rβh〉H

+〈(β − β)Rβg, (T− βI)Rβh〉H + 〈(β − β)Rβg, (β − β)Rβh〉H = 〈g, h〉H

m

(β − β)[〈(T− βI)Rβg, Rβh〉H − 〈Rβg, (T− βI)Rβh〉H

+ (β − β)〈Rβg, Rβh〉H] = 0

guarantees that (7.14) holds if and only if

〈(T−βI)Rβg, Rβh〉H−〈Rβg, (T−βI)Rβh〉H+(β−β)〈Rβg, Rβh〉H = 0. (7.15)

Again for every g, h ∈ Hβ , (7.15) holds if and only if

〈TRβg, Rβh〉H = 〈Rβg,TRβh〉H. (7.16)

The following evaluation

〈(T− βI)Rβg, Rβh〉H−〈Rβg, (T− βI)Rβh〉H + (β − β)〈Rβg, Rβh〉H = 0

m

〈{(T− βI) + (β − β)I}Rβg, Rβh〉H − 〈Rβg, (T− βI)Rβh〉H = 0

m

〈(T− βI)Rβg, Rβh〉H−〈Rβg, (T− βI)Rβh〉H = 0

m

〈T Rβg, Rβh〉H − β〈Rβg, Rβh〉H − 〈Rβg,T Rβh〉H + β〈Rβg, Rβh〉H = 0

m

〈T Rβg, Rβh〉H − 〈Rβg,T Rβh〉H = 0

proves the above equivalence condition. Since RβHβ = D, the first part of the

lemma is proved. The case when Kβ(β) and Kβ(β) are invertible can be proved

similarly. �
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8. A CHARACTERIZATION OF THE RKHS Bβ(E)

In this section, we discuss about a characterization of Bβ(E) which was initially

given by de Branges for RKHS of scalar valued entire functions (see [16]). This

characterization for the RKHS with p × p entire matrix valued RK can be found

in [21]. Our observation is in a more general setting where the RK’s are operator

valued functions.

Lemma 8.1. Let H = B(E) be an RKHS based on a de Branges operator E(z) =

(E−(z), E+(z)) as mentioned in Section 5. Then RβHβ ⊆ H if

(1) β ∈ C+ and E+(β) is an invertible operator.

(2) β ∈ C− and E−(β) is an invertible operator.

Proof. The proof is similar to Lemma 6.4 in [21]. �

Theorem 8.2. Let H be an RKHS of X-valued entire functions with B(X)-valued

RK Kξ(z) and suppose β ∈ C+ be such that

Kβ(z), Kβ(z) ∈ Φ(X) for all z ∈ C (8.1)

and

Kβ(β), Kβ(β) are invertible. (8.2)

Then the RKHS H is same as the de Branges space Bβ(E) iff

RβHβ ⊆ H, RβHβ ⊆ H (8.3)

and

(T− βI)Rβ : Hβ → Hβ (8.4)

is an isometrically isomorphism.

Proof. The proof will be similar with few exceptions to Theorem 7.1 in [21]. So

here we mostly avoid similar evaluations. Since Kβ(β) and Kβ(β) are invertible, in

view of Lemma 7.1, the reproducing kernels of Hβ and Hβ are

K
β
ξ (z) = Kξ(z)−Kβ(z)Kβ(β)

−1Kξ(β) (8.5)

and

K
β
ξ (z) = Kξ(z)−Kβ(z)Kβ(β)

−1Kξ(β) (8.6)

respectively. Also, for any g ∈ Hβ and z 6= β

((T− βI)Rβg)(z) =
z − β

z − β
g(z). (8.7)

First, suppose H satisfies the constraints in (8.3) and (8.4). Then

z − β

z − β
K

β
ξ (z) =

ξ − β

ξ − β
K

β
ξ (z). (8.8)
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Now consider

E+(z) = ρβ(z)ρβ(β)
− 1

2Kβ(z)Kβ(β)
− 1

2 (8.9)

and

E−(z) = −ρβ(z)ρβ(β)
− 1

2Kβ(z)Kβ(β)
− 1

2 . (8.10)

Then in view of (8.1), E+(z), E−(z) are entire and belong to Φ(X) for all z ∈ C.

Also E+(β) = ρβ(β)
1

2Kβ(β)
1

2 and E−(β) = ρβ(β)
1

2Kβ(β)
1

2 . Thus E+(β) and

E−(β) both are invertible and selfadjoint. Also for z 6= ξ

Kξ(z) =
E+(z)E+(ξ)

∗ − E−(z)E−(ξ)
∗

ρξ(z)
. (8.11)

Therefore,

E+(ξ)E+(ξ)
∗ − E−(ξ)E−(ξ)

∗ = ρξ(ξ)Kξ(ξ) � 0

for ξ ∈ C+ and

E+(ξ)E+(ξ)
∗ − E−(ξ)E−(ξ)

∗ = 0 (8.12)

for ξ ∈ R. Thus, E−1
+ E− ∈ Sin ∩ Sin

∗ and the corresponding pair of operator valued

functions E(z) = (E−(z), E+(z)) is a de Branges operator. Since the RK’s of the

spaces H and Bβ(E) are equal, H = Bβ(E).

Conversely, let us assume that H = Bβ(E) and (8.1), (8.2) hold. The constraint in

(8.2) gives

E+(β)E+(β)
∗ ≻ E−(β)E−(β)

∗ and E−(β)E−(β)
∗ ≻ E+(β)E+(β)

∗. (8.13)

This implies that E+(β)
∗ and E−(β)

∗ both are injective. Also in view of Theorem

1 in [19], we have

rngE−(β) ⊆ rngE+(β) and rngE+(β) ⊆ rngE−(β).

Since Kβ(β) and Kβ(β) both are invertible E+(β) and E−(β) both are surjective.

Thus E+(β) and E−(β) both are invertible. Now from the preceding lemma, we

have

RβHβ ⊆ H and RβHβ ⊆ H.

At this point if we prove the norm preserving condition for the operator (T−βI)Rβ

then the rest of the proof follows from Lemma 7.4. Suppose g ∈ Hβ, then (T −

βI)Rβg ∈ Hβ and

||(T− βI)Rβg||
2
Bβ(E)

=

∫ ∞

−∞

||
x− β

x− β
(E−1

+ g)(x)||2dx

=

∫ ∞

−∞

||(E−1
+ g)(x)||2dx

= ||g||2Bβ(E)
.

�
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9. CONNECTION BETWEEN T AND THE DE BRANGES SPACES

In the present section, we describe the parametrization and canonical description

of selfadjoint extensions of T with an arbitrary domain D, using the unitary operator

V : rng Kβ(β) → rng Kβ(β) as a parameter. Then with the help of these selfad-

joint extensions, we will see that the de Branges space Bβ(E) has Kramer sampling

property. Details about the selfadjoint extension of the multiplication operator can

be found in [1], [4]. In the setting of RKHS, which consists of entire p × 1 vec-

tor valued functions, the parametrization and canonical description of selfadjoint

extensions of the operator T with non dense domain D can be found in this paper

[21], where the parameters are p× p unitary matrices.

Theorem 9.1. Suppose H is an RKHS of X-valued entire functions with RK Kξ(z)

having at least one nonzero vector, the operator T is assumed to be symmetric in its

domain D and for some β ∈ C+

• Kβ(β) has closed range, Kβ(β) ≻ 0 and RβHβ ⊆ H

• Kβ(β) has closed range, Kβ(β) ≻ 0 and RβHβ ⊆ H.

Then there exists a unitary operator V : rngKβ(β) → rngKβ(β) such that the

following implications are true:

(1) The following sum

{(T−1
β + T−1

β
V )u : u ∈ rngKβ(β)}+D (9.1)

is direct, where Tβ as in Lemma 7.2.

(2) The operator TV defined as

TV (g + T−1
β u+ T−1

β
V u) = Tg + βT−1

β u+ βT−1

β
V u (9.2)

with the domain mentioned in (9.1) is a selfadjoint extension of T and the

family

{TV : V is a unitary operator from rngKβ(β) to rngKβ(β) satisfying (1)}

is the complete list of selfadjoint extensions of T.

Moreover, if D is dense inH, then any unitary operator V : rngKβ(β) → rngKβ(β)

would satisfy (9.1).

Proof. Since this is the obvious generalization of Theorem 5.3 in [21] and the tech-

nique of the proof is also similar, we avoid the proof. This paper [43] will be helpful

for the proof. �

Remark 9.2. If in the setting of the Theorem 9.1, we assume that Kβ(β) and Kβ(β)

are invertible, then the unitary operators mentioned in the theorem belong to B(X),
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and the domain of TV will be of the following form

{(T−1
β + T−1

β
V )u : u ∈ X}∔D. (9.3)

Also, the range of the operator Tβ will be X, and the inverse will be of the following

form

T−1
β = KβKβ(β)

− 1

2 . (9.4)

Theorem 9.3. Suppose H is an RKHS of X-valued entire functions with B(X)-

valued RK Kξ(z) having at least one nonzero vector and β ∈ C+ be such that

(1) Kβ(z), Kβ(z) ∈ Φ(X) for all z ∈ C and Kβ(β),Kβ(β) are invertible.

(2) RβHβ ⊆ H and RβHβ ⊆ H.

(3) T : D → H is symmetric.

Then H = Bβ(E), where E+(z) and E−(z) are as mentioned in (8.9) and (8.10)

respectively. Moreover, if for some µ ∈ R

(4) Kµ(µ) ≻ 0 and E+(µ), E−(µ) are selfadjoint.

Then the following implications are true:

(5) RµHµ ⊆ H, Kµ(µ) is invertible, and the operator

Vµ = (E−(µ))
−1E+(µ) = E−(µ)

∗(E+(µ)
∗)−1 is unitary. (9.5)

(6) Vµ identifies a selfadjoint extension TVµ
of T.

(7) {Kµu : u ∈ X} is the eigenspace corresponding to the eigenvalue µ of TVµ
.

Proof. Under the first three assumptions, H = Bβ(E) follows from Theorem 8.2.

Now for µ ∈ R, we have

E+(µ)E+(µ)
∗ − E−(µ)E−(µ)

∗ = 0 (9.6)

and

E ′
+(µ)E+(µ)

∗ −E ′
−(µ)E−(µ)

∗ = −2πi KE
µ (µ). (9.7)

In view of (9.6) and (9.7) we have E+(µ)
∗, E−(µ)

∗ both are injective. Since

E+(µ), E−(µ) ∈ Φ(X) and selfadjoint, both are invertible. Thus RµHµ ⊆ H fol-

lows from Lemma 8.1 and Vµ is unitary follows from (9.6). Also Rµ ∈ B(Hµ,H)

and µ ∈ π(T). This implies Kµ(µ) is invertible.

Since Vµ is a unitary operator on X, to show that TVµ
is a selfadjoint extension of T,
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it is sufficient to show that Vµ satisfies (9.3). Now for z ∈ C

T−1
β (z) = Kβ(z)Kβ(β)

− 1

2

=
ρβ(z)ρβ(β)

− 1

2Kβ(z)Kβ(β)
− 1

2

ρβ(z)ρβ(β)
− 1

2

= ρβ(β)
1

2

E+(z)

ρβ(z)
(9.8)

= ρβ(β)
1

2

[
E+(z)

ρµ(z)
+

β − µ

z − µ

E+(z)

ρβ(z)

]
. (9.9)

Similarly,

T−1

β
(z) = −ρβ(β)

1

2

E−(z)

ρβ(z)
(9.10)

= −ρβ(β)
1

2

[
E−(z)

ρµ(z)
+

β − µ

z − µ

E−(z)

ρβ(z)

]
. (9.11)

For any V ∈ B(X), we consider the following notation

χV
ξ (z) = (β − ξ)T−1

β (z) + (β − ξ)T−1

β
(z)V. (9.12)

In particular,

χVµ

µ = ρβ(β)
1

2

[
(β − µ)

E+

ρβ
− (β − µ)

E−

ρβ

]
(9.13)

and χ
Vµ
µ (µ) = 0. Thus D = {Rµχ

Vµ
µ u : u ∈ X}.

Now from the above considerations we have

T−1
β + T−1

β
Vµ = ρβ(β)

1

2

[
E+ − E−Vµ

ρµ

]
+Rµχ

Vµ
µ . (9.14)

Now multiplying (9.14) by E+(µ)
∗ from the right, we get

(T−1
β (z) + T−1

β
(z)Vµ)E+(µ)

∗ = ρβ(β)
1

2KE
µ (z) + (Rµχ

Vµ

µ )(z)E+(µ)
∗. (9.15)

Now if for some u ∈ X, (T−1
β + T−1

β
Vµ)E+(µ)

∗u ∈ D, the above identity gives

ρµK
E
µu ∈ H. Since Kµ(µ) ≻ 0, this implies u = 0. Thus (2) holds and TVµ

is a

selfadjoint extension of T.

From (9.15) it is clear that KE
µu belongs to the domain of TVµ

and

(TVµ
− µI)KE

µu = 0

for all u ∈ X. Thus, (3) holds as Kµ(µ) is invertible. �

Theorem 9.4. Suppose H is an RKHS of X-valued entire functions with RK Kξ(z)

having at least one nonzero vector such that (8.1), (8.2) hold, and {Kµi
ui} is an

orthogonal basis of H for µ1, µ2, . . . ∈ R and u1, u2, . . . ∈ X. Then

(1) T : D → H is symmetric.
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(2) H = Bβ(E).

Moreover, if V ∈ B(X) is a unitary operator satisfying (9.3), Kµ(µ) ≻ 0 and

E+(µ), E−(µ) both are selfadjoint, then

(3) µ ∈ R is an eigenvalue of TV if and only if

{E+(µ)− E−(µ)V }u = 0 (9.16)

and the corresponding eigenfunction

g = λKE
µ (E+(µ)

∗)−1u (9.17)

for some nonzero λ ∈ C and nonzero u ∈ X. Also, the geometric multiplic-

ity of the eigenvalue µ is countably infinite.

(4) If E+(µ)− E−(µ)V is invertible, then (TV − µI) is a closed operator, and

µ 6∈ σ(TV ).

(5) If E+(z) − E−(z)V ∈ Φ(X) for all z ∈ C and invertible at least at one

point, then TV has a discrete set of eigenvalues.

Proof. (1), (2) will follow from Theorem 8.2 in association with Lemma 7.4, once

we show the norm preserving property of the operator (T − βI)Rβ : Hβ → Hβ.

Let g ∈ Hβ, then

||(T− βI)Rβg||
2
H =

∞∑

i=1

|〈(T− βI)Rβg,
Kµi

ui

||Kµi
ui||H

〉|2

=

∞∑

i=1

|〈((T− βI)Rβg)(µi),
ui

||Kµi
ui||H

〉|2

=

∞∑

i=1

|
µi − β

µi − β
|2 |〈g,

Kµi
ui

||Kµi
ui||H

〉|2

=

∞∑

i=1

|〈g,
Kµi

ui

||Kµi
ui||H

〉|2 = ||g||2H.

Now suppose V is a unitary operator satisfying (9.3), Kµ(µ) ≻ 0 and E+(µ), E−(µ)

both are selfadjoint, then RµHµ = D. Let µ ∈ R is an eigenvalue of TV . Then

there exists a nonzero vector g = h + (T−1
β + T−1

β
V )u in domain of TV , where

h ∈ D and u ∈ X. Thus for all z ∈ C

((TV − µI)g)(z) = (z − µ)h(z) + χV
µ (z)u = 0, (9.18)

which gives χV
µ (µ)u = 0, h(z) = −(Rµχ

V
µ )(z)u and u 6= 0. This implies Rµχ

V
µ u ∈

D and

g(z) = −(Rµχ
V
µ )(z)u + (T−1

β + T−1

β
V )u.
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Then by using the fact that χV
µ (µ)u = 0, g can be expressed in the following form

g(z) = ρβ(β)
1

2

[
E+(z)− E−(z)V

ρµ(z)
u

]
. (9.19)

It can also be proved that

χV
µ (µ)u = 0 ⇐⇒ (E+(µ)− E−(µ)V )u = 0. (9.20)

Since E+(µ) and E−(µ) both are invertible, we have

(E+(µ)−E−(µ)V )u = 0 ⇐⇒ V u = E−(µ)
∗(E+(µ)

∗)−1u. (9.21)

This gives

g(z) = ρµ(µ)
1

2KE
µ (z)(E+(µ)

∗)−1u.

To show the converse part of (3), we first observe that, if for some u 6= 0, {E+(µ)−

E−(µ)V }u = 0 and g = λKE
µ (E+(µ)

∗)−1u then V u = Vµu and χV
µ u = χ

Vµ
µ u. This

implies

g = ρβ(β)
1

2KE
µ (E+(µ)

∗)−1u = −Rµχ
V
µ u+ (T−1

β + T−1

β
V )u

belongs to the domain of TV and

(TV −µI)g = −T(Rµχ
V
µ u)+(βT−1

β +βT−1

β
V )u+µRµχ

V
µ u−µ(T−1

β +T−1

β
V )u

= {−χV
µ + (β − µ)T−1

β + (β − µ)T−1

β
V }u = 0.

Thus, (3) holds.

Now suppose E+(µ) − E−(µ)V is invertible. Since TV is selfadjoint, the operator

(TV −µI) is closed. To verify µ 6∈ σ(TV ) we need to show that (TV −µI)−1 exists

and is bounded. (3) implies that (TV − µI) is injective on domain of TV . Since

TV is selfadjoint and µ ∈ R, rng(TV − µI) is dense in H. Also it can be proved

that (TV − µI) is surjective (for a similar proof see Theorem 8.5 in [21]). Now the

rest of the arguments follow from closed graph theorem. (5) follows from (3) and

Theorem 5.2. �

The following theorem gives that under some special conditions, the de Branges

space Bβ(E) has the Kramer sampling property.

Theorem 9.5. Suppose H is an RKHS of X-valued entire functions with RK Kξ(z)

having at least one nonzero vector such that (8.1), (8.2) hold, and the operator

T : D → H is assumed to be symmetric. Then the RKHS H is the de Branges space

Bβ(E).

Moreover, if Kβ(z), Kβ(z) are invertible for all z ∈ R and there exists a unitary

operator V ∈ B(X) satisfying (9.3) such that E+(z)−E−(z)V ∈ Φ(X) for all z ∈

C and invertible at least at one point then Bβ(E) has Kramer sampling property.
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Proof. H = Bβ(E) follows from Theorem 8.2. Suppose V ∈ B(X) is a unitary

operator satisfying all the conditions mentioned in the statement. Then we can have

a selfadjoint extensionTV of T and the spectrum σ(TV ) ⊆ R. Now for some µ ∈ R,

if E+(µ) − E−(µ)V is invertible, then from the preceding theorem, it is clear that

µ 6∈ σ(TV ). This gives

σ(TV ) = {µ ∈ R : E+(µ)− E−(µ)V is not invertible},

which is precisely the collection of all eigenvalues of TV . Also, σ(TV ) is a discrete

set. Since Kβ(z), Kβ(z) are invertible for all z ∈ R, E+(z), E−(z) both are invert-

ible there. Thus the eigenfunctions are of the form g = KE
µu, and the eigenspaces

are countably infinite. Since TV is selfadjoint, any two eigenfunctions correspond-

ing to different eigenvalues are orthogonal, and the Gram-Schmidt orthogonaliza-

tion process can be used to make the eigen functions orthogonal corresponding to

the same eigenvalue. Also, since TV is selfadjoint, the spectral theorem implies that

the collection of eigenfunctions is total in H. This completes the proof. �

10. ENTIRE OPERATORS WITH INFINITE DEFICIENCY INDICES

This section revives a functional model problem regarding entire operators with

infinite deficiency indices. M. G. Krein introduced and primarily studied these en-

tire operators and made connections with the multiplication operator in a Hilbert

space of analytic functions on C. In the fundamental paper [31], he showed that an

entire operator with arbitrary finite equal deficiency indices (p, p) could be consid-

ered as the multiplication operator in a Hilbert space of Cp-valued entire functions.

Later in this paper [21], it was observed that this Hilbert space is a de Branges space

with p × p matrix valued RK. Krein also studied the entire operators with infinite

deficiency indices (see [30]), and a similar connection with the multiplication oper-

ator in a Hilbert space of X-valued entire functions has been mentioned here [26]

(Appendix I).

Since in Section 5, we have constructed the de Branges spaces of X-valued en-

tire functions. It is a natural question whether these newly constructed de Branges

spaces can be considered as the functional model for entire operators with infinite

deficiency indices. Assume that Y is an infinite dimensional closed subspace of X.

Let E is a densely defined closed, simple, symmetric operator on X with infinite

deficiency indices. We denote ρY (E) as the collection of all Y -regular points of E,

which is defined by

ρY (E) := {ξ ∈ C : Mξ = rng(E − ξI) = Mξ and X = Mξ ∔ Y }. (10.1)

It is known that ρY (E) is an open subset of C and every ξ ∈ ρY (E) is also a point

of regular type for E. Because of (10.1), it is clear that for every ξ ∈ ρY (E), there
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exists the projection operator PY (ξ), i.e., for every f ∈ X, there exists a unique

g ∈ D(E), the domain of E, such that

f = (E − ξI)g + PY (ξ)f.

Also, for every fixed f ∈ X, we can consider a map from ρY (E) to Y defined by

ξ 7→ PY (ξ)f . We denote these Y -valued functions as fY for every f ∈ X and are

defined as fY (ξ) = PY (ξ)f , also assume H := {fY : f ∈ X}. Let ξ ∈ ρY (E), then

rngPY (ξ) = Y and kerPY (ξ) = rng(E − ξI).

Since both range and kernel of the projection operator PY (ξ) are closed subspaces

of X, PY (ξ) is bounded for all ξ ∈ ρY (E). Then,

rngPY (ξ)
∗ = X⊖ rng(E − ξI) and kerPY (ξ)

∗ = Y ⊥.

Also, for every ξ ∈ ρY (E), we can have the operator TY (ξ) ∈ B(X), which is

defined by

TY (ξ) := (E − ξI)−1(I − PY (ξ)).

Now following Krein’s definition for entire operators, E is an entire operator if

ρY (E) = C, and the functions fY are entire. This implies that PY (ξ) and TY (ξ)

both are B(X)- valued entire functions. More properties of these two functions can

be found in [26].

Lemma 10.1. For any ξ ∈ ρY (E), the restriction of the projection operator PY (ξ)

on M⊥
ξ is invertible, i.e., the operator PY (ξ)|M⊥

ξ
: M⊥

ξ → Y is invertible.

Proof. Suppose f, g ∈ M⊥
ξ = X⊖ rng(E − ξI) be such that

PY (ξ)f = PY (ξ)g = h (say).

Then there exist f1, g1 ∈ Mξ, such that f = f1 + h and g = g1 + h. Since

f1 − g1 ∈ Mξ and f − g ∈ M⊥
ξ , PY (ξ)|M⊥

ξ
is one-one.

Now for any f ∈ Y , we have the unique sum f = g + h, where g ∈ Mξ and

h ∈ M⊥
ξ . This implies PY (ξ)|M⊥

ξ
is onto. �

Since E is simple, the map Ψ : X → H defined by f 7→ fY is injective. Thus H

is a vector space with respect to the point wise addition and scalar multiplication.

Consider the inner product in H defined as

〈fY , gY 〉H := 〈f, g〉X for all f, g ∈ X.

It is clear that H is a Hilbert space with respect to the above inner product, and Ψ

is a unitary operator.
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Let f ∈ D(E) and g ∈ X be such that g = Ef . For every ξ ∈ C there exists unique

f ′
ξ ∈ D(E) such that

f = (E − ξI)f ′
ξ + fY (ξ).

This gives

g = Ef = (E − ξI)f + ξf

= (E − ξI)f + ξ{(E − ξI)f ′
ξ + fY (ξ)}

= (E − ξI)(f + ξf ′
ξ) + ξfY (ξ).

Because of (10.1), it is easy to observe that gY (ξ) = ξfY (ξ) for all ξ ∈ C. Thus the

operator E on X is unitarily equivalent to the multiplication operator on H.

Now for any ξ ∈ C and fY ∈ H, we have

||fY (ξ)||Y = ||PY (ξ)f ||Y ≤ ||PY (ξ)|| ||f ||X = ||PY (ξ)|| ||fY ||H.

Since for all ξ ∈ C, the projection operators PY (ξ) are bounded, the point evaluation

linear maps inH are bounded. This implies thatH is an RKHS with the reproducing

kernel

Kξ(z) = δzδ
∗
ξ for all ξ, z ∈ C.

Now, let us observe the range and the kernel of the operator δz : H → Y for any

z ∈ C. Let fY ∈ H be such that Ψ(f) = fY for f ∈ X. Then

δz(fY ) = fY (z) = PY (z)f.

Thus,

rngδz = rngPY (z) = Y and kerδz = {fY = Ψ(f) : f ∈ rng(E − zI)}. (10.2)

This implies

kerδ∗z = {0} and rngδ∗z = {fY = Ψ(f) : f ∈ X⊖ rng(E − zI)}. (10.3)

The following lemma has been collected from [26], which will provide a necessary

motivation for our final problem.

Lemma 10.2. Suppose Rξ = (E − ξI)−1 is the resolvent operator for the entire

operator E. Then, for any two numbers ξ, z ∈ C the operator

I + (ξ − z)Rξ : Mξ → Mz (10.4)

is bijective.
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Proof. Let f ∈ Mξ, then there exists g ∈ D(E) such that f = (E − ξI)g. Now

[I + (ξ − z)Rξ]f = [I + (ξ − z)Rξ](E − ξI)g

= (E − ξI)g + (ξ − z)g

= (E − zI)g ∈ Mz.

Since every ξ ∈ C is a point of regular type of E, the operator (E− ξI) is injective,

and this implies the operator I + (ξ− z)Rξ is also injective for every ξ, z ∈ C. The

operator I + (ξ − z)Rξ is also surjective as for any g ∈ Mz with g = (E − zI)g′

for g′ ∈ D(E), the element f = (E − ξI)g′ ∈ Mξ is the pre-image of g. �

Recall that for z ∈ C, Rz is the generalized backward-shift operator. Suppose

f ∈ X, then for any ξ, z ∈ C there exists f ′
ξ, f

′
z ∈ D(E) such that

f = (E − ξI)f ′
ξ + fY (ξ) = (E − zI)f ′

z + fY (z).

Now a simple calculation gives

f ′
z = (E − ξI)

f ′
ξ − f ′

z

ξ − z
+

fY (ξ)− fY (z)

ξ − z
.

This implies the invariance of H under Rz for all z ∈ C.

Since the operator E on X is symmetric and unitarily equivalent to the multipli-

cation operator on H, then the multiplication operator is also symmetric on H.

Finally, we summarise all the results we discussed in this section in terms of a theo-

rem, which will also serve the purpose of answering a problem of functional model

of entire operators with infinite deficiency indices.

Theorem 10.3. Suppose X is a complex seperable Hilbert space and E is an entire

operator with infinite deficiency indices, producing the direct sum decomposition of

X as mentioned in (10.1). Also, suppose for at least one β ∈ C+ the dimension of

Mβ is finite. Then E is unitarily equivalent to the densely defined multiplication

operator in a de Branges space Bβ(E). The space Bβ(E) is also invariant under

the generalized backward-shift operator Rz for all z ∈ C.

Proof. Since the dimension of Mβ is finite, Lemma 10.2 implies that the dimension

of Mξ is finite and equal for all ξ ∈ C. Then the observations in (10.2) and (10.3)

implies that Kβ(ξ), Kβ(ξ) ∈ Φ(Y ) for all ξ ∈ C. Also, Lemma 10.1 implies

that Kβ(β) and Kβ(β) both are invertible. The rest of the proof follows from the

previous discussions in this section and in association with Theorem 8.2 and Lemma

7.4. �
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11. CONNECTION WITH THE CHARACTERISTIC FUNCTION OF A CONTRACTION

OPERATOR

In this section, we construct RKHS of X-valued analytic functions using the char-

acteristic function of a completely nonunitary (cnu) contraction operator. The un-

derlying idea is to consider those cnu contraction operators whose characteristic

functions are inner and invertible on D. These inner functions are then considered

on the upper half plane with the help of the conformal map C and construct RKHS

using the same technique mentioned in section 4. Here we dealt with two situations

which will be discussed separately. Most of the standard results and notations used

in this section can be found in [37].

Let A ∈ B(X) be a completely nonunitary contraction operator. Recall that the

characteristic function of A is given by

CA(z) = −A + z(I −AA∗)
1

2 (I − zA∗)−1(I − A∗A)
1

2

and it is a bounded linear operator between DA = rng(I − A∗A)
1

2 and DA∗ =

rng(I − AA∗)
1

2 .

First Situation: Suppose A ∈ C.0 is similar to a unitary operator and the spectrum

σ(A) is a proper subset of T. The existence of nonunitary contractions, specially

with a compact spectrum, can be found in [40]. Now the characteristic function

CA(z) is boundedly invertible on the open unit disc and is an inner function (see:

Theorem 4.5 in [37]). Also, CA(z) are unitary operators for every z on the unit

circle except σ(A).

As we have mentioned in section 3, we can consider CA(z) ∈ S. Also, CA(x) are

unitary operators for all x ∈ R \ S, where S is the pre-image of σ(A) under the

conformal map C. Now, we can extend CA(z) to the lower half plane by

CA(z) = {CA(z)
∗}−1 for z ∈ C−.

We denote the extended function as CA(z). Thus we can have an RKHS similar to

the one mentioned in lemma 4.4 based on CA(z).

Second Situation: Suppose A ∈ C0 is a unicellular operator with the scalar

multiple equal to the minimal function mA(z). It is known that the minimal function

of this type of operator A is a singular inner function (see: Proposition 7.3, [37]).

Thus CA(z) is invertible for all z ∈ D (by Theorem 5.1 in [37]). Also, the spectrum

σ(A) consists of a single point of T, and without loss of any generality, we can

assume that σ(A) = {1}. Thus by using the conformal map C, we can have an

operator valued function χA(z) (say) in Sin ∩ Sin
∗ . Moreover, χA(x) is unitary for

all x ∈ R. Now similarly to the first situation, we can extend χA(z) as an operator
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valued entire function and construct an RKHS H(χA) of X-valued entire functions.

de Branges spaces of entire functions based on a cnu contraction operator:

Let A be a cnu contraction operator as in the second situation, and E+ is a Fredholm

operator valued entire function such that E+(z) ∈ B(DA∗ ,DA) for all z ∈ C. Also,

E+(z) is invertible at least at one point. Now consider

E−(z) = E+(z)χA(z) for all z ∈ C.

Thus E− is a Fredholm operator valued entire function, E−(z) ∈ B(DA,DA) for

all z ∈ C and E−(z) is invertible at least at one point. Also

E−1
+ E− = χA ∈ Sin ∩ Sin

∗ .

Classes Sin and Sin
∗ should be understood in the present context. Hence the pair

of operator valued functions (E−(z), E+(z)) for every z ∈ C will represent a de

Branges operator.

Acknowledgements: The authors are grateful to Professor Harry Dym for carefully

reading an early version of this paper and suggesting improvements.

The research of the first author is supported by the University Grants Commis-

sion (UGC) fellowship (Ref. No. DEC18-424729), Govt. of India. The research

of the second author is supported by the DST-INSPIRE Faculty research grant

(DST/INSPIRE/04/2016/000808) and SERB grant ( SRG/2020/001908 dated 26

October, 2020).

REFERENCES

[1] N. I. Akhiezer, I. M. Glazman, Theory of Linear Operators in Hilbert Space, Two volumes

bound as one. Dover Publications, New York, (1993).

[2] D. Alpay, I. Gohberg, M. A. Kaashoek, L. Lerer, A. L. Sakhnovich, Krein systems and canon-

ical systems on a finite interval: Accelerants with a jump discontinuity at the origin and con-

tinuous potentials, Integr. Equ. Oper. Theory 68(2010), no. 1, 115-150.

[3] W. Arendt, C. J. K. Batty, M. Hieber, F. Neubrander, Vector-valued Laplace transforms and

Cauchy problems, Birkhäuser (2011).
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