

Computer Vision, Speech Communication and Signal Processing Group School of Electrical and Computer Engineering National Technical University of Athens, Greece URL: http://cvsp.cs.ntua.gr

Vector-Valued Image Interpolation by an Anisotropic Diffusion-Projection PDE

Anastasios Roussos and Petros Maragos

1st International Conference on Scale Space Methods and Variational Methods in Computer Vision, Ischia, Italy, May 30 - June 2, 2007

Image Interpolation

- Can be defined as the operation that:
 - takes as input a *discrete* image and
 - recovers a *continuous* image or

a discrete one of *higher resolution*

- One of the fundamental Image Processing problems
- Often required as a pre-processing step in various Computer Vision tasks, such as:
 - Image Segmentation, Feature Detection, Object Recognition and Motion Analysis

Image Interpolation Methods

Classic *Linear* methods:

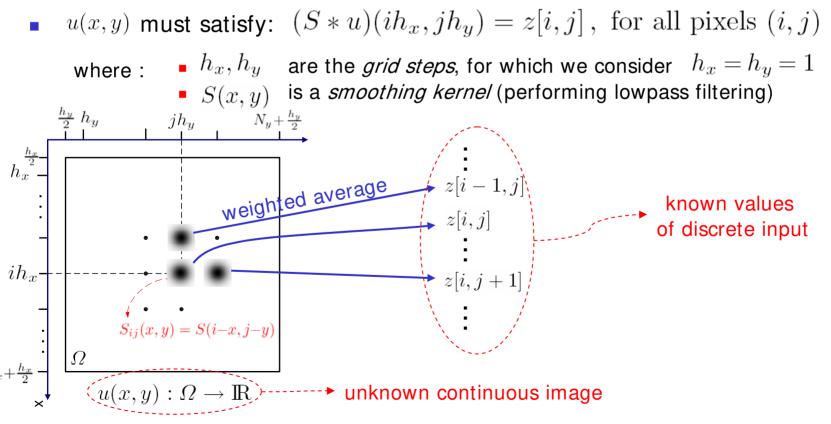
- Bicubic, Quadratic, Spline interpolation, etc...
- Convolve the input samples with a kernel (lowpass filtering)
- Adaptive Nonlinear methods:
 - They perform a processing adapted to the *local* geometric structure of the image
 - Main motivation: reconstruct the edges without blurring them
 - Variational & PDE-based methods belong to this class

Overview of The Proposed Method

- We propose a *nonlinear* method:
 - designed for general vector-valued images
 - based on an anisotropic diffusion PDE with a projection operator
- This method:
 - avoids most artifacts of classic and other PDEbased methods
 - yields improved error measures

Reversibility Condition Approach (1)

- Ref: [Malgouyres, Guichard, SIAM J. Num. Anal. '01]
- Let : $z[i,j]: \{1,..,N_x\} \times \{1,..,N_y\} \to \mathbb{R}$ be the discrete input $u(x,y): \Omega \to \mathbb{R}$ be the interpolation solution

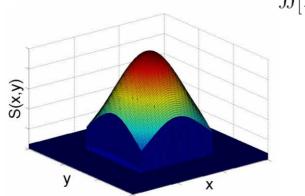


Reversibility Condition Approach (2)

- We generalize this approach to vector-valued images:
- Let: • $\boldsymbol{z}[i,j]: \{1,..,N_x\} \times \{1,..,N_y\} \to \mathbb{R}^M$ be the discrete input • $\boldsymbol{u}(x,y): \Omega \to \mathbb{R}^M$ be the interpolation solution $[u_1,..,u_M]^T$
- We restrict u(x, y) to satisfy:

 $\langle S_{ij}, u_m \rangle_{L^2(\Omega)} = z_m[i,j], \text{ for all pixels } (i,j) \text{ and } m \in \{1,..,M\}$ (1)

• We have chosen: $S(x,y) = \mathbb{1}_{\left[-\frac{1}{2},\frac{1}{2}\right]^2}(x,y) \cdot \frac{G_{\hat{\sigma}}(x,y)}{\iint_{\left[-\frac{1}{2},\frac{1}{2}\right]^2}G_{\hat{\sigma}}(x',y')\mathrm{d}x'\mathrm{d}y'}$ (2)



Description of Our Method (1)

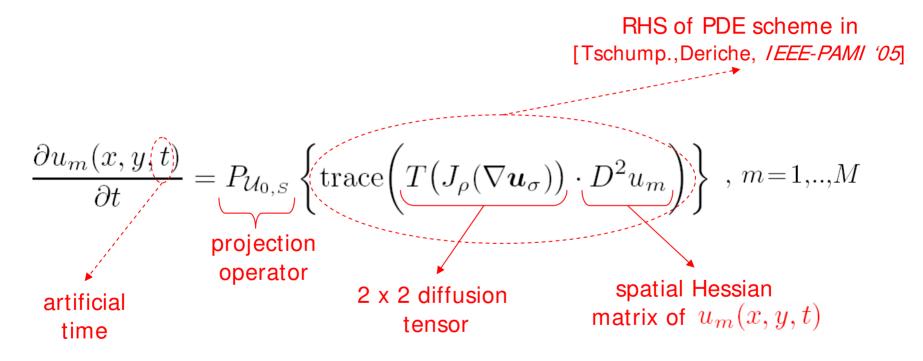
- We design a nonlinear diffusion flow, which:
 - lies on the subspace $\mathcal{U}_{z,S}$ of functions that satisfy the *Reversibility Condition*
 - performs *adaptive smoothing*, moving towards elements of $\mathcal{U}_{z,S}$ with better visual quality
- The above are accomplished by:
 - using an appropriate *projection operator*
 - modifying the PDE scheme of:

[Tschumperle, Deriche, / EEE-PAMI '05]

Description of Our Method (2)

$$\frac{\partial u_m(x,y,t)}{\partial t} = P_{\mathcal{U}_{0,S}} \left\{ \operatorname{trace} \left(T \left(J_{\rho}(\nabla \boldsymbol{u}_{\sigma}) \right) \cdot D^2 u_m \right) \right\} , m = 1, .., M$$

Description of Our Method (2)



Description of Our Method (3)

■ Interpolated image ← equilibrium solution of:

$$\frac{\partial u_m(x,y,t)}{\partial t} = P_{\mathcal{U}_{0,S}} \left\{ \operatorname{trace} \left(T \left(J_{\rho}(\nabla \boldsymbol{u}_{\sigma}) \right) \cdot D^2 u_m \right) \right\} , m = 1, .., M$$

(initial conditions): every
$$u_m(x, y, 0)$$
 is derived from the frequency zero-padding interpolation of the symmetrically extended $z_m[i, j]$

the image that:

- satisfies Reversibility Condition
- has a Fourier Transform with all 0's outside baseband freqs.

Description of Our Method (4)

$$\frac{\partial u_m(x,y,t)}{\partial t} = P_{\mathcal{U}_{0,S}} \left\{ \operatorname{trace} \left(T \left(J_{\rho}(\nabla \boldsymbol{u}_{\sigma}) \right) \cdot D^2 u_m \right) \right\} , m = 1, .., M$$

where :

• $P_{\mathcal{U}_{0,S}}\{\cdot\}$ is the orthogonal projection on the space $\mathcal{U}_{0,S}$ of functions v that satisfy:

$$\langle S_{ij}, v \rangle_{L^2(\Omega)} = 0$$
, for all pixels (i, j)
 $S(i-x, j-y)$

- Since $S(x,y)=0\,,\,\forall (x,y)\notin [-1/2,1/2]^2$, we have:

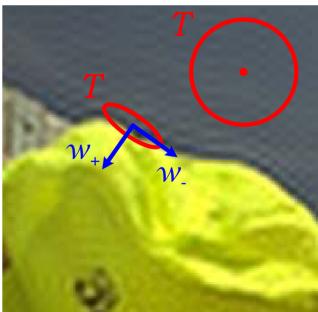
$$P_{\mathcal{U}_{0,S}}\{v\} = v - \|S\|_{L^{2}(\mathbb{R}^{2})}^{-2} \sum_{i=1}^{N_{x}} \sum_{j=1}^{N_{y}} \langle S_{ij}, v \rangle_{L^{2}(\Omega)} \cdot S_{ij}$$

Description of Our Method (5)

$$\frac{\partial u_m(x,y,t)}{\partial t} = P_{\mathcal{U}_{0,S}} \left\{ \operatorname{trace} \left(T \left(J_{\rho}(\nabla \boldsymbol{u}_{\sigma}) \right) \cdot D^2 u_m \right) \right\} , m = 1, .., M$$

where :

•
$$J_{\rho}(\nabla u_{\sigma})$$
 is the 2 x 2 structure tensor of image $u(x, y, t)$:
 $J_{\rho}(\nabla u_{\sigma}) = G_{\rho} * \sum_{m=1}^{M} \nabla (G_{\sigma} * u_m) (\nabla (G_{\sigma} * u_m))^{\mathrm{T}}$
• Let $\left\{ \begin{array}{l} \lambda_{-} \leq \lambda_{+} \\ w_{-}, w_{+} \end{array} \right\}$: $\left\{ \begin{array}{l} \text{eigenvalues} \\ \text{eigenvectors} \end{array} \right\}$ of $J_{\rho}(\nabla u_{\sigma})$
• $T\left(J_{\rho}(\nabla u_{\sigma})\right) = \left[1 + (\mathcal{N}/K)^{2}\right]^{-\frac{1}{2}} \cdot w_{-}w_{-}^{\mathrm{T}} + \left[1 + (\mathcal{N}/K)^{2}\right]^{-1} \cdot w_{+}w_{+}^{\mathrm{T}}$
 $\mathcal{N} = \sqrt{\lambda_{+} + \lambda_{-}}$ (edge strength predictor)



Numerical Implementation

- The discrete image u[i', j'] approximates the continuous interpolation result u(x, y)
 - The grid of u[i',j'] is finer than and includes the grid of input z[i,j]
 - u[i', j'] is a d×d magnification of input
 (d integer)
- Discretization of the proposed PDE: explicit scheme with finite differences

Related Methods (1)

TV-based Interpolation [Malgouyres, Guichard, SIAM J. Num. Anal. '01]

 $\int \underset{u \in \mathcal{L}}{\text{minimize the TV: } E[u] = \iint_{\Omega} \|\nabla u\| \, \mathrm{d}x \mathrm{d}y$ under the constraint that u(x, y) satisfies the *Reversibility Condition*

$$\implies \partial u(x, y, t) / \partial t = P_{\mathcal{U}_{0,S}} \left\{ \operatorname{div} \left(\nabla u / \| \nabla u \| \right) \right\}$$

• u(x, y, 0) = zero-padding interpolation of z[i, j]

Method of [Belahmidi,Guichard, ICIP04] (BG)

$$\frac{\partial u(x,y,t)}{\partial t} = \frac{\partial^2 u}{\partial \boldsymbol{\xi}^2} + g(\|\nabla u\|) \frac{\partial^2 u}{\partial \boldsymbol{n}^2} - \sum_{i=1}^{N_x} \sum_{j=1}^{N_y} \left\{ \iint_{\Omega_{i,j}} u(x,y,t) \mathrm{d}x \mathrm{d}y - z[i,j] \right\} \mathbb{1}_{\Omega_{i,j}}(x,y)$$

• u(x, y, 0) = simple Zero Order Hold of z[i, j]

Related Methods (2)

Interpolation method of [Tschumperle, Deriche, IEEE-PAMI '05] (TD)

- The exact interpolation condition is posed
- The problem is faced as a special case of *image inpainting*

×	0	0	×	0	0	x	
0	o	o	0	0	0	0	
0	0	о	ο	0	0	о	
×	0	о	×	0	о	×	
0	0	о	о	0	о	о	
0	0	о	о	0	о	о	
×	0	о	×	0	0	×	
			•				•
			•				•.
			•				

x: pixels with known values

o: pixels forming the inpainting domain

In the inpainting domain only:

$$\frac{\partial u_m(x,y,t)}{\partial t} = \operatorname{trace}\left(\left[1 + (\mathcal{N}/K)^2\right]^{-\frac{1}{2}} \boldsymbol{w}_- \boldsymbol{w}_-^{\mathrm{T}} \cdot D^2 u_m\right), \ m = 1, .., M$$
$$u_m(x,y,0) = \text{bilinear interpolation of } z_m[i,j]$$

Framework for the Experiments

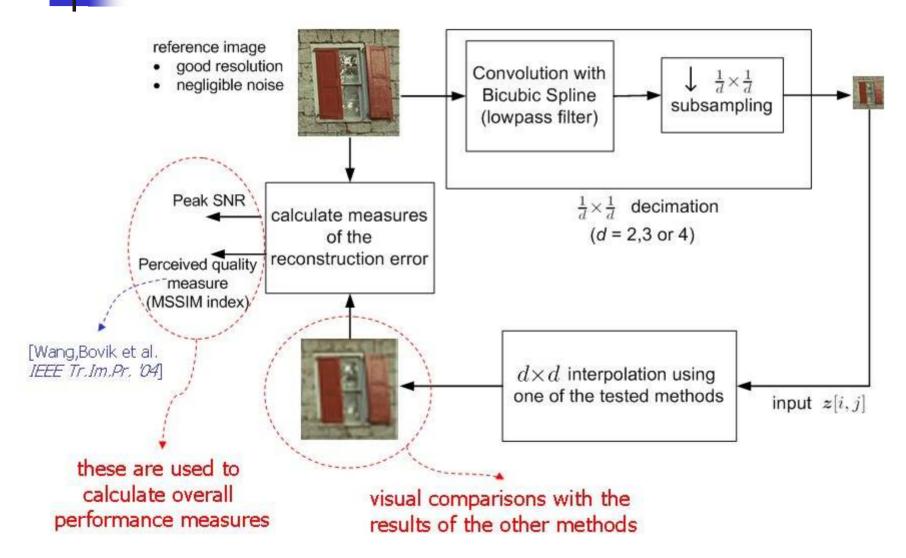


Image Interpolation Experiments

This framework has been repeated for reference images from the dataset of:

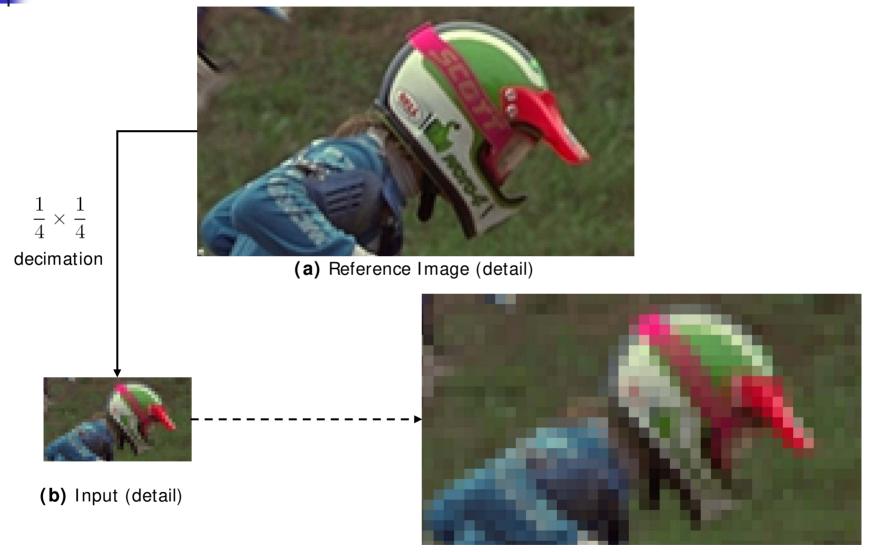
> 23 natural images of size 768 x 512 pixels

www.cipr.rpi.edu/resource/stills/kodak.html -

Both graylevel & color versions of images have been used

8 out of 23 images of the dataset

Examples from the Color Results (1)



(c) Input, enlarged by simple ZOH (detail)

Derivation of the input for 4 x 4 interpolation using the 5th reference image

Examples from the Color Results (2)

(a) Input (enlarged by ZOH)

(b) Bicubic Interpolation

(c) TD interpolation

(d) Our method

Details of 4 x 4 color interpolation using the 5th reference image

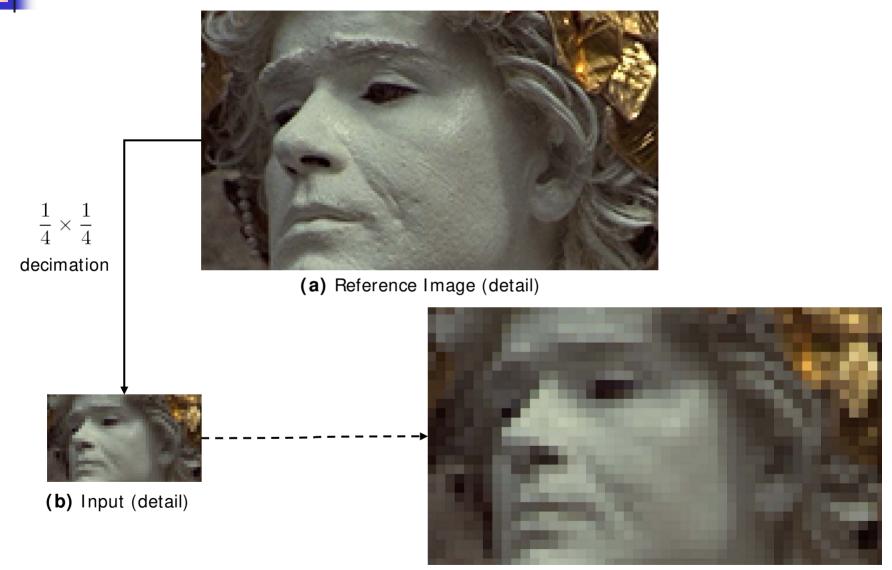
Examples from the Color Results (3)

(b) Initialization of our method

(c) Final result of our method

4 x 4 interpolation by the proposed method

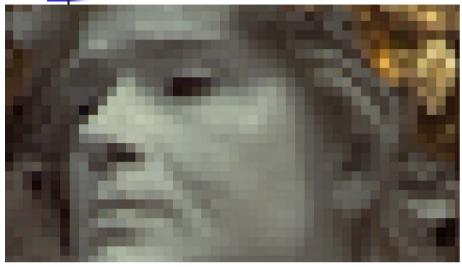
Examples from the Color Results (4)



(c) Input, enlarged by simple ZOH (detail)

Derivation of the input for 4 x 4 interpolation using the 17th reference image

Examples from the Color Results (5)



(a) Input (enlarged by ZOH)

(b) Bicubic Interpolation

(c) TD interpolation

(d) Our method

Details of 4 x 4 color interpolation using the 17th reference image

Examples from the Color Results (6)

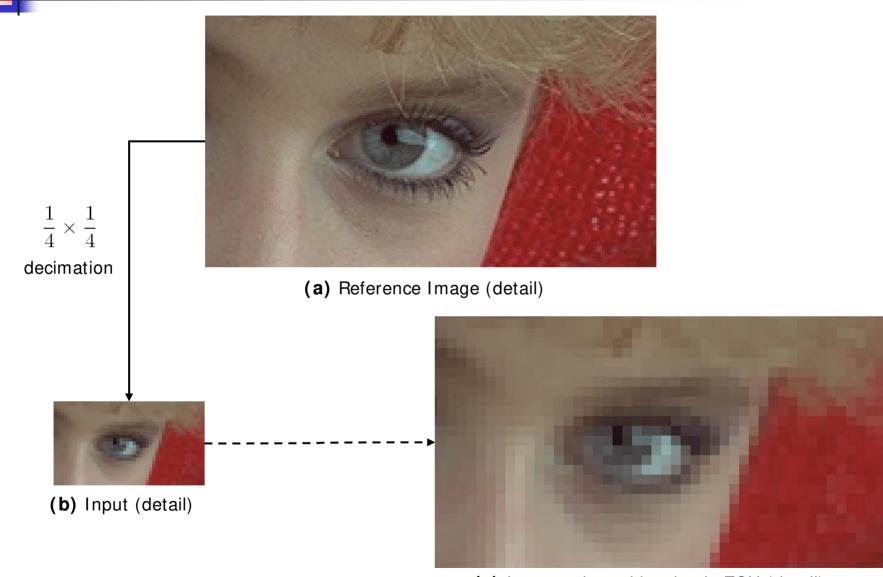
(a) Input (enlarged by ZOH)

(b) Initialization of our method

(c) Final result of our method

4 x 4 interpolation by the proposed method

Examples from the Color Results (7)



(c) Input, enlarged by simple ZOH (detail)

Derivation of the input for 4 x 4 interpolation using the 4th reference image

Examples from the Color Results (8)

(a) Input (enlarged by ZOH)

(b) Bicubic Interpolation

(c) TD interpolation

(d) Our method

Details of 4 x 4 color interpolation using the 4th reference image

Examples from the Graylevel Results (1)

(a) Reference Image (detail)

(b) Input (enlarged by ZOH)

(c) Initialization of our method

(d) Our method (Final result)

Results of our method in 4 x 4 interpolation using the 7th reference image

Examples from the Graylevel Results (2)

(a) TV based, sinc kernel

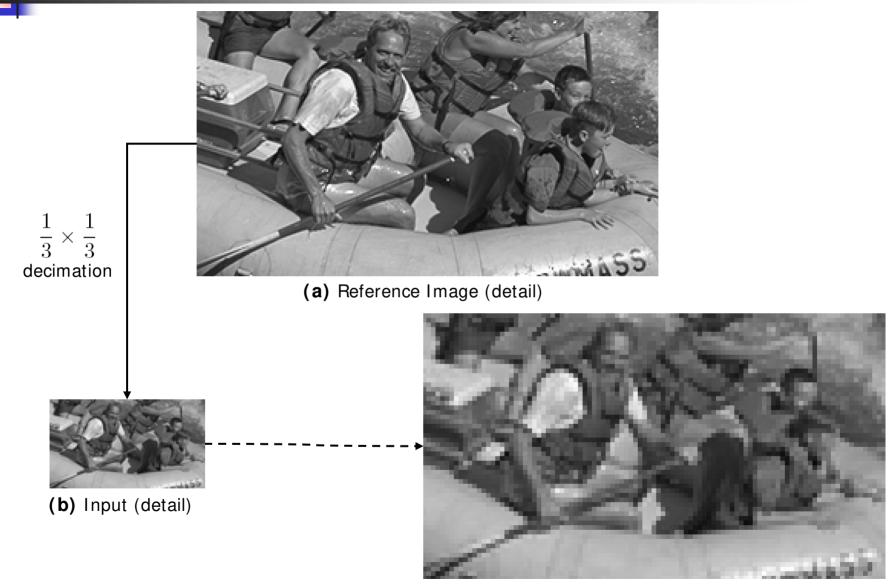
(b) TV based, mean kernel

(c) BG interpolation

(d) Our method

Details of 4 x 4 interpolation using the 4th reference image

Examples from the Graylevel Results (3)



(c) Input, enlarged by simple ZOH (detail)

Derivation of the input for 3 x 3 interpolation using the 14th reference image

Examples from the Graylevel Results (4)

(a) TV based, sinc kernel

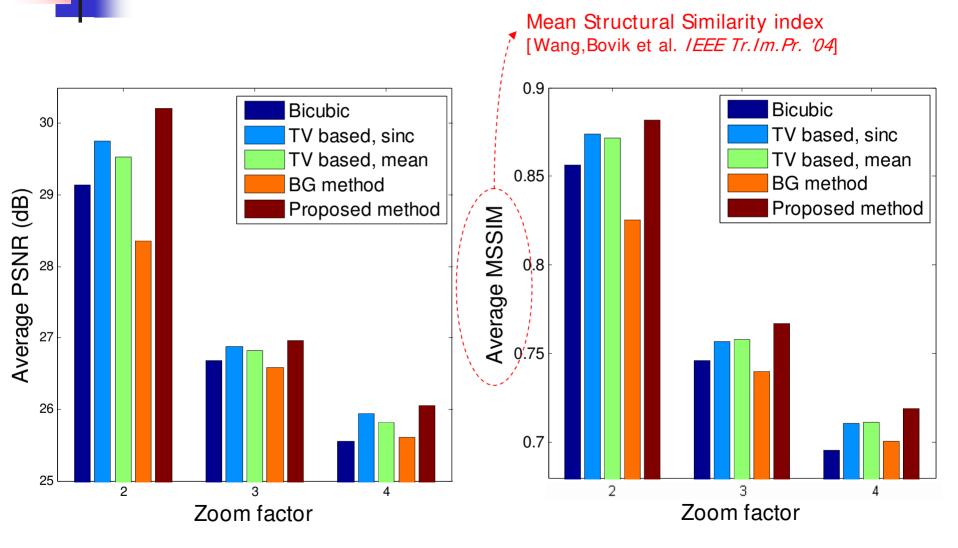

```
(b) TV based, mean kernel
```


(c) BG interpolation

(d) Our method

Details of 3 x 3 interpolation using the 14th reference image

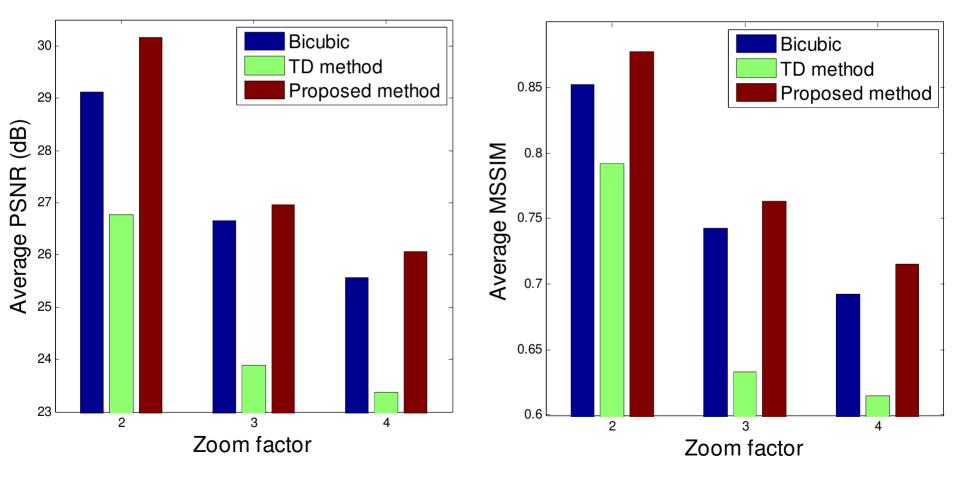
Overall Performance Measures (1)



Graylevel Experiments in all 23 reference images

CVSP, NTUA

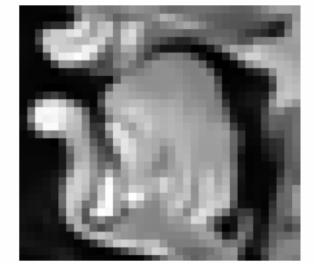
Overall Performance Measures (2)



Color Experiments in all 23 reference images

CVSP, NTUA

Example with Biomedical Image



(a) Reference image (MRI midsagittal)

(b) Reference after decimation (enlarged by ZOH)

(c) Interpolation of (b) using our method

3x3 interpolation of a vocal tract image using the proposed method

Summary & Conclusions

• We have proposed a *nonlinear* method which:

- is designed for general vector-valued images
- is based on an *anisotropic diffusion PDE* with a *projection operator*
- efficiently combines:
 - Reversibility Condition approach with
 - PDE model of [Tschumperle, Deriche, IEEE-PAMI '05]
- The experiments showed that this method:
 - avoids most artifacts of classic and other PDE-based methods
 - yields improved error measures

Thank You!!

Questions??



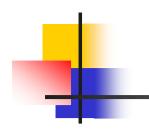
CVSP Group Web Site:

cvsp.cs.ntua.gr

Demonstration of Experimental Results:

cvsp.cs.ntua.gr/~tassos/PDEinterp/ssvm07res

CVSP, NTUA



Appendix

CVSP, NTUA

Appendix: Description of Our Method (4b)

$$\frac{\partial u_m(x,y,t)}{\partial t} = P_{\mathcal{U}_{0,S}} \left\{ \operatorname{trace} \left(T \left(J_{\rho}(\nabla \boldsymbol{u}_{\sigma}) \right) \cdot D^2 u_m \right) \right\} , m = 1, .., M$$

where :

• $P_{\mathcal{U}_{0,S}}\{\cdot\}$ is the orthogonal projection on the space $\mathcal{U}_{0,S}$ of functions v that satisfy:

$$\langle S_{ij}, v \rangle_{L^2(\Omega)} = 0$$
, for all pixels (i, j)
 $S(i-x, j-y)$

- Since $S(x,y)=0\,,\,\forall (x,y)\notin [-1/2,1/2]^2$, we have:

$$\Rightarrow \langle S_{ij}, S_{i'j'} \rangle_{L^{2}(\Omega)} = \|S\|_{L^{2}(\mathbb{R}^{2})}^{2} \delta_{i-i',j-j'}$$

$$\Rightarrow P_{\mathcal{U}_{0,S}} \{v\} = v - \|S\|_{L^{2}(\mathbb{R}^{2})}^{-2} \sum_{i=1}^{N_{x}} \sum_{j=1}^{N_{y}} \langle S_{ij}, v \rangle_{L^{2}(\Omega)} \cdot S_{ij}$$

Appendix: Examples from Color Results (A1)

(a) Reference Image

(b) Input (enlarged by ZOH)

(c) Bicubic Interpolation

(d) TD interpolation

(e) Initialization of our method

(f) Our method

Details of 4 x 4 color interpolation using the 5^{th} reference image

Appendix: Examples from Color Results (A2)

(a) Reference Image

(c) Bicubic Interpolation

(d) TD interpolation

(e) Initialization of our method

(f) Our method

Details of 3x3 color interpolation using the 23rd reference image

Appendix: Overall Performance Measures

Average error measures in all results using the 23 images:

Experi	Similarity index						
	Average PSNR (dB)			Average MSSIM			[Wang,Bovik et al.
Interpolation Method	d=2	d=3	d=4	d=2	d=3	d=4	IEEE Tr.Im.Pr. '04]
Bicubic interpolation	29.14	26.68	25.55	0.8561	0.7464	0.6953	
TV based, sinc kernel	29.75	26.87	25.94	0.8739	0.7567	0.7105	>>>> zoom factor
TV based, mean kernel	29.53	26.83	25.82	0.8714	0.7578	0.7114	
BG interpolation	28.36	26.58	25.60	0.8253	0.7402	0.7004	
Proposed method	30.22	26.96	26.05	0.8816	0.7671	0.7194	

Experiments with color images

	Average PSNR				Average MSSIM			
Interpolation Method	d=2	d=3	d=4	d=2	d=3	d=4		
				0.8524				
				0.7925				
Proposed method	30.16	26.96	26.06	0.8779	0.7631	0.7157		

Mean Structural