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Abstract

Images are usually associated with multiple labels and
comprised of multiple views, due to each image con-
taining several objects (e.g. a pedestrian, bicycle and
tree) and multiple visual features (e.g. color, texture and
shape). Currently available tools tend to use either la-
bels or features for classification, but both are necessary
to describe the image properly. There have been recent
successes in using vector-valued functions, which con-
struct matrix-valued kernels, to explore the multi-label
structure in the output space. This has motivated us to
develop multi-view vector-valued manifold regulariza-
tion (MV3MR) in order to integrate multiple features.
MV3MR exploits the complementary properties of dif-
ferent features, and discovers the intrinsic local geome-
try of the compact support shared by different features,
under the theme of manifold regularization. We validate
the effectiveness of the proposed MV3MR methodology
for image classification by conducting extensive exper-
iments on two challenge datasets, PASCAL VOC’ 07
and MIR Flickr.

Introduction

The contents of a natural image can be usefully summarized
by several keywords (or labels). In order to perform im-
age classification directly using binary classification meth-
ods (Boutell et al. 2004; Guillaumin, Verbeek, and Schmid
2010), it is necessary to assume that the labels are indepen-
dent, even though frequently labels appearing in the image
are related to each other. Examples are given in Figure 1,
in which the left image shows a person riding a bicycle, the
middle image shows sea, which usually co-occurs with sky
and water, and the right image shows a dog, which is associ-
ated with animal. This multi-label dependency (Zhang 2011;
Zhou et al. 2012) makes this type of image classifica-
tion (Boutell et al. 2004; Luo et al. 2013) intrinsically dif-
ferent from simple binary classification.

Moreover, different labels cannot be fully characterized
by a single feature. Color information (e.g. color his-
togram (Van De Weijer and Schmid 2006)), shape cue (en-
coded in SIFT (Lowe 2004)) and global structure (e.g.
GIST (Oliva and Torralba 2001)) can effectively represent
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Figure 1: Multi-label image examples from PASCAL VOC’
07 and MIR Flickr datasets.

natural objects (e.g. sky, cloud and plant life), man-made
objects (e.g. airplane, car, and TV-monitor), and scenes
(e.g. seaside and indoor). However, these parameters cannot
simultaneously illustrate all of these concepts effectively.
Each type of visual feature encodes a particular property
of the image, and characterizes a particular concept (la-
bel). This multi-view nature (Sindhwani, Niyogi, and Belkin
2005) distinguishes image classification from single-view
tasks, such as texture segmentation and face recognition.

Recently, the vector-valued function (Micchelli and Pon-
til 2005) has been used to resolve multi-label classifica-
tion problems (Minh and Sindhwani 2011), and shown to
be effective in semantic scene annotation. This method nat-
urally incorporates label-dependencies into the classifica-
tion model, first by computing the graph Laplacian (Belkin,
Niyogi, and Sindhwani 2006) of the output similarity graph,
and then using this graph to construct a matrix-valued ker-
nel. This model is superior to most of the existing multi-label
learning methods (Chen et al. 2008; Hariharan et al. 2010;
Sun, Ji, and Ye 2011), because it naturally considers label
correlations and efficiently outputs all the predicted labels at
the same time.

Although the vector-valued function is effective for gen-
eral multi-label classification tasks, it cannot directly han-
dle image classification problems that include images repre-
sented by multi-view features. A popular solution is to con-
catenate all the features into a long vector. This concatena-
tion strategy not only ignores the physical interpretations of
different features, but it also addresses the over-fitting prob-
lem given limited training samples.

Here we introduce multiple kernel learning to the vector-
valued function, and present a multi-view vector-valued
manifold regularization (MV3MR) algorithm for handling
multi-view features in multi-label image classification.
MV3MR associates each view with a particular kernel, as-
signs a higher weight to the view/kernel carrying more dis-
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criminative information, and explores the complementary
nature of different views.

In particular, MV3MR combines multi-view information
in a large number of unlabeled images in order to discover
the intrinsic geometry embedded in the high dimensional
ambient space of the compact support of the marginal distri-
bution. The local geometry, approximated by the adjacency
graphs induced from multiple kernels of all the correspond-
ing views, is more reliable than that approximated by the
adjacency graph induced from a particular kernel of any cor-
responding view. In this way, MV3MR essentially improves
the vector-valued function for multi-label image classifica-
tion. We carefully designed the MV3MR algorithm so that it
determines the set of kernel weights in the learning process
of the vector-valued function.

We thoroughly evaluate the proposed MV3MR algorithm
on two challenge datasets: PASCAL VOC’ 07 (Everingham
et al. ) and MIR Flickr (Huiskes and Lew 2008). We com-
pare it with a popular MKL algorithm (Rakotomamonjy et
al. 2008) and a recently proposed MKL method (Kloft et al.
2011). We also compare MV3MR with competitive multi-
label learning algorithms for image classification, namely
multi-label compressed sensing (Hsu et al. 2009), canoni-
cal correlation analysis (Sun, Ji, and Ye 2011), and vector-
valued manifold regularization (Minh and Sindhwani 2011).
These algorithms are compared in terms of mean average
precision (mAP). The experimental results demonstrate the
effectiveness of MV3MR.

Manifold Regularization and Vector-valued

Generalization
First, we briefly introduce the manifold regularization
framework (Belkin, Niyogi, and Sindhwani 2006) and its
vector-valued generalization (Minh and Sindhwani 2011).
Given a set of l labeled examples Dl = (xi, yi)

l
i=1 and a rel-

atively large set of u unlabeled examples Du = (xi)
N=l+u
i=l+1 ,

we consider a non-parametric estimation of a vector-valued
function f : X �→ Y , where Y = R

n and n is the number
of labels. This setting includes Y = R as a special case for
regression and classification.

Manifold Regularization

Manifold learning has attracted much attention in artificial
intelligence (AI) recently (Vu, Carey, and Mahadevan 2012;
Suzuki et al. 2012). In manifold regularization, the data
manifold is characterized by a nearest neighbor graph W ,
which explores the geometric structure of the compact sup-
port of the marginal distribution. The Laplacian L of W
and the prediction f = [f(x1), . . . , f(xN )] are then for-
mulated as a smoothness constraint ‖f‖2I = fTLf , where
L = D − W and the diagonal matrix D is given by

Dii =
∑N

j=1 Wij . The manifold regularization framework

minimizes the regularized loss

argmin
f∈Hk

1

l

l
∑

i=1

L(f, xi, yi) + γA‖f‖
2
k + γI‖f‖

2
I , (1)

where L is a predefined loss function, k is the standard
scalar-valued kernel (i.e. k : X × X �→ R), and Hk is the

associated reproducing kernel Hilbert space (RKHS). Here,
γA and γI are trade-off parameters to control the complexi-
ties of f in the ambient space and the compact support of the
marginal distribution. The representer theorem (Schölkopf
and Smola 2002) ensures that the solution of problem (1)

takes the form f∗(x) =
∑N

i=1 αik(x, xi). Since a pair of
close samples means that the corresponding conditional dis-
tributions are similar, the manifold regularization ‖f‖2I helps
the function learning.

Vector-Valued Manifold Regularization

In the vector-valued RKHS, where a kernel function K is
defined, and the corresponding Y-valued RKHS is denoted
by HK , the optimization problem of the vector-valued man-
ifold regularization (VVMR) (Minh and Sindhwani 2011) is
given by

argmin
f∈Hk

1

l

l
∑

i=1

L(f, xi, yi)+γA‖f‖
2
k+γI〈f ,Mf〉Yu+l , (2)

where Yu+l is the u+ l-direct product of Y and the function
prediction f = (f(x1), . . . , f(xu+l)) ∈ Yu+l. The matrix
M is a symmetric positive operator that satisfies 〈y,My〉 ≥
0 for all y ∈ Yu+l and is chosen to be L ⊗ In. Here, L is
the graph Laplacian, In is the n × n identity matrix, and ⊗
denotes the Kronecker (tensor) matrix product. For Y = R

n,
an entry K(xi, xj) of the n× n kernel matrix is defined by

K(xi, xj) = k(xi, xj)
(

γOL
†
out + (1− γO)In

)

, (3)

where k(·, ·) is a scalar-valued kernel, and γO ∈ [0, 1] is

a parameter. Here, L†
out is the pseudo-inverse of the out-

put labels graph Laplacian. The output similarity graph can
be estimated by looking each label as a vertex and using
the nearest neighbors method. The representation of the j’th
label is the j’th column in the label matrix Y ∈ R

N×n,
in which, Yij = 1 if the j’th label is manually assigned
to the i’th sample, and −1 otherwise. For the unlabeled
samples, Yij = 0. It has been proven in (Minh and Sind-
hwani 2011) that the solution of the minimization problem

(2) takes the form f∗(x) =
∑N

i=1 K(x, xi)ai. The vector-
valued Laplacian RLS (regularized least squares) estimates
vectors ai ∈ Y, 1 ≤ i ≤ N by solving a Sylvester Equation.

MV3MR: Multi-view Vector-valued Manifold

Regularization

In order to handle multi-view multi-label image classifi-
cation, we generalize VVMR and present the multi-view
vector-valued manifold regularization (MV3MR). In con-
trast to (Guillaumin, Verbeek, and Schmid 2010), which as-
sumes that different views contribute equally to the classi-
fication, MV3MR assumes different views contribute differ-
ently to the classification and learns the optimal combination
coefficients to integrate these different views.

Given a small number of labeled samples and a relatively
large number of unlabeled samples, MV3MR first computes
an output similarity graph by using the label information
of the labeled samples. The Laplacian of the label graph
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Figure 2: A summary diagram of the proposed MV3MR al-
gorithm. The given labels are used to construct an output
similarity graph, which encodes the label correlations. Fea-
tures from different views of the labeled and unlabeled data
are used to construct different Gram matrices (with label cor-
relations incorporated) Gv, v = 1, . . . , V , as well as the dif-
ferent graph Laplacians Mv, v = 1, . . . , V . We learn the
weight βv by combining both Gv and Mv . The combined
Gram matrix G is used for classification while preserving
locality on the integrated manifold M .

is incorporated in the scalar-valued Gram matrix Gk
v over

labeled and unlabeled data in order to enforce label corre-
lations on each view, so that the vector-valued Gram ma-
trices Gv = Gk

v ⊗ Q, v = 1, . . . , V can be obtained, where

Q = γOL
†
out+(1−γO)In. Meanwhile, we also compute the

vector-valued graph Laplacians Mv, v = 1, . . . , V by using
the features of the input data from different views. MV3MR
then learns the combination coefficient βv for combining
both Gv and Mv by the use of alternating optimization. Fi-
nally, the combined Gram matrix G, together with the regu-
larization on the combined manifold M , is used for classifi-
cation. Figure 2 summarizes the above procedure. Technical
details are given below.

Rationality

Let V be the number of views and v be the view in-
dex. On the feature space of each view, we define the
corresponding positive definite scalar-valued kernel kv ,
which is associated with an RKHS Hkv

. It follows from
the functional framework (Rakotomamonjy et al. 2008)
that there exists an RKHS Hk associated with the kernel

k(x, x′) =
∑V

v=1 βvkv(x, x
′), and any function in Hk is a

sum of functions belonging to Hkv
. The vector-valued ker-

nel K(x, x′) = k(x, x′) ⊗ Q =
∑V

v=1 βvKv(x, x
′), where

we have used the bilinearity of the Kronecker product. Each
Kv(x, x

′) = kv(x, x
′) ⊗ Q corresponds to an RKHS, as

described for the RKHS for vector-valued functions (Minh
and Sindhwani 2011). Thus, the kernel K is associated with
an RKHS HK . This functional framework motivates the
MV3MR algorithm.

Problem Formulation

In the multi-view setting and theme of manifold regulariza-
tion, we will learn the vector-valued function f by linearly
combining the kernels and graphs from different views. The
optimization problem is given by

argmin
f∈Hk

1

l

l
∑

i=1

L(f, xi, yi) + γA‖f‖
2
k

+ γI〈f ,Mf〉Yu+l + γB‖β‖
2
2,

s.t.
∑

v

βv = 1, βv ≥ 0, v = 1, . . . , V

(4)

where β = [β1, . . . , βV ]
T , γA, γI and γB are positive

trade-off parameters. The decision function takes the form
f(x) + b =

∑

v f
v(x) + b and belongs to an RKHS HK

associated with the kernel K(x, x′) =
∑

v βvKv(x, x
′). In

addition, M =
∑

v βvMv with each Mv being a vector-
valued graph Laplacian constructed on HKv

. Since HK is an
RKHS, according to (Minh and Sindhwani 2011), the Rep-
resenter Theorem (Schölkopf and Smola 2002) follows for a
fixed set of {βv}.

Theorem 1 For a fixed set of {βv}, the minimizer of prob-
lem (4) admits an expansion

f∗(x) =

N
∑

i=1

K(x, xi)ai, (5)

where ai ∈ Y, 1 ≤ i ≤ N = u + l are vectors to be esti-

mated, and K(x, xi) =
∑V

v=1 βvKv(x, xi).

By using the least squares error, i.e. L(f, xi, yi) = ‖f(xi)−
yi‖

2, we can rewrite (4) as

argmin
a,β

1

l
‖JNn

nl Ga− y‖2 + γAa
TGa

+ γIa
TGMGa+ γB‖β‖

2
2,

s.t.
∑

v

βv = 1, βv ≥ 0, v = 1, . . . , V

(6)

where JNn
nl ∈ R

Nn×Nn is a diagonal matrix with the first nl

elements 1, and the rest 0, a = {a1, . . . , au+l} ∈ R
n(u+l)

and y = {y1, . . . , yu+l} ∈ R
n(u+l) are both column vec-

tors, each with ai, yi ∈ R
n, and yl+1 = . . . = yu+l = 0.

Here, G =
∑V

v=1 βvGv is the combined vector-valued
Gram matrix over the labeled and unlabeled samples defined

on kernel K, M =
∑V

v=1 βvMv is the integrated vector-
valued graph Laplacian.

Optimization

We have two variables, a and β, to be optimized in (6). In
this formulation, there is a cubic term with respect to the

variable β,
∑V

i=1

∑V

j=1 βiβj(a
TGi(

∑V

k=1 βkMk)Gja),
which is inconvenient for optimization. We therefore intro-
duce the classical alternating direction method of multipli-
ers (ADMM) (Yang and Zhang 2011) method in order to
solve this problem. In (6), we replace the graph combina-
tion weights {βk} with the auxiliary variables {θk}. Then
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the problem can be reformulated as:

argmin
a,β,θ

1

l
‖JNn

nl Ga− y‖2 + γAa
TGa

+ γIa
TGMGa+ γB‖β‖

2
2,

s.t.
∑

v

βv = 1, βv ≥ 0, v = 1, . . . , V ;β = θ.

(7)

Here, G take the form as in (6), while M =
∑V

v=1 θvMv .
Let W(a, β, θ) be the objective of (7), we use the augmented
Lagrangian method (ALM) (Yang and Zhang 2011) to take
the constraint β = θ into consideration, and solve the prob-
lem (7) by minimizing the following augmented Lagrangian
function:

LA(a, β, θ;λ) = W(a, β, θ) + λT (β − θ) +
μ

2
‖β − θ‖22,

s.t.
∑

v

βv = 1, βv ≥ 0, v = 1, . . . , V

(8)

where λ is a vector of Lagrange multipliers, and μ ≥ 0 is
a penalty parameter. According to the ALM algorithm, we
can solve LA(a, β, θ;λ) for a, β and θ jointly with fixed λ,
and then update λ by keeping a, β, θ fixed. The optimization
of a, β and θ can also be done separately due to the separa-
ble structure of the objective function. We present the steps
in Algorithm 1, and the details of optimizing a, β and θ are
given as follows:
• Update for a: By initializing βv = θv = 1

V
, v =

1, . . . , V , and let G =
∑V

v=1 βvGv , M =
∑V

v=1 θvMv ,
we rewrite (8) with respect to a as

LA(a) = argmin
a

aT (GJG+lγAG+lγIGMG)a−2aTGJy,

(9)
where we have ignored the constant term yTy. Note that
the matrix-valued Gram matrix G = Gk ⊗ Q, where Gk ∈

R
N×N is a scalar-valued Gram matrix and Q = (γOL

†
out +

(1 − γO)In). Similar as presented in (Minh and Sindhwani
2011), the optimal a can be obtained by solving an equiva-
lent Sylvester equation,

−
1

lγA
(JN

l Gk + lγILG
k)AQ−A+

1

lγA
Y = 0, (10)

where a = vec(AT ), and JN
l is a diagonal matrix where the

first l entries 1, and the others 0.
• Update for β: With the obtained a∗, the sub-problem for

optimizing LA(a, β, θ;λ) with respect to β can be given by

argmin
β

βT
(

H + (lγB +
μ

2
)IV

)

β − βTh,

s.t.
∑

v

βv = 1, βv ≥ 0, v = 1, . . . , V
(11)

where we have defined Hij = (a∗)TGi(J
Nn
nl +lγIM)Gja

∗

and h = {h1, . . . , hV } with each hi = 2(a∗)TGiJ
Nn
nl y −

lγA(a
∗)TGia

∗+μθi−λi
1. We adopt the coordinate descent

1By using the basic Kronecker product properties, we can
reformulate H and hi with respect to Gk

i and L as Hij =
(vec(QATGk

i ))
T (vec(QATGk

jJ
N
l ) + lγIvec(QATGk

jL)) and

hi = 2yT vec(QATGk
i J

N
l )− lγAa

T vec(QATGk
i ) + µθi − λi.

Algorithm 1 The ADMM optimization procedure of the
proposed MV3LRLS algorithm

Input: Labeled data Dv
l = {(xv

i , yi)
l
i=1} and unlabeled

data Dv
u = {(xv

i )
N
i=l+1} form different views, v =

1, . . . , V is the view index.
Algorithm parameters: γA, γI , γB and μ
Output: N × n matrix A, and the view combination coef-

ficients {βv}, v = 1, . . . , V .
1: Construct the scalar kernel Gk

v and graph Laplacian Lv

for each view, set βv = θv = 1/V, v = 1, . . . , V ; calcu-

late Gk =
∑V

v=1 βvG
k
v and L =

∑V

v=1 θvG
k
v .

2: Iterate
3: Solve for A with the computed Gk and L through

(10), where ak+1 = vec(AT );
4: Solve βk+1 = argminβL

A(ak+1, β, θk;λk) using

(12) and updated Gk;
5: Solve θk+1 = argminθL

A(ak+1, βk+1, θ;λk) using
(14) and updated L;

6: λk+1 = λk + μ(βk+1 − θk+1).
7: Until convergence

algorithm to solve (11). In each iteration round during the
coordinate descent procedure, two elements βi and βj are
selected to be updated, while the others are fixed. By using
the Lagrangian of problem (11) and considering that βi+βj

will not change due to the constraint
∑V

v=1 βv = 1, we have
the following solution for updating βi and βj :

⎧

⎨

⎩

β∗
i =

(2lγB + μ)(θi + θj) + (hi − hj) + 2tij
2(Hii −Hij −Hji +Hjj) + 2(2lγB + μ)

,

β∗
j = βi + βj − β∗

i ,

(12)

where tij = (Hii−Hij−Hji+Hjj)βi−
∑

k(Hik−Hjk)βk.
The obtained β∗

i or β∗
j may violate the constraint βv ≥ 0.

Thus, if (2lγB +μ)(βi+βj)+ (hi−hj)+2tij ≤ 0, we set
β∗
i = 0, and if (2lγB +μ)(βi + βj)+ (hj − hi)+ 2tji ≤ 0,

we have β∗
j = 0.

• Update for θ: To optimize LA(a, β, θ;λ) with respect to
θ, we have the following sub-problem:

argmin
θ

θT s+
μ

2
θT θ,

s.t.
∑

v

θv = 1, θv ≥ 0, v = 1, . . . , V
(13)

where s = [s1, . . . , sV ]
T with each sv =

γI(a
∗)TGMvGa∗ − μβv − λv

2. Similarly, the solu-
tion of (13) can be obtained by using the coordinate descent,
and the criteria for updating θi and θj in an iteration round
is given by
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

θ∗i = 0, θ∗j = θi + θj , if μ(θi + θj) + (sj − si) ≤ 0,

θ∗j = 0, θ∗i = θi + θj , if μ(θi + θj) + (si − sj) ≤ 0.

θ∗i =
μ(θi + θj) + (sj − si)

2μ
, θ∗j = θi + θj − θ∗i , else.

(14)

2By the use of basic Kronecker product properties, sv can be
rewritten as sv = γI(vec(QATGk))T vec(QATGkLv) − µβv −
λv.
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Figure 3: The mAP performance enhancements by learning
the weights (β) for different views: (Top: PASCAL VOC 07;
Bottom: MIR Flickr).

We summarize the learning procedure of the multi-
view vector-valued Laplacian regularized least squares
(MV3LRS) method in Algorithm 1. The stopping criterion
for terminating the algorithm can be the difference of the ob-
jective value between two consecutive steps. Alternatively,
we can stop the iterations when the variation of β is smaller
than a pre-defined threshold. Our implementation is based
on the difference of the objective value. The complexity of
MV3LRS is O(kN3), where k is the number of iterations in
Algorithm 1 and N is the number of training samples.

Experimental Evaluation

We validate the effectiveness of MV3MR on two challenge
datasets, PASCAL VOC’ 07 (VOC) (Everingham et al. )
and MIR Flickr (MIR) (Huiskes and Lew 2008). The VOC
dataset contains 10,000 images labeled with 20 categories,
while the MIR dataset contains 25,000 images labeled with
38 categories. For the VOC dataset (Everingham et al. ),
we use the standard train/test partition (Everingham et al. ),
which splits 9,963 images into a training set of 5,011 images
and a test set of 4,952 images. For the MIR dataset (Huiskes
and Lew 2008), images are randomly split into equally sized
training and test sets. For both datasets, we randomly select
20% of the test images for validation. The parameters of all
the algorithms compared in our experiments are tuned using
the validation set. From the training examples, 10 random
choices of l ∈ {100, 200, 500} labeled samples are used in
our experiments.

We use several visual views and the tag feature accord-
ing to (Guillaumin, Verbeek, and Schmid 2010). The visual
views include SIFT features (Lowe 2004), local hue his-
tograms (Van De Weijer and Schmid 2006), global GIST
descriptors (Oliva and Torralba 2001) and some color his-
tograms (RGB, HSV and LAB). The local descriptors (SIFT
and hue) are computed densely on the multi-scale grid and
quantized using k-means, which will result in a visual word
histogram for each image. Therefore, we have 7 different
representations in total.

We pre-compute kernel for each view and normalize
it to unit trace. For the visual representations, the kernel
is defined by K(xi, xj) = exp

(

−λ−1d(xi, xj)
)

, where

d(xi, xj) denotes the distance between xi and xj . Following
the example of (Guillaumin, Verbeek, and Schmid 2010), we
choose L1 distance for the color histogram representations
(RGB, HSV and LAB), L2 for GIST, and χ2 for the visual
word histograms (SIFT and hue). For the tag features, a lin-
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Figure 4: The view combination weight β learned by
MV3LRLS, as well as the mAP of using VVMR for each
view; Left: PASCAL VOC’ 07; Right: MIR Flickr.

ear kernel K(xi, xj) = xT
i xj is constructed.

Following (Guillaumin, Verbeek, and Schmid 2010), the
average precision (AP) (Zhu 2004) is utilized to evaluate the
ranking performance under each label. Usually, the mean
value over all labels, i.e. mAP is reported.

Performance Enhancement with Multi-view
Learning

It has been shown in (Minh and Sindhwani 2011) that
VVMR performs well for transductive semi-supervised
multi-label classification and can provide a high-quality out-
of-sample generalization (Strange and Zwiggelaar 2011).
The proposed MV3MR framework is a multi-view gener-
alization of VVMR that incorporates the advantages from
MKL for handling multi-view data. Therefore, we first eval-
uate the effectiveness of learning the view combination
weights using the proposed multi-view learning algorithm
for transductive semi-supervised multi-label classification.
The experimental setup of the two compared methods is
given as follows:
• VVLRLS: the vector-valued Laplacian RLS presented
in (Minh and Sindhwani 2011). The parameters γA and
γI in (2) are both optimized over the set {10i|i =
−8,−7, . . . ,−2,−1}. We set the parameter γO in (3) to
1.0 since it has been demonstrated empirically in (Minh and
Sindhwani 2011) that with a larger γO, the performance will
usually be better. The mean of the multiple Gram matri-
ces and input graph Laplacians are pre-computed for exper-
iments. The number of nearest neighbors for constructing
the input and output graph Laplacians are tuned on the sets
{10, 20, . . . , 100} and {2, 4, . . . , 20}, respectively.
• MV3LRLS: a least squares implementation of the pro-
posed MV3MR framework as presented in Algorithm 1. We
tune the parameters γA and γI as in VVLRLS and γO is set
to 1.0. The additional parameters γB and μ are optimized
over {10i|i = −8,−7, . . . ,−2,−1}. The number of nearest
neighbors for constructing the input and output graph Lapla-
cians are optimized as in VVLRLS.

The experimental results on the two datasets are shown in
Figure 3. We can see that learning the combination weights
using our algorithm is always superior to simply using the
uniform weights for different views. We also find that when
the number of labeled samples increases, the improvement
becomes smaller. This is because the multi-view learning
actually helps to approximate the underlying data distribu-
tion. This approximation can be steadily improved with the
increase of the number of labeled samples, and thus the sig-
nificance of the multi-view learning to the approximation
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Table 1: MAP Performance Evaluation on the Two Datasets

VOC mAP vs. #{labeled samples} MIR mAP vs. #{labeled samples}

Methods 100 200 500 100 200 500

MLCS 0.332±0.017 0.412±0.016 0.525±0.007 0.289±0.010 0.342±0.011 0.424±0.010

KLS CCA 0.347±0.019 0.432±0.014 0.536±0.007 0.321±0.009 0.369±0.017 0.445±0.009

MV3LRLS 0.401±0.026 0.474±0.017 0.547±0.007 0.334±0.012 0.378±0.015 0.445±0.009

SimpleMKL 0.381±0.024 0.453±0.020 0.538±0.011 0.321±0.014 0.365±0.017 0.444±0.011

LpMKL 0.391±0.024 0.462±0.012 0.540±0.006 0.327±0.010 0.367±0.014 0.436±0.008

gradually decreases.

Analyses of the Multi-view Learning

In the following, we present empirical analyses of the multi-
view learning procedure. In Figure 4, we select l = 100
and present the view combination coefficients β learned by
MV3LRLS, together with the mAP by using VVLRLS for
each view. From the results, we find that the tendency of the
kernel and graph weights are both consistent with the corre-
sponding mAP in general, i.e. the views with a higher clas-
sification performance tend to be assigned larger weights,
taking the DenseSIFT visual view (the 2nd view) and the
tag (the last view), for example. However, a larger weight
may sometimes be assigned to a less discriminative view;
for example, the weight of Hsv (the 4th view) is larger than
the weight of DenseSIFT (the 2nd view). This is mainly be-
cause the coefficient a is not optimal for every single view,
in which only Gv and Mv are utilized. The learned a min-
imizes the optimization problem (6) by using the combined
Gram matrix G and integrated graph Laplacian M, which
means that the learned vector-valued function is smooth
along the combined RKHS and the integrated manifold. In
this way, the proposed algorithm effectively exploits the
complementary properties of different views.

Comparisons with Multi-label and Multi-kernel
Learning Algorithms

Our last set of experiments compares MV3LRLS with
several competitive multi-label methods, as well as some
well-known and competitive MKL algorithms, in predicting
the unknown labels of the unlabeled data. We specifically
compare MV3LRLS with the following methods on the
challenging VOC and MIR datasets:
• MLCS (Hsu et al. 2009): a multi-label compressed
sensing algorithm that taking advantage of the sparsity of
the labels. We choose the label compression ratio to be 1.0
since the number of the labels n is not very large here. Mean
of the multiple kernels from different views is pre-computed
for experiments.
• KLS CCA (Sun, Ji, and Ye 2011): a least-squares
formulation of the kernelized canonical correlation analysis
for multi-label classification. The ridge parameter is chose
from the candidate set {0, 10i|i = −3,−2, . . . , 2, 3}. Mean
of the multiple kernels is pre-computed to run the algorithm.
• SimpleMKL (Rakotomamonjy et al. 2008): a popular
SVM-based multiple kernel learning algorithm that deter-
mines the combination of multiple kernels by a reduced

gradient descent algorithm. The penalty factor C is tuned
on the set {10i|i = −1, 0, . . . , 7, 8}. We apply SimpleMKL
to multi-label classification by learning a binary classifier
for each label.
• LpMKL (Kloft et al. 2011): a recently proposed
MKL algorithm, which extend MKL to lp-norm with
p ≥ 1. The penalty factor C is tuned on the set
{10i|i = −1, 0, . . . , 7, 8} and we choose the norm p
from the set {1, 8/7, 4/3, 2, 4, 8, 16,∞}.

The performance of the compared methods on the VOC
dataset and MIR dataset are reported in Table 1. From the
results, we firstly observe that the performance keeps im-
proving with the increasing number of labeled samples.
Secondly, the performance of the simpleMKL algorithm,
which learns the kernel weights for SVM, can be inferior
to the multi-label algorithms with the mean kernel in many
cases. MV3LRLS is superior to multi-view (SimpleMKL
and LpMKL) and multi-label algorithms in general, and con-
sistently outperforms other methods in terms of mAP. In par-
ticular, in comparison with SimpleMKL, we obtain a 5.2%,
4.6% and 1.7% mAP improvement on VOC when using 100,
200 and 500 labeled samples, respectively. The level of im-
provement drops when more labeled samples are available,
for the same reason described in our first set of experiments.

Conclusion and Discussion

Most of the existing work on multi-label image classifica-
tion use only single feature representation, and the multi-
ple feature methods usually assume that a single label is
assigned to an image. However, an image is usually asso-
ciated with multiple labels and different kinds of features
are necessary to describe the image properly. Therefore,
we have developed multi-view vector-valued manifold reg-
ularization (MV3MR) for multi-label image classification in
which images are naturally characterized by multiple views.
MV3MR combines different kinds of features in the learning
process of the vector-valued function for multi-label clas-
sification. We also derived a least squares formulation of
MV3MR, which results in MV3LRLS. The new algorithm
effectively exploits the label correlations and learns the view
weights to integrate the consistency and complementary
properties of different views. Intensive experiments on two
challenge datasets PASCAL VOC’ 07 and MIR Flickr show
that MV3LRLS outperforms the traditional multi-label al-
gorithms as well as some well-known multiple kernel learn-
ing methods. Furthermore, our method provides a strategy
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for learning from multiple views in multi-label classification
and can be extended to other multi-label algorithms.
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