
Vectorized Sparse Matrix Multiply for
Compressed Row Storage Format�

Eduardo F. D’Azevedo1, Mark R. Fahey2, and Richard T. Mills2

1 Computer Science and Mathematics Division
2 Center for Computational Sciences,

Oak Ridge National Laboratory,
Oak Ridge, TN 37831, USA

{dazevedoef, faheymr, rmills}@ornl.gov

Abstract. The innovation of this work is a simple vectorizable algo-
rithm for performing sparse matrix vector multiply in compressed sparse
row (CSR) storage format. Unlike the vectorizable jagged diagonal for-
mat (JAD), this algorithm requires no data rearrangement and can be
easily adapted to a sophisticated library framework such as PETSc. Nu-
merical experiments on the Cray X1 show an order of magnitude im-
provement over the non-vectorized algorithm.

1 Introduction

There is a revival of vector architecture in high end computing systems. The
Earth Simulator1 consists of 640 NEC SX-6 vector processors and is capable of
sustaining over 35 Tflops/s on LINPACK benchmark. It was the fastest machine
in the TOP5002 list in 2002 and 2003. The Cray X13 series of vector processors
are also serious contenders for a 100 Tflops/s machine in the National Leadership
Computing Facility (NLCF) to be built at the Oak Ridge National Laboratory
(ORNL). Vector machines have the characteristic that long regular vector oper-
ations are required to achieve high performance. The performance gap between
vectorized and non-vectorized scalar code may be an order of magnitude or
more.

The solution of sparse linear systems using a preconditioned iterative method
forms the core computational kernel for many applications. This work of develop-
ing a vectorized matrix-vector multiply algorithm was motivated by issues arising

� This Research sponsored by the Laboratory Directed Research and Development
Program of Oak Ridge National Laboratory (ORNL). This research used resources
of the Center for Computational Sciences at the Oak Ridge National Laboratory,
which is supported by the Office of Science of the U.S. Department of Energy under
Contract No. DE-AC05-00OR22725.

1 See http://www.es.jamstec.go.jp/ for details.
2 See http://www.top500.org for details.
3 See http://www.cray.com/products/x1/ for details.

V.S. Sunderam et al. (Eds.): ICCS 2005, LNCS 3514, pp. 99–106, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

100 E.F. D’Azevedo, M.R. Fahey, and R.T. Mills

from porting finite element codes that make extensive use of the PETSc [1] li-
brary framework for solving linear systems on the Cray X1 vector supercomputer.

Matrix-vector multiply, triangular solves and incomplete LU factorization are
common computational kernels of the linear solver. The compressed sparse row
storage (CSR) format is used in PETSc and achieves good performance on scalar
architectures such as the IBM Power 4. However, it is difficult to achieve high
performance on vector architectures using the straight-forward implementation
of matrix-vector multiply with CSR. A vectorized iterative linear solver was
developed for the Earth Simulator for solving sparse linear equations from finite
elements modeling [2]. The algorithm used jagged diagonal storage (JAD) format
with multi-coloring of nodes (or rows) to expose independent operations and
parallelism. Another approach for sparse matrix multiply on the Cray C90 vector
machines was based on fast prefix sum and segment scan [3]. The algorithm
was fairly complicated and may require coding in assembly language for best
efficiency. Extra storage was also needed to hold the partial prefix sums. The
SIAM books by Dongarra [4, 5] are useful references on solving linear equations
on vector processors.

The main contribution of this work is the development of a simple vector-
ized algorithm to perform sparse matrix vector multiply in CSR format without
data rearrangement. This makes it attractive to implement such a vectorized
algorithm in a sophisticated library framework such as PETSc. Numerical ex-
periments on the Cray X1 show an order of magnitude improvement in sparse
matrix multiply over the non-vectorized scalar implementation.

The background of vectorizing sparse matrix multiply is contained in Sec-
tion 2. The new algorithm, compressed sparse row storage with permutation
(CSRP), is described in Section 3. Results of numerical experiments on the Cray
X1 are described in Section 4.

2 Background

There are many ways to store a general sparse matrix [6, 7]. The commonly used
sparse matrix storage format for general nonsymmetric sparse matrices include
the compressed row storage (CSR), ELLPACK-ITPACK [8] (ELL) and jagged
diagonal (JAD) format.

In CSR, the matrix multiply operation, y = A∗x, is described in Fig. 1. Here
JA contains the column indices, A contains the nonzero entries, and IA points to
the beginning of each row. The algorithm is efficient on scalar processors since
it has unit stride access for A and JA. Moreover, the variable YI can be held
in fast registers. Each visit through the inner loop performs one addition and
one multiplication but requires memory fetches for A(J), JA(J), and X(JA(J)).
The computational efficiency is usually limited by memory bandwidth and the
actual attainable performance is only a small fraction of peak performance for
the processor. On a vector machine, the vectorization across the row index J
is limited by the number of nonzeros (IEND-ISTART+1) per row, which may be
only 7 for a regular finite difference stencil in three dimensions.

Vectorized Sparse Matrix Multiply for Compressed Row Storage Format 101

1 DO I=1,N

2 ISTART = IA(I);IEND = IA(I+1)-1

3 YI = 0.0

4 DO J=ISTART,IEND

5 YI = YI + A(J) * X(JA(J))

6 ENDDO

7 Y(I) = YI

8 ENDDO

Fig. 1. Matrix multiply in CSR format

1 Y(1:N) = 0.0

2 DO J=1,NZ

3 Y(1:N) = Y(1:N) + A(1:N,J)*X(JA(1:N,J))

4 ENDDO

Fig. 2. Matrix multiply in ELLPACK format

If every row of the matrix has approximately equal number of nonzeros, then
the ELL format is more efficient. The nonzero entries and column indices are
stored in rectangular N× NZ arrays, where N is the number of rows and NZ is the
maximum number of nonzeros per row. The computation has more regularity
and is easily optimized by vectorizing compilers. One algorithm (see Fig. 2)
vectorizes along the rows to give long vectors. However, it will incur more traffic
to memory since the vector Y will be repeatedly read in and written out again.
Another variant (see Fig. 3) uses a “strip-mining” approach to hold a short
array YP in vector registers. This will avoid repeated reading and writing of
the Y vector. However, the ELL format is not suitable for matrices with widely
different number of nonzeros per row. This would lead to wasted storage and
unnecessary computations.

The jagged diagonal format may be consider a more flexible version of ELL
(see Fig. 4). The rows are permuted or sorted in increasing number of nonzeros
(see Fig. 5) and the data rearranged to form long vectors. Conceptually the
vectorization is down along the rows but a column-oriented variant might also be
efficient. If a matrix is already available in CSR format, extra storage is required
to copy and convert the matrix into JAD format. This may be a significant
drawback if the application is already trying to solve the largest problem possible.

3 CSR with Permutation (CSRP)

The vectorizable algorithm proposed here performs the matrix vector multiply
operation using the CSR format but with a permutation vector such that rows
with the same number of nonzeros are grouped together. Conceptually, this may
be considered a variant of the JAD format. The algorithm is also similar to the
ELL algorithm where “strip-mining” is employed to reuse vector registers. The

102 E.F. D’Azevedo, M.R. Fahey, and R.T. Mills

1 DO I=1,N,NB

2 IEND = MIN(N,I+NB-1)

3 M = IEND-I+1

4 YP(1:M) = 0.0

5 ! --

6 ! Consider YP(1:M) as vector registers

7 ! NB is multiple of the size of vector registers

8 ! --

9 DO J=1,NZ

10 YP(1:M) = YP(1:M) + A(I:IEND,J) * X(JA(I:IEND,J))

11 ENDDO

12 Y(I:IEND) = YP(1:M)

13 ENDDO

Fig. 3. Variant of matrix multiply in ELLPACK format

1 Y(1:N) = 0.0

2 IP = 1

3 DO J=1,NZ

4 I = ISTART(J)

5 M = N - I + 1

6 Y(I:N) = Y(I:N) + A(IP:(IP+M-1)) * X(JA(IP:(IP+M-1)))

7 IP = IP + M

8 ENDDO

Fig. 4. Matrix multiply in JAD format

ROWS ROWS

NONZEROS NONZEROS

CSR WITH PERMUTATIONJAGGED DIAGONAL

Fig. 5. Matrix profile after rows are permuted in increasing number of nonzeros

Vectorized Sparse Matrix Multiply for Compressed Row Storage Format 103

key difference is the data remain in place and are accessed indirectly using the
permutation vector. The major drawback for leaving the data in place is the
irregular access to arrays A and JA. The algorithm is described in Fig. 6. Here

1 DO IGROUP=1,NGROUP

2 JSTART = XGROUP(IGROUP)

3 JEND = XGROUP(IGROUP+1)-1

4 NZ = NZGROUP(IGROUP)

5 ! --

6 ! Rows(IPERM(JSTART:JEND)) all have same NZ nonzeros per row

7 ! --

8 DO I=JSTART,JEND,NB

9 IEND = MIN(JEND,I+NB-1)

10 M = IEND - I + 1

11 IP(1:M) = IA(IPERM(I:IEND))

12 YP(1:M) = 0.0

13 ! ---

14 ! Consider YP(:), IP(:) as vector registers

15 ! ---

16 DO J=1,NZ

17 YP(1:M) = YP(1:M) + A(IP(1:M)) * X(JA(IP(1:M)))

18 IP(1:M) = IP(1:M) + 1

19 ENDDO

20 ENDDO

21 Y(IPERM(I:IEND)) = YP(1:M)

22 ENDDO

Fig. 6. Matrix multiply for CSR with permutation

0 1000 2000 3000 4000 5000

0

1000

2000

3000

4000

5000

nz = 60793

(a) astro

0 2000 4000 6000 8000 10000

0

2000

4000

6000

8000

10000

nz = 149090

(b) bcsstk18

Fig. 7. Sparsity patterns for test matrices

104 E.F. D’Azevedo, M.R. Fahey, and R.T. Mills

IPERM is the permutation vector, XGROUP points to beginning indices of groups in
IPERM. If extra storage is available, it is feasible to copy and convert each group
of rows into ELLPACK format (CSRPELL) to get better performance since ac-
cess to A and JA would be unit-stride. This would be equivalent to the ITPACK
permuted blocks (ITPER) format investigated by Peters [9] for the IBM 3090VF
vector processor. For CSRP to be effective, there is an implicit assumption that
there are many rows with the same number of nonzeros. This is often the case for
sparse matrices arising from mesh based finite element or finite difference codes.

The permutation vector can be easily constructed using bucket sort and two
passes over the IA vector in O(N) work (N is the number of rows). The algorithm
only requires knowing the number of nonzeros per row and does not need to
examine the larger JA array.

4 Numerical Experiments on the Cray X1

The CSRP algorithm for sparse matrix multiply has been implemented in the
Mat SeqAIJ “class”4 in version 2.2.1 of PETSc. The parallel distributed mem-
ory sparse matrix class locally uses Mat SeqAIJ on each processor. Therefore
testing with just the sequential matrix class yields important insights in the ef-
fectiveness of vectorization with CSRP. The permutation vector is generated in
MatAssemblyEnd SeqAIJ and destroyed in MatDestroy SeqAIJ. The procedure
MatMult SeqAIJ is modified to use the CSRP and CSRPELL algorithms. The
implementation uses C (with Fortran kernels) to minimize the changes to PETSc
in only the files aij.h and aij.c.

This implementation has been tested in sequential mode on the Cray X1 at
the Center for Computational Sciences at the Oak Ridge National Laboratory.
The processing units on the X1 consist of Multi-Streaming Processors (MSPs).
Each MSP consists of 4 Single-Streaming Processors (SSPs). Each SSP has 32
vector registers, and each register can hold 64 elements of 64-bit data. The vector
clock on an SSP runs at 800MHz and each SSP can perform 4 floating point
operations per cycle to yield a theoretical peak performance of 3.2 Gflops/s, or
12.8 Gflops/s per MSP. The 4 SSPs in an MSP share a common 2 MBytes write-
back L2 cache. Memory bandwidth is 34.1 GBytes/s from memory to cache and
76.8 GBytes/s from cache to CPU. Job execution on the X1 can be configured
for SSP or MSP mode. In SSP mode, each SSP is considered a separate MPI
task; whereas in MSP mode, the compiler handles the automatic creation and
synchronization of threads to use vector resources of all 4 coupled SSPs as a
single MPI task.

The new algorithm has been tested on a number of sparse matrices with
regular and irregular patterns (see Table 1). The “astro” matrix is related to nu-
clear modeling in an astrophysics application obtained from Professor Bradley
Meyer at Clemson University. Note that there are many rows with several hun-
dred nonzeros. The “bcsstk18” matrix is a stiffness matrix obtained from the

4 PETSc is written in C in a disciplined object-oriented manner.

Vectorized Sparse Matrix Multiply for Compressed Row Storage Format 105

Table 1. Description of matrices

Name N Nonzeros Description

astro 5706 60793 Nuclear Astrophysics problem from Bradley Meyer

bcsstk18 11948 149090 Stiffness matrix from Harwell Boeing Collection

7pt 110592 760320 7 point stencil in 48 × 48 × 48 grid

7ptb 256000 7014400 4 × 4 blocks 7-pt stencil in 40 × 40 × 40 grid

Table 2. Performace (in MFlops/s) of sparse matrix multiply using CSR, CSRP and

CSRPELL in PETSc

SSP MSP

Problem CSR CSRP CSRPELL CSR CSRP CSRPELL

astro 26 163 311 14 214 655

bcsstk18 28 315 340 15 535 785

7pt 12 259 295 8 528 800

7ptb 66 331 345 63 918 1085

Harwell-Boeing collection of matrices5. The “7pt” matrix is constructed from a
7 point stencil on a 48 × 48 × 48 rectangular mesh. The “7ptb” matrix is sim-
ilarly constructed using 4 × 4 blocks from a 7 point stencil on a 40 × 40 × 40
grid. Table 2 shows the performance (in Mflops/s) for the original CSR algo-
rithm versus the new vectorizable CSRP and CSRPELL algorithms in SSP and
MSP modes. The Megaflop rate is computed by timing over 100 calls to PETSc
MatMult. The data suggest the CSRP algorithm is an order of magnitude faster
than the original non-vectorizable algorithm. The CSRP with ELLPACK for-
mat (CSRPELL) algorithm achieves even better performance with unit stride
access to data, but requires rearranging the data into another copy of the ma-
trix. However, even with this rearrangement, the CSRPELL algorithm achieves
less than 11% of theoretical peak performance of the Cray X1 in SSP and MSP
modes.

5 Summary

We have presented a simple vectorizable algorithm for computing sparse ma-
trix vector multiply in CSR storage format. Although the method uses non-unit
stride access to the data, it is still an order of magnitude faster than the orig-
inal scalar algorithm. The method requires no data rearrangement and can be
easily incorporated into a sophisticated library framework such as PETSc. Fur-
ther work is still required in vectorizing the generation of sparse incomplete LU
factorization and the forward and backward triangular solves.

5 Available at http://math.nist.gov/MatrixMarket/data/.

106 E.F. D’Azevedo, M.R. Fahey, and R.T. Mills

References

1. Balay, S., Buschelman, K., Eijkhout, V., Gropp, W.D., Kaushik, D., Knepley, M.G.,
McInnes, L.C., Smith, B.F., Zhang, H.: PETSc users manual. Technical Re-
port ANL-95/11 - Revision 2.2.0, Argonne National Laboratory (2004) See also
http://www.mcs.anl.gov/petsc.

2. Nakajima, K., Okuda, H.: Parallel iterative solvers for finite-element
methods using a hybrid programming model on SMP cluster architec-
tures. Technical Report GeoFEM 2003-003, RIST, Tokyo (2003) See also
http://geofem.tokyo.rist.or.jp/members/nakajima.

3. Blelloch, G.E., Heroux, M.A., Zagha, M.: Segmented operations for sparse ma-
trix computation on vector multiprocessors. Technical Report CMU-CS-93-173,
Department of Computer Science, Carnegie Mellon University (1993) See also
http://www-2.cs.cmu.edu/∼guyb/publications.html.

4. Dongarra, J.J., Duff, I.S., Sorensen, D.C., van der Vorst, H.A.: Solving Linear
Systems on Vector and Shared Memory Computers. SIAM, Philadelphia, PA (1991)

5. Dongarra, J.J., Duff, I.S., Sorensen, D.C., van der Vorst, H.: Numerical Linear
Algebra for High-Performance Computers. SIAM, Philadelphia, PA (1998)

6. Duff, I.S., Erisman, A.M., Reid, J.K.: Direct Methods for Sparse Matrices. Claren-
don Press, Oxford (1986)

7. Saad, Y.: Iterative Methods for Sparse Linear Systems. Second edn.
SIAM, Philadelphia, PA (2003) See also http://www-users.cs.umn.edu/∼saad/

books.html.
8. Kincaid, D.R., Young, D.M.: The ITPACK project: Past, present and future. In

Birkhoff, G., Schoernstadt, A., eds.: Elliptic Problem Solvers II Proc. (1983) 53–64
9. Peters, A.: Sparse matrix vector multiplication techniques on the IBM 3090 VF.

Parallel Computing 17 (1991) 1409–1424

	Introduction
	Background
	CSR with Permutation (CSRP)
	Numerical Experiments on the Cray X1
	Summary

