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Vector vortex solitons in nematic liquid crystals
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We analyze the existence and stability of two-component vector solitons in nematic liquid crystals for which
one of the components carries angular momentum and describes a vortex beam. We demonstrate that the
nonlocal, nonlinear response can dramatically enhance the field coupling leading to the stabilization of the
vortex beam when the amplitude of the second beam exceeds some threshold value. We develop a variational
approach to describe this effect analytically. © 2009 Optical Society of America
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Optical vortices are usually introduced as phase sin-
gularities in diffracting optical beams [1] and can be
generated in both linear and nonlinear media. The
well-known effect accompanying the propagation of
such singular beams and vortex solitons in self-
focusing, nonlinear media is vortex breakup into sev-
eral fundamental solitons via a symmetry-breaking
azimuthal instability [2]. However, recent numerical
studies have revealed that spatially localized vortex
solitons can be stabilized in highly nonlocal self-
focusing nonlinear media [3,4]. This stabilization ef-
fect was later explained analytically [5] by employing
a modulation theory for the vortex parameters based
on an averaged Lagrangian.

Spatial optical-vector solitons can form when sev-
eral beams propagate together, interacting para-
metrically or via the effect of cross-phase modulation
[6]. The simplest vector solitons are known as shape-
preserving self-localized solutions of coupled nonlin-
ear evolution equations [6]. A class of vector solitons
in the form of two-color spatial solitons in a highly
nonlocal and anisotropic Kerr-like medium were pre-
dicted to exist in nematic liquid crystals [7–9]. The
first experimental observations of anisotropic, nonlo-
cal vector solitons in unbiased nematic liquid crystals
were reported by Alberucci et al. [9], who investigated
the interaction between two beams of different wave-
lengths and observed that two extraordinarily polar-
ized beams of different wavelengths can nonlinearly
couple, compensating for the beam walk-off, so creat-
ing a vector soliton.

The main purpose of this Letter is twofold. First,
we introduce a class of vector solitons in non-
local, nonlinear media, such as nematic liquid crys-
tals, and study their properties. These vector solitons
appear as two-color, self-trapped beams for which one
of the components carries angular momentum and
describes a vortex beam. Secondly, we demonstrate
that the nonlocal, nonlinear response may dramati-
cally enhance the field coupling, leading to the stabi-
lization of the vortex for much-weaker nonlocality

when the amplitude of the second beam exceeds some
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threshold value. We develop a variational approach
to describe this effect analytically.

We consider the propagation of two light beams of
different wavelengths in a cell filled with a nematic
liquid crystal. The light propagates in the z direction,
with the �x ,y� plane orthogonal to this. The electric
fields of the light beams are assumed to be polarized
in the x direction. The system for the dimensionless
complex field amplitudes u and v can be written in
the form
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where � describes the change of the director angle
from the pretilt state, which is related to the nonlin-
ear correction to the optical refractive index. In Eqs.
(1) the longitudinal �z� and transverse �x ,y� coordi-
nates are normalized to the diffraction length and
the beam width, respectively. The parameter � de-
scribes the degree of nonlocality of the nonlinear re-
sponse. When �→0, Eqs. (1) reduce to the Manakov
vector nonlinear equations. The system [Eq. (1)] con-
serves the energy flow P=P1+P2=��−�

+���u�2
+ �v�2�dxdy.

We are interested in a special class of vector soli-
tons for which one of the components carries angular
momentum and the other component describes a spa-
tially localized mode in the form of a spatial bright
beam. Solutions of this type have been discussed ear-
lier for nonlinear systems with a local response
[10,11], and they have been shown to be unstable in a
large region of their existence domain [12]. For our

system described by Eqs. (1) such solutions can be

2009 Optical Society of America



May 1, 2009 / Vol. 34, No. 9 / OPTICS LETTERS 1415
found in the form u=w1�r�exp�ib1z� and v
=w2�r�exp�i��exp�ib2z�, where w1�r� and w2�r� are
real functions describing the beam envelopes, b1,2 are
real propagation constants, and r=�x2+y2 is the ra-
dial coordinate. The resulting system of equations ob-
tained after substitution of these solution forms into
Eqs. (1) is solved using a standard numerical relax-
ation method. Without loss of generality, we search
for solutions with b2�b1 and set b1=3 to investigate
the properties of vector vortex solitons by varying the
propagation constant b2 and the nonlocality param-
eter �.

Figure 1 presents an example of vector vortex soli-
tons for Eqs. (1) for which one component has the
shape of a bright soliton [Fig. 1(a)] and the other
component carries angular moment, so forming a vor-
tex soliton [Figs. 1(b) and 1(d)]. Owing to the physical
nature of the nonlocal response of the nematic liquid
crystal, we notice that the refractive index change
features a bell-shaped distribution [Fig. 1(c)], even
though there is a singularity in the center of the vor-
tex beam, this being crucial for the stabilization of
vortex solitons. As shown in Fig. 2(a), for fixed propa-
gation constant b1 and nonlocality parameter � the
power of the vortex beam is a monotonically increas-
ing function of the propagation constant b2, whereas
the power of the bright soliton decreases monotoni-
cally. It is important to note that vector vortex soli-
tons exist in a finite band of the propagation constant
b2 [7,13]. At the lower band edge the vortex beam
vanishes, and one obtains a scalar bright soliton.
However, at the upper band edge the beam with a
bell shape vanishes, so that the vector vortex soliton
transforms into a scalar vortex soliton. We find that
the existence domain of vector vortex solitons shrinks
with increasing nonlocality parameter � [Fig. 2(b)].

Fig. 1. Field distribution for (a) a bright soliton and (b) a
vortex beam. (c) Nonlinear correction to the refractive in-
dex. (d) Phase structure of the corresponding vortex beam

shown in (b). Here �=1, b1=3, and b2=1.8.
One of the central results we find is that a bright
beam with a finite amplitude can stabilize an other-
wise unstable vortex beam. To address this issue we
performed extensive numerical simulations of Eqs.
(1) using the beam-propagation method. First, we
employed a stationary form of the vortex beam (in or-
der to minimize radiation) as an input beam for the v
component only (namely, there is no bright soliton as
an input for the u component), noting that a vortex
beam is unstable when propagating alone. Then we
added a Gaussian pulse to the u component and stud-
ied the dynamics of a vortex beam propagating to-
gether with a Gaussian beam by varying the nonlo-
cality parameter �. Our main results are presented in
Fig. 3, from which one can see that for low nonlocal-
ity, a higher amplitude of the bright beam is required
for stabilization of the vortex beam, while for high-
enough nonlocality, the vortex beam is observed to be
stable, even when propagating alone. Figure 4 shows
some illustrative examples. It is clearly seen that
when the vortex beam propagates alone it becomes
unstable and breaks up into two filaments [see Fig.
4(b)]. However, when we add a Gaussian beam with
amplitude 0.9 above the threshold (namely, au

T=0.9),
then the vortex beam copropagates with the Gauss-
ian beam in a stable manner. Thus we draw the con-
clusion that a nonlocal, nonlinear response can dra-
matically enhance the field coupling, leading to the
stabilization of the vortex soliton when the amplitude
of the Gaussian beam exceeds some threshold value.
It is interesting to mention that the vortex stabiliza-
tion described above can be compared with the effect

Fig. 2. (a) Power of bright (dashed) and vortex (solid)
beams for �=1. (b) Existence domain (gray) of vector soli-
tons as a function of � (at b1=3).

Fig. 3. Dependence of the critical value of the amplitude

for a bright soliton on the nonlocality degree �.
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of instability suppression by partially incoherent
light [14], where the light incoherence introduces ef-
fective bright components that provide the vortex
stabilization [15].

For a deeper insight into the effect of the vortex
stabilization, we apply a modulation theory analysis
that quantitatively explains the results shown in Fig.
3. Using the two-component equations rewritten in a
Lagrangian formulation [16], we employ the trial
functions for the vortex, the bright component, and
the director angle,

u = au sech�r/wu�ei�uz,

v = avre−r/wvei�+i�vz + igei�+i�vz,

� = �u sech2�r/�u�. �2�

These functions are substituted into the Lagrang-
ian, which is then averaged by integrating in r and �
over the plane. This procedure gives the averaged La-
grangian L=Lu+Lv+Luv, where Lu is given in [17]
and Lv is given in [5]. The shelf g in the vortex is de-
composed into a modal expansion, with the l=2 mode
found to be the most unstable [5]. The important in-
teraction Lagrangian between the vortex and the
soliton is Luv= �au

2wu
2��2�2q��−1av

2wv
2.

The vortex is stabilized as its width decreases and
its amplitude increases [5]. Therefore, we just need to
show that the vortex width decreases as the beam
amplitude in the other component increases. If Av
=avwve−1 is the vortex amplitude, then from [18],
�e2Av

2 /8���wv
2+ �auwu�2wv−3/2=0. Using the vortex

Fig. 4. (a), (b) Input and output of the intensity for an un-
stable vortex beam propagating alone in the medium.
(c), (d) Stable propagation of the vortex beam coupled to the
bright component. Here �=4 and au

T=0.9.
width determined by this expression in the stability
threshold of [5], we find that the vortex is stable pro-
vided �405/128��Av

2wv
4	14.4. Combining this crite-

rion with the amplitude-width relation, we obtain
that the vortex stabilizes for lower values of the non-
locality parameter � as the amplitude au of the bright
beam increases, which explains the results shown in
Figs. 3 and 4.

In conclusion, we have described theoretically a
type of stable vector vortex soliton in nonlocal nonlin-
ear media such as nematic liquid crystals. These soli-
tons appear in the form of two-color self-trapped
beams for which one of the components carries angu-
lar momentum being stabilized by the nonlocality-
enhanced coupling with the other localized beam. We
have studied the effect of stabilization numerically
and have also developed a variational approach to de-
scribe it analytically.
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