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The standard scalar paraxial parabolic (Fock–Leontovich) propagation equation is generalized to include all-
order nonparaxial corrections in the significant case of a tensorial refractive-index perturbation on a homoge-
neous isotropic background. In the resultant equation, each higher-order nonparaxial term (associated with
diffraction in homogeneous space and scaling as the ratio between beam waist and diffraction length) pos-
sesses a counterpart (associated with the refractive-index perturbation) that allows one to preserve the vecto-
rial nature of the problem (¹¹ • E Þ 0). The tensorial character of the refractive-index variation is shown to
play a particularly relevant role whenever the tensor elements dnxz and dnyz (z is the propagation direction)
are not negligible. For this case, an application to elasto-optically induced optical activity and to nonlinear
propagation in the presence of the optical Kerr effect is presented. © 2000 Optical Society of America
[S0740-3224(00)00405-7]
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1. INTRODUCTION

A difficulty in describing the nonparaxial propagation of
an electromagnetic field E through an unbounded homo-
geneous or inhomogeneous medium by means of a para-
bolic wave equation arises whenever the beam waist w0

and the diffraction length d 5 kw0
2 (where k is the radia-

tion wave number) become comparable. In this situa-
tion, the reason for the failure of the parabolic equation
description is twofold: First, the term that contains
¹

'

2E does not account completely for diffraction and, sec-
ond, the assumption that ¹¹ • E 5 0 cannot be main-
tained any longer.

Starting from the pioneering research of Lax et al.,1

and notwithstanding the conceptual and practical rel-
evance of a problem that has been pointed out in many
optical textbooks,2 few attempts have been made to gen-
eralize the parabolic wave equation in a rigorous way to
include all-order corrections in the smallness parameter
« 5 w0 /d 5 1/kw0 while fully preserving the vectorial
nature of the problem. To the best of our knowledge, the
only simple approach to the problem has been provided, to
the second order in « and for a scalar refractive-index dis-
tribution, by Savchencko and Zel’dovich,3 who adopted a
straightforward iterative scheme. Actually, the neces-
sity for being able to deal with a tensorial refractive-index
distribution is not only conceptual but also practical. In
fact, one of the relevant applications of a nonparaxial
propagation equation concerns nonlinear optics, for
which, typically, the nonlinear refractive index possesses
a tensorial nature. In particular, the role of higher-order

nonparaxial terms in the propagation equation that de-
scribes beam breakup owing to catastrophic collapse of
self-focusing and, more generally, beam spatial evolution
in the presence of the optical Kerr nonlinearity has been
the object of a renewed interest in the past few years.4–9

In the present paper we are able to derive, under gen-
eral assumptions, the propagation equation that de-
scribes the evolution of the electric field E in the presence
of a refractive index consisting of a homogeneous part n0

and a perturbative tensorial part dnI(r). This equation,
which is first order in ]/]z (where z is the propagation di-
rection) accounts for all higher-order nonparaxial contri-
butions through the presence of higher-order transverse
derivatives of the field and is fully vectorial, in the sense
that the condition ¹¹ • E 5 0 is never required. Re-
markably, the lowest-order correction term to the stan-
dard parabolic equation turns out to be strictly associated
with the tensorial nature of dnI(r) and is missing when-
ever d nI(r) is a scalar. In this respect, our equation pro-
vides the correct approach to bidimensional nonparaxial
propagation in the presence of the nonlinear Kerr effect,
because in this case dnI(r) is a tensor.10

2. CONCEPT OF PARAXIALITY

We recall briefly the derivation of the standard paraxial
parabolic equation. The starting point is the vectorial
Helmholtz equation obeyed by the monochromatic field,
directly deduced from Maxwell’s equations written for a
scalar refractive-index distribution n(r), which reads as
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¹2E 2 ¹¹ • E 1

v2

c2
n2~r!E

5 ¹2E 1 2¹~E • ¹ ln n ! 1

v2

c2
n2~r!E 5 0. (1)

We can then write n2(r) 5 @n0 1 dn(r)#2 > n0
2

1 2n0dn(r), k 5 vn0 /c, and r 5 (r' , z), E(r, t)
5 exp(ikz 2 ivt)A(r' , z), separate the Laplacian into a
transverse and a longitudinal part, ¹2

5 ¹
'

2
1 ]2/]z2,

and take advantage of the slowly varying amplitude ap-
proximation (SVA) hypothesis according to which the lon-
gitudinal scale of variation of A(r' , z) is much larger
than 1/k. The result, assuming that ¹¹ • E 5 0, is a
parabolic equation in the standard form

@i]/]z 1 ~1/2k !¹
'

2#A~r' , z ! 5 2~k/n0!dn~r!A~r' , z !.
(2)

Obviously, Eq. (2) is capable of describing only scalar
propagation (different components of the field are un-
coupled), and diffraction is accounted for through the
presence of the term (1/2k)¹

'

2A(r' , z) alone, this being
the price that has to be paid for completely neglecting the
term ]2/] z2A(r' , z). As a consequence, Eq. (2) fails to
describe propagation correctly as soon as the transverse
beam waist and the diffraction length become compa-
rable.

To formulate a nonparaxial propagation theory we
have to give a precise meaning to the term paraxiality.
To this end let us consider the standard angular spectrum
solution of the scalar Helmholtz equation that describes
monochromatic light propagation in a homogeneous me-
dium:

E~r' , z ! 5 E d2k' exp~ik' • r' 1 iAk2
2 k

'

2 z !Ẽ~k'!,

(3)

which is the superposition of all the propagating and eva-
nescent modes of unbounded space. In this simple case
the beam described by Eq. (3) is termed paraxial if the

field Ẽ(k') is practically nonvanishing only in a small
portion of the (kx , ky) plane whose diameter is much
smaller than the wave number k, a situation in which the
propagation directions of the plane waves in which the
field is expanded are not too different from the z axis.
Accordingly, Eq. (3) can be approximated by

E~r' , z ! 5 exp~ikz !E d2k'

3 exp@ik' • r' 2 i~z/2k !k
'

2#Ẽ~k'!

[ exp~ikz !A~r' , z !, (4)

where A(r' , z) satisfies the parabolic equation

@i]/]z 1 ~1/2k !¹
'

2#A~r' , z ! 5 0, (5)

which shows the equivalence between paraxiality and the
SVA.

In the general case of a light beam propagating in an
inhomogeneous and anisotropic medium, simple expan-
sion (3) does not apply, but the definition of paraxiality
can be simply generalized from the previous definition.

In fact, the vanishing of the beam at infinity in the plane
orthogonal to the propagation direction implies that each
component of the electromagnetic field can be Fourier de-
composed with respect to the transverse spatial coordi-
nates. Thus, for any component F(r' , z) of the field, it is
possible to write

F~r' , z ! 5 E d2k' exp~ik' • r'!F̃~k' , z !. (6)

We can now term a beam paraxial if the region V of the

(kx , ky) plane over which F̃(k' , z) is nonvanishing has a
transverse extension much smaller than k, for all z. A
possible smallness parameter « that characterizes paraxi-
ality is then the ratio between the diameter of V and k,
that is, « 5 diam(V)/k. Using a well-known property of
the Fourier analysis, we can relate diam(V) to beam waist
w0 by setting diam(V) > 1/w0 , so « turns out to be the
ratio between the beam waist and diffraction length d

5 kw0
2, that is, « 5 1/kw0 .

3. BEYOND THE PARAXIAL
APPROXIMATION

We wish to derive a theory of propagation that avoids the
limitations contained in the standard paraxial theory.
To this end we do not assume that ¹¹ • E 5 0 and we do
not make use of the SVA. In fact, as we shall see, non-
paraxiality couples propagation and polarization state,
and this is incompatible with the condition ¹¹ • E 5 0;
besides, the SVA gives only the lowest description of
propagation and has to come from the theory in a natural
way as the lowest order in «. We start directly from first-
order Maxwell’s equations for a monochromatic electro-
magnetic field, that is,

¹ 3 E 5 ivB,

¹ 3 B 5 2i~v/c2!«I:E, (7)

where «I(r) represents the (relative) tensorial dielectric
constant of the medium. From now on we define
(with the standard sum convention over repeated indices)

(AI :BI ) ij 5 A ikBkj , (AI :b) i 5 A ijb j , (a:b) ij 5 a ib j , and
a • b 5 a ib i .

To begin with, we use a general property of the electro-
magnetic field that allows for the separability of trans-
verse and longitudinal components of the electric and
magnetic fields. More precisely, after writing ¹ 5 ¹'

1 ẑ]/]z, E 5 E' 1 Ez , and B 5 B' 1 Bz , we get (see
Appendix A)

Bz 5 ~1/iv !¹' 3 E' ,

Ez 5 ~ic2/«zzv !¹' 3 B' 2 ~q • E' /«zz!ẑ, (8)

where the transverse vector q is defined as q 5 («zxx̂

1 «zyŷ). In turn, E' and B' obey the coupled system of
equations (see Appendix A)

iv~ ẑ 3 ]B' /]z ! 5 ~v2/c2!«I' :E' 2 ¹' 3 ¹' 3 E'

1 ~iv/«zz!~ ẑ • ¹' 3 B'!q

2 ~v2/c2!~q • E' /«zz!q, (9)

810 J. Opt. Soc. Am. B/Vol. 17, No. 5 /May 2000 Ciattoni et al.



~v/ic2!~ ẑ 3 ]E' /]z !

5 ~v2/c2!B' 2 ¹' 3 @~¹' 3 B'!/«zz#

1 ~v/ic2!¹' 3 ~q • E' /«zz!ẑ, (10)

where «I' is the transverse part of the dielectric tensor,
that is, the 2 3 2 matrix obtained by «I when the third
row and the third column are dropped.

It is worth noting that Eqs. (9) and (10) contain only
the transverse components of the electromagnetic field,
and thus those equations suffice for determining that
field. Once the transverse parts are known, Eqs. (8) pro-
vide the longitudinal components, so we can restrict our
attention to Eqs. (9) and (10).

We now specialize our derivation to the case in which
d nI(r) can be considered a small perturbation, which al-
lows us to write approximately

«J 5 ⌊n0 1 d nI~r!⌋2

> n0
2

1 2n0d nI~r!, (11)

«I' > n0
2

1 2n0d nI'~r!; (12)

q > 2n0d n8 5 2n0~dnzxx̂ 1 dnzyŷ!; (13)

«zz > n0
2

1 2n0dnzz ,

1/«zz > 1/n0
2

2 2dnzz /n0
3. (14)

After the above relations have been introduced into
Eqs. (9) and (10), those equations can be rewritten as

~k2/iv !~ ẑ 3 ]E' /]z !

5 k2B' 2 ¹' 3 ¹' 3 B' 1 ~2/n0!¹'~dnzz¹' 3 B'!

2 ~2k2/ivn0!ẑ 3 ¹'~d n8 • E'!, (15)

iv~ ẑ 3 ]B' /]z !

5 k2E' 2 ¹' 3 ¹' 3 E' 1 2~k2/n0!dnI':E'

1 ~2iv/n0!~ ẑ • ¹' 3 B'!dn8. (16)

Inasmuch as the concept of paraxiality is simply stated
in Fourier space, we Fourier transform both sides of Eqs.
(15) and (16). After defining the Fourier transform

C̃(k' , z) of a given function C(r' , z) as

C̃~k' , z ! 5 ~1/2p !2 E d2r' exp~2ik' • r'!C~r' , z !,

(17)

we obtain (see Appendix B)

ik2

v

]Ẽ'

]z
5 sI:LI :B̃'

1

2

n0
E d2k

'
8dñzz~k' 2 k

'
8, z !~k':k

'
8!

:sI:B̃'~k', z ! 1

2k2

vn0
E d2k

'
8

@k':dñ 8~k' 2 k
'

8, z !#:Ẽ'~k
'

8, z !, (18)

v

i

]B̃'

]z
5 sI:LI :Ẽ'

1

2k2

n0
E d2k

'
8sI:dnĨ'~k' 2 k

'
8 , z !:Ẽ'~k

'
8 , z !

2

2v

n0
E d2k

'
8sI:@dñ8~k' 2 k

'
8 , z !:k

'
8#

:sJ1:B̃'~k
'
8 , z !, (19)

where we have introduced the 2 3 2 matrices

sI 5 F0 21

1 0
G , sI

1
5 F 0 1

21 0
G ,

LI 5 Fk2
2ky

2 kxky

kxky k2
2kx

2G . (20)

We now look for solutions of Eqs. (18) and (19) of the form

Ẽ'~k' , z ! 5 Ẽ
'

~1!~k' , z !exp~ihz !

1 Ẽ
'

~2!~k' , z !exp~2ihz !, (21.1)

B̃'~k' , z ! 5 S k2h

v
D :LI21:sI:@Ẽ

'

~1!~k' , z !exp~ihz !

2 Ẽ
'

~2!~k' , z !exp~2ihz !#, (21.2)

where h 5 Ak2
2 k

'

2, that describe the field as the su-
perposition of two counterpropagating components, each
undergoing diffraction. Inserting Eqs. (21) into Eqs. (18)
and (19), we obtain (see Appendix C)

]Ẽ
'

~1!/]z 5 ~i/n0!E d2k
'
8GI

~1!~k' , k
'
8 , z !

:Ẽ
'

~1!~k
'
8 , z !exp@i~h8 2 h !z#

1 ~i/n0!E d2k
'
8GI

~2!~k' , k
'
8 , z !

:Ẽ
'

~2!~k
'
8 , z !exp@2i~h8 1 h !z#, (22)

]Ẽ
'

~2!/]z 5 ~i/n0!E d2k
'
8QI

~1!~k' , k
'
8 , z !

:Ẽ
'

~1!~k
'
8 , z !exp@i~h8 1 h !z#

1 ~i/n0!E d2k
'
8QI

~2!~k' , k
'
8 , z !

:Ẽ
'

~2!~k
'
8 , z !exp@i~h 2 h8!z#, (23)

where h8 5 Ak2
2 k

'
8

2,

GI
~6!

5 6dñzz~k' 2 k
'
8 , z !@~k' :k

'
8!/h8#

2 @k' :dñ8~k' 2 k
'
8 , z !#

2 sI:LI :sI:$dnĨ'~k' 2 k
'
8 , z !/h

7 @d ñ8~k' 2 k
'
8 , z !:k

'
8#/hh8% (24)

and QI
(6) is obtained by GI

(6) with the exchange LI

→ 2LI .
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At this point, if we assume a small variation of the re-
fractive index with respect to z on a scale comparable
with 1/k, it is possible to neglect coupling between for-
ward and backward propagation fields (the possibility of
accumulating effects of counterpropagating waves, in-
cluding nonpropagating longitudinal ones, was studied in
Refs. 11 and 12). Accordingly, Eqs. (22) and (23) de-

couple into two equations that describe Ẽ
'

(1) and Ẽ
'

(2)

separately. In particular, we can write

]Ẽ
'

~1!/]z 5 ~i/n0!E d2k
'
8GI

~1!~k' , k
'
8 , z !

:Ẽ
'

~1!~k
'
8 , z !exp@i~h8 2 h !z#, (25)

where, taking advantage of the relation sI:LI :sI 5 2k2

1 k' :k' ,

GI
~1!

5 dñzz~k' 2 k
'
8 , z !@~k' :k

'
8!/h8#

2 @k' :d ñ8~k' 2 k
'
8 , z !# 1 @k2

2 ~k' :k'!#

:$dnĨ'~k' 2 k
'
8 , z !/h

2 @dñ8~k' 2 k
'
8 , z !:k

'
8#/hh8%. (26)

Equation (25) completely describes the evolution of the
forward propagating beam in Fourier space. It is not dif-
ficult to derive, starting from Eq. (25), the equation of evo-
lution in ordinary space (see Appendix D). It reads as

S i
]

]z
1 Ak2

1 ¹
'

2DE
'

~1!

5 2

k2

n0

1

Ak2
1 ¹

'

2
~dnI' :E

'

~1!!

1

1

n0

¹'F dnzz

1

Ak2
1 ¹

'

2
~¹' • E

'

~1!!G
2

1

n0

1

Ak2
1 ¹

'

2
¹'@¹' • ~dnI' :E

'

~1!!#

2

i

n0

¹'@dn8 • E
'

~1!# 2

ik2

n0

1

Ak2
1 ¹

'

2

F dn8

1

Ak2
1 ¹

'

2
~¹' • E

'

~1!!G 2

i

n0

1

Ak2
1 ¹

'

2
¹'

H ¹' • F dn8

1

Ak2
1 ¹

'

2
~¹' • E

'

~1!!G J , (27)

which is the fundamental result of the present paper.
Despite its evident analytical complexity, Eq. (27) pos-

sesses some interesting features that are worth analyz-

ing. First, it is completely equivalent to Maxwell equa-
tions and thus is capable of describing nonparaxial
propagation to any order in «: In fact, the only approxi-
mation that we used to derive it was to neglect coupling
between forward and backward propagating fields and to
exploit the smallness of the refractive-index perturbation
to neglect its square value (this last assumption is not re-
ally necessary and can easily be removed). Besides, it is
first order in ]/]z, whereas all the other differential op-
erators involve transverse coordinates (a mathematical
structure that is particularly suitable for numerical
analysis); this circumstance confirms the redundancy of
the SVA hypothesis that is usually invoked to reduce the
second-order (in ]/]z) Helmholtz equation to a first-order
equation.13

The above procedure can be generalized to include cou-
pling with counterpropagating field E

'

(2) . The resultant
coupled system of equations that describe the evolution of
both E

'

(1) and E
'

(2) is given in Appendix E.
We note that, although Eq. (27) is formally equivalent

to Maxwell’s equations, the operators Ak2
1 ¹

'

2 and

1/Ak2
1 ¹

'

2 can be given a precise meaning through the
relations

Ak2
1 ¹

'

2f~r' , z !

5 E d2k'exp~ik' • r'!Ak2
2 k

'

2 f̃~k' , z !, (28)

1

Ak2
1 ¹

'

2
f~r' , z !

5 E d2k'exp~ik' • r'!
1

Ak2
2 k

'

2
f̃~k' , z !, (29)

where f̃ (k' , z) is a well-behaved function of k' .

4. DERIVATION OF APPROXIMATE
NONPARAXIAL EQUATIONS

Let us first consider the linear case for which dnI is inde-
pendent of field E, and let us assume that dnI possesses a
typical transverse scale of variation l such that l . w0 .
In this case, Eq. (27) contains two independent smallness
parameters, i.e., « 5 1/kw0 and d; the latter corresponds
to the amplitude of the refractive-index variation that is
relevant to the situation under consideration. Accord-
ingly, the standard parabolic equation [see Eq. (2)] corre-
sponds to keeping in Eq. (27) only the terms up to «2 on
its left-hand side and to d on its right-hand side. If the
refractive-index variation tensor dnI is such that dn8

5 0, then the first significant correction to the parabolic
equation is of the order udn'u«2, whereas if dn8 is not van-
ishing, the correction is of the order udn8u«. In this ap-
proximation, after A' 5 E' exp(ikz) is introduced in the
usual way and the relevant transverse operators are ex-
panded as
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[for the meaning of operator expansion and truncation to
a given order, see Eqs. (28) and (29)], Eq. (27) reduces to

S i
]

]z
1

1

2k
¹

'

2DA'

5 2

k

n0
dnI' :A' 2

i

n0
¹'~dn8 • A'!

2

i

n0
@dn8~¹' • A'!# 1

1

2n0k
¹

'

2~dnI' :A'!

1

1

n0k
¹'@dnzz~¹' • A'!#

2

1

n0k
¹'@¹' • ~dnI' :A'!#. (31)

Note that, in the scalar case, Eq. (31) takes the simple
form

S i
]

]z
1

1

2k
¹

'

2DA' 5 2

k

n0

dnA' 1

1

2n0k
¹

'

2~dnA'!

2

1

n0k
¹'~A' • ¹'dn !, (32)

which coincides with the one worked out in Ref. 3 [see Eq.

(12) of Ref. 3].
In inspecting Eq. (31) it is worthwhile to remark on the

appearance of the two terms that contain dn8, which
would be completely missing for a diagonal (in particular,
a scalar) refractive-index variation dnI. In fact, if the
nondiagonal elements dnxz and dnyz are comparable with
dnxx , dnyy , and dnzz , these terms turn out to be domi-
nant with respect to the succesive terms, a circumstance
that, to the best of our knowledge, was completely unno-
ticed until now.

As an example, let us consider elasto-optically induced
optical activity in a twisted (about the axial z direction)
single-mode optical fiber. In this case, dnxz 5 pn0

3ty/2
and dnyz 5 pn0

3tx/2, where p is the appropriate compo-
nent of the elasto-optic tensor and t is the twist rate.14

Let us specialize Eq. (31), which can be used also for
guided propagation, to a single-mode fiber supporting two

degenerate guided modes of orthogonal polarization. In
this case, the dominant interaction terms are those that
contain dn8; besides, the (diffraction) terms that contain
the transverse derivatives of A' can, because of the very
nature of the guided modes, be put equal to zero. Pro-
ceeding in this way, and indicating with ax(z) and ay(z)
the amplitudes of the two orthogonal linearly polarized
modes, we get

i
d

dz
ax 5 2k

dn

n0

ax 1 ihay ,

i
d

dz
ay 5 2k

dn

n0

ay 2 ihax , (33)

where dn 5 dnxx 5 dnyy and h 5 pn0
2t/2. We immedi-

ately check, after introducing the amplitudes R 5 (ax

2 iay)/& and L 5 (ax 1 iay)/& of the right and left cir-
cularly polarized states, respectively, that the set of Eqs.
(33) describes circular birefringes (optical activity).

In the case of nonlinear propagation, the two smallness
parameters « and d are no longer independent, and one
has to consider each situation separately. As a relevant
example, we describe below propagation in a homoge-
neous medium in the presence of the optical Kerr effect.
In this case, the nonlinear refractive-index tensor has the
form10

so

dnI' 5 2/3n2uE'u2
1 2/3n2uEzu

2
1 1/3n2~E

'
*E'!,

dn8 5 1/3n2EzE'
* ,

dnzz 5 2/3n2uE'u2
1 n2uEzu

2, (35)

where n2 is the so-called nonlinear refractive-index coef-
ficient.

Because of the appearance of Ez in the expression of
dnI, we need to express the longitudinal part of the field in
terms of the transverse part. We can do this by taking
advantage of the smallness of the nonlinear contribution
(n2uEu2

! 1), thus getting (see Appendix E) Ez

> (i/k)¹' • E' . Inserting this relation and Eq. (34)
into Eq. (31) and neglecting terms with more than two

dnI 5

2

3
n2F uEu2

1 1/2uExu2 1/2EyEx
* 1/2EzEx

*

1/2ExEy
* uEu2

1 1/2uEyu2 1/2EzEy
*

1/2ExEz
* 1/2EyEz

* uEu2
1 1/2uEzu

2
G , (34)

Ak2
1 ¹

'

2
5 k 1

1

2k
¹

'

2
2

1

8k3
¹

'

2¹
'

2
1 ... ↔ Ak2

2 k
'

2
5 k 2

1

2k
k

'

2
2

1

8k3
k

'

4
1 ... ,

1

Ak2
1 ¹

'

2
5

1

k
2

1

2k3
¹

'

2
1

3

8k3
¹

'

2¹
'

2
1 ... ↔

1

Ak2
2 k

'

2
5

1

k
1

1

2k3
k

'

2
1

3

8k3
k

'

4
1 ... (30)
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¹' , we obtain, after taking advantage of the identity
(A

'
* :A'):A' 5 (A' • A')A

'
* , the following equation:

S i
]

]z
1

1

2k
¹

'

2DA'

5 2

2k

3

n2

n0
uA'u2A' 2

2

3k

n2

n0
u¹' • A'u2A'

2

k

3

n2

n0
~A' • A'!A

'
* 1

1

k

n2

n0
¹'@~¹' • A'!uA'u2#

1

1

3k

n2

n0
~¹' • A'!2A

'
* 1

n2

3n0k
¹

'

2~A'u2A'!

1

n2

6n0k
¹

'

2@~A' • A'!A
'

*#

2

2

3k

n2

n0
¹'@¹' • ~ uA'u2A'!#

2

1

3k

n2

n0
¹'$¹' • @~A' • A'!A

'
*#%, (36)

which describes the nonlinear vectorial nonparaxial evo-
lution of the field in the presence of the optical Kerr effect.

5. CONCLUSIONS

Starting directly from Maxwell’s equations, we have been
able to generalize the standard paraxial approach to op-
tical propagation in a medium described by a tensorial
refractive-index variation d n over a scalar isotropic ho-
mogeneous background. More precisely, we have derived
a partial differential equation, to first order in ]/]z, de-
scribing forward propagation to every order in the ratio
« 5 1/kw0 between the beam wavelength and its waist,
without introducing the transversality condition ¹ • E

5 0 and thus preserving the full vectorial nature of the
problem. In particular, the tensorial character of the
refractive-index perturbation is shown to play a relevant
role in that, whenever the elements dnxz and dnyz (z is
the main propagation direction) become comparable to
the transverse elements, the first correction to the para-
bolic paraxial equation is of the order of « and not of «2 as
in the scalar case. As a simple application in the frame-
work of linear optics, we have derived the equation that
describes elasto-optically induced optical activity in a
twisted single-mode optical fiber. In the frame-work of
nonlinear optics, we have specialized our equation to the
case of an intensity-dependent refractive index (optical
Kerr effect) and obtained a fully vectorial propagation
equation that contains nonparaxial contributions up to
second order.

APPENDIX A: SEPARATION OF
LONGITUDINAL AND TRANSVERSE PARTS
OF THE FIELD

By use of the vector identities that are valid for any vector
field F 5 F' 1 Fz (with F' 5 Fxx̂ 1 Fyŷ and Fz 5 Fzẑ),

~¹ 3 F!' 5 ¹' 3 Fz 1 ẑ 3

]F'

]z
~¹ 3 F!z 5 ¹' 3 F' ,

(A1)

it is straightforward to obtain from Maxwell’s equations
[Eqs. (9) and (10)]

¹' 3 Ez 1 ẑ 3

]E'

]z
5 ivB' , (A2.1)

¹' 3 E' 5 ivBz ; (A2.2)

¹' 3 Bz 1 ẑ 3

]B'

]z
5 2

iv

c2
«I':E' 2

iv

c2
~ ẑ • Ez!q,

(A3.1)

¹' 3 B' 5 2

iv

c2
~q • E'!ẑ 2

iv

c2
«zzEz ,

(A3.2)

where q 5 («zxx̂ 1 «zyŷ) and

«I' 5 F«xx «xy

«yx «yy
G . (A4)

The longitudinal components of the fields can now be sim-
ply related to the transverse components. In fact, from
Eqs. (A2.2) and (A3.2) we obtain

Bz 5

1

iv
¹' 3 E' ,

Ez 5

ic2

«zzv
¹' 3 B' 2

q • E'

«zz

ẑ, (A5)

which, inserted in Eqs. (A2.1) and (A3.1), respectively,
yield

iv~ ẑ 3 ]B' /]z ! 5 ~v2/c2!«I' :E' 2 ¹' 3 ¹' 3 E'

1 ~iv/«zz!~ ẑ • ¹' 3 B'!q

2 ~v2/c2!~q • E' /«zz!q, (A6)

~v/ic2!~ ẑ 3 ]E' /]z ! 5 ~v2/c2!B' 2 ¹'@~¹' 3 B'!/«zz#

1 ~v/ic2!¹' 3 ~q • E' /«zz!ẑ.

(A7)

APPENDIX B: FOURIER TRANSFORM OF
MAXWELL’S EQUATIONS FOR THE
TRANSVERSE FIELD COMPONENT

Fourier transforming Eq. (15) yields

k2

iv
sI :

]Ẽ'

]z
5 LI :B̃' 1

2

n0

1

~2p !2 E d2r'

exp~2ik' • r'!¹' 3 ~dnzz¹' 3 B'!

2

2k2

ivn0

1

~2p !2 E d2r' exp~2ik' • r'!ẑ

3 ¹'~d n8 • E'!, (B1)
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where the 2 3 2 matrices sJ and LJ are defined in Eq. (19).
The two integrals on the right-hand side of Eq. (B1) can
be rewritten by use of the well-known properties of the
Fourier transform

E d2r'

~2p !2
exp~2ik' • r'!¹' 3 ~dnzz¹' 3 B'!

5 ik' 3 E d2r'

~2p !2 exp~2ik' • r'!~dnzz¹' 3 B'!

5 ik' 3 E d2k
'
8dñzz~k' 2 k

'
8 , z !

1

~2p !2 E d2r'exp~ik
'
8 • r'!¹' 3 B'

5 2E d2k
'
8dñzz~k' 2 k

'
8 , z !k' 3 k

'
8

3 B̃'~k
'
8 , z ! 5 2E d2k

'
8dñzz~k' 2 k

'
8 , z !

@sI:~k' :k
'
8!:sI#:B̃'~k

'
8 , z !, (B2)

E d2r'

~2p !2
exp~2ik' • r'!ẑ 3 ¹'~d n8 • E'!

5 iẑ 3 k'

1

~2p !2 E d2r'exp~2ik' • r'!dn8 • E'

5 iẑ 3 k' E d2k
'
8d ñ8~k' 2 k

'
8 , z ! • Ẽ'~k

'
8 , z !

5 i E d2k
'
8sJ :k'@dñ8~k' 2 k

'
8 , z ! • Ẽ'~k

'
8 , z !#

5 i E d2k
'
8sJ :@k' :dñ8~k' 2 k

'
8 , z !#:Ẽ'~k

'
8 , z !.

(B3)

Inserting Eqs. (B2) and (B3) into Eq. (B1) and multiply-
ing the resultant equation by matrix sI, we obtain Eq.
(17).

Proceeding in the same way for Eq. (15), we get

ivsI:
]B̃'

]z
5 LI :Ẽ' 1 2

k2

n0

E d2k
'
8dnĨ'~k' 2 k

'
8 , z !:Ẽ'~k

'
8 , z !

1 2
iv

n0
E d2r'

~2p !2 exp~2ik' • r'!

~ ẑ • ¹' 3 B'!dn8. (B4)

The integral on the right-hand side of Eq. (B4) can be re-
written in the form

E d2r'

~2p !2
exp~2ik' • r'!~ ẑ • ¹' 3 B'!dn8

5 E d2k
'
8dñ8~k' 2 k

'
8 , z !E d2r'

~2p !2

exp~2ik
'
8 • r'!~ ẑ • ¹' 3 B'!

5 i E d2k
'
8dñ8~k' 2 k

'
8 , z !@ ẑ • k

'
8 3 B̃'~k

'
8 , z !#

5 i E d2k
'
8@dñ8~k' 2 k

'
8 , z !:k

'
8#:s1:B̃'~k

'
8 , z !.

(B5)

Inserting Eq. (B5) into Eq. (B4) and multiplying the re-
sultant equation by matrix sI, we obtain Eq. (18).

APPENDIX C: CHANGE OF DEPENDENT
VARIABLES

By inserting Eqs. (21) into Eq. (17) we get

ik2

v
F ]Ẽ

'

~1!

]z
exp~ihz ! 1

]Ẽ
'

~2!

]z
exp~2ihz !G

2

k2h

v
@Ẽ

'

~1! exp~ihz ! 2 Ẽ
'

~2! exp~2ihz !#

5 2

k2h

v
@Ẽ

'

~1! exp~ihz ! 2 Ẽ
'

~2! exp~2ihz !#

1

2k2

vn0
E d2k

'
8h8dnzz~k' 2 k

'
8 , z !

~k' :k
'
8!:sI:LI8

21:sI:@Ẽ
'

~1!~k
'
8 , z!

exp~ih8z ! 2 Ẽ
'

~2!~k
'
8 , z !exp~2ih8z !]

1

2k2

vn0
E d2k

'
8@k' :dñ8~k' 2 k

'
8 , z !#

:@Ẽ
'

~1!~k
'
8 , z !exp~ih8z !

1 Ẽ
'

~2!~k
'
8 , z!exp~2ih8z !#, (C1)

from which it follows that

iF ]Ẽ
'

~1!

]z
exp~ihz ! 1

]Ẽ
'

~2!

]z
exp~2ihz !G

5

2

n0
E d2k

'
8h8dnzz~k' 2 k

'
8 , z !

~k' :k
'
8!:sI:LI8

21:sI:@Ẽ
'

~1!

~k
'
8 , z !exp~ih8z ! 2 Ẽ

'

~2!

~k
'
8 , z !exp~2ih8z !] 1

2

n0
E d2k

'
8@k' :d ñ8~k'

2 k
'
8 , z !#:@Ẽ

'

~1!~k
'
8 , z !exp~ih8z !

1 Ẽ
'

~2!~k
'
8 , z !exp~2ih8z !#, (C2)
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where LI8 is obtained from LI [see Eq. (19)] by means of the
substitution (kx , ky) → (kx8 , ky8). By taking advantage
of the relations

h2
5 k2

2 k
'

2, LI
21

5

1

h2k2
~k2

2 k' :k'!, (C3)

h8~k' :k
'
8!:sI:LI8

21:sI 5 2

k' :k
'
8

h8
, (C4)

we get from Eq. (C2)

]Ẽ
'

~1!

]z
exp~ihz ! 1

]Ẽ
'

~2!

]z
exp~2ihz !

5

2i

n0
E d2k

'
8Fd ñzz~k' 2 k

'
8 , z !

k' :k
'
8

h8

2 k' :d ñ8~k' 2 k
'
8 , z !G :Ẽ

'

~1!~k
'
8 , z !exp~ih8z !

1 E d2k
'
8F2d ñzz~k' 2 k

'
8 , z !

k' :k
'
8

h8
2 k' :d ñ8

~k' 2 k
'
8 , z !G :Ẽ

'

~2!(k
'
8 , z)exp~2ih8z !. (C5)

By inserting Eqs. (21) into Eq. (18) and following an
analogous procedure, we also obtain

]Ẽ
'

~1!

]z
exp~ihz ! 2

]Ẽ
'

~2!

]z
exp~2ihz !

5

2i

n0
E d2k

'
8

sI :LI :sI

h
:F 2 dnJ̃'~k' 2 k

'
8 , z !

1

d ñ8~k' 2 k
'
8 , z !:k

'
8

h8
G :Ẽ

'

~1!~k
'
8 , z !exp~ih8z !

1

2i

n0
E d2k

'
8

sI :LI :sI

h
:F 2 dnJ̃'~k' 2 k

'
8 , z !

2

d ñ8~k' 2 k
'
8 , z !:k

'
8

h8
G :Ẽ

'

~2!~k
'
8 , z !exp~2ih8z !.

(C6)

Finally, by adding and subtracting Eqs. (C5) and (C6) we
get Eqs. (22) and (23), respectively.

APPENDIX D: DERIVATION OF
PROPAGATION EQUATIONS IN ORDINARY
SPACE

The integral that appears on the right-hand side of Eq.
(25) consists of four terms, which can be expressed, in the
same order, as

E d2k' exp~ik' • r'!E d2k
'
8dñzz(k' 2 k

'
8 , z)

k' :k
'
8

h8
:Ẽ

'

~1!~k
'
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'
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1

h8
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'
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'

~1!~k
'
8 , z !exp~ih8z !

5 2¹' E d2k' exp~ik' • r'! E d2k
'
8dñzz~k'

2 k
'
8 , z !

1

h8
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'
8 • Ẽ

'

~1!~k
'
8 , z !exp~ih8z !

5 2¹'Fdnzz~r' , z !E d2k' exp~ik' • r'!
1

h
ik'

• Ẽ
'

~1!~k' , z !exp~ihz !G
5 2¹'F dnzz

1

Ak2
1 ¹

'

2
¹' • E d2k' exp~ik' • r'!

Ẽ
'

~1!~k' , z !exp~ihz !G
5 2¹'F dnzz

1

Ak2
1 ¹

'

2
~¹' • E

'

~1!!G , (D1)

E d2k' exp~ik' • r'!E d2k
'
8

@2k' :d ñ8~k' 2 k
'
8 , z !#:Ẽ

'

~1!(k
'
8 , z)exp~ih8z !

5 i E d2k' exp~ik' • r'!ik'E d2k
'
8d ñ8~k' 2 k

'
8 , z !

• Ẽ
'

~1!~k
'
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'
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'
8 , z !

• Ẽ
'
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'
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:Ẽ
'

~1!~k
'
8 , z !exp~ih8z !

1

1

Ak2
1 ¹
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5 E d2k' exp~ik' • r'!E d2k
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'
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'
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G

:Ẽ
'
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'
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The two terms that appear on the right-hand side of Eq.
(D4) can in turn be expressed as

E d2k' exp~ik' • r'!E d2k
'
8

F2

k2
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d ñ8~k' 2 k
'
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'
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5

ik2
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1 ¹

'
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'
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5

i
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1 ¹
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APPENDIX E: COUPLED SYSTEM OF
FORWARD AND BACKWARD PROPAGATING
FIELDS

If we follow, starting from Eqs. (22) and (23), a procedure
completely analogous to that followed in Appendix D, we
can derive the set of coupled equations that describes

propagation of both Ẽ
'

(1) and Ẽ
'

(2) , which reads as

S i
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APPENDIX F: LONGITUDINAL
COMPONENT OF THE ELECTRIC FIELD IN
TERMS OF THE TRANSVERSE PART
ALONE

After we write

«I 5 @n0 1 dnI~r!#2 > n0
2

1 2n0dnI~r!, (F1)

Eq. (10) yields approximately
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ic2

v
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2
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3
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n0
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(F2)

We need now to express B' in terms of E' or, because we
are considering a forward traveling field, B

'

(1) in terms of
E

'

(1) . We can do this by recalling that, according to Eq.
(21.1), we have
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which yields
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Because we neglected in Eq. (29) the terms that contain
products of more than two ¹' , we need to keep in Eq. (F4)
only the terms of zeroth order in ¹' [see Eq. (F2)], that is,

B
'

~1!~r' , z ! 5

k

v
sI :E

'

~1! . (F5)

By inserting Eq. (E5) into Eq. (E2) and exploiting the re-
lation

¹' 3 ~sI:E
'

~1!! 5 ~¹' • E
'

~1!!ẑ (F6)

we finally obtain
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n0
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i
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'
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