
Vectorizing Cartoon Animations
Song-Hai Zhang, Tao Chen, Yi-Fei Zhang, Shi-Min Hu, Member, IEEE, and Ralph R. Martin

Abstract—We present a system for vectorizing 2D raster format cartoon animations. The output animations are visually flicker free,

smaller in file size, and easy to edit. We identify decorative lines separately from colored regions. We use an accurate and semantically

meaningful image decomposition algorithm, supporting an arbitrary color model for each region. To ensure temporal coherence in the

output, we reconstruct a universal background for all frames and separately extract foreground regions. Simple user-assistance is

required to complete the background. Each region and decorative line is vectorized and stored together with their motions from frame

to frame. The contributions of this paper are: 1) the new trapped-ball segmentation method, which is fast, supports nonuniformly

colored regions, and allows robust region segmentation even in the presence of imperfectly linked region edges, 2) the separate

handling of decorative lines as special objects during image decomposition, avoiding results containing multiple short, thin

oversegmented regions, and 3) extraction of a single patch-based background for all frames, which provides a basis for consistent,

flicker-free animations.

Index Terms—Cartoon vectorization, trapped-ball segmentation, image decomposition, foreground extraction.

Ç

1 INTRODUCTION

C ARTOON animation, i.e., cel animation, has a long
history, resulting in a large body of artistic work.

Children and adults enjoy the stylized characters, the
drawing and animation styles, plots, and soundtracks.
Currently, such cultural heritage is preserved and dissemi-
nated as digital video after conversion from film using
telecine. Such video is in raster format.

However, animated 2D cartoons have an intrinsically

vector nature.Cartoonmakinghas a relatively fixed composi-

tion procedure, including an unchanging but moving back-

ground, and an animated foreground. Compared to real-

world videos, 2D cartoon animations have simpler, more

artificial contents, composed of regionswith simple coloring,

and wide decorative lines, as shown, for example, in Fig. 2.
This particular nature of 2D cartoons means that there

are potential advantages in converting them to a mean-

ingful vector format, which

. will generally allow higher compression ratios for
storage and transmission than raster format, because
of the small number of regions which can be
described by simple color models;

. is resolution independent, readily allowing display
on devices with differing capabilities;

. readily allows the cartoon to be edited, e.g., to
relocate a character in a scene, or to add an object in
front of some existing objects and behind others;

. offers advantages for multimedia information retrie-
val, allowing search for objects of a particular shape;

. avoids the undesirable artifacts caused by lossy raster
compression, instead providing strongly colored
regions with strong edges, better suited to the artistic
style of cartoons. In turn, this allows better quality
video to be transmitted with limited bandwidth and
also has potential applications to cartoon restoration.

In recent years, various approaches have been proposed for
vectorizing rasterized images [1], [2], and commercial
packages exist, e.g., Stanford VectorMagic. However, these
do not take into account the particular features of cartoon
animations, and in particular, tend to suffer from over-
segmentation. Furthermore, none of them considers tem-
poral coherence. S�ykora et al. [3], [4], [5] made significant
advances in vectorizing cartoons, but their approach rely on
a particular drawing style in which meaningful regions are
enclosed by thick bounding lines, which is not appropriate
to many modern cartoon styles.

We note that specific challenges exist when performing
2D cartoon vectorization. The simplicity of the cartoon’s
contents can at times be a disadvantage as well as an
advantage. Flicker is more noticeable in simple cartoon
scenes than in real-world videos and strongly decreases the
visual quality. Thus, accurate boundaries and locations of
segmented regions are necessary to achieve visual temporal
coherence. Segmentation should be semantically mean-
ingful in terms of the color regions and decorative lines
output. We take into account the particular nature of
cartoons to solve these problems.

Edge information provides a strong hint for decomposi-
tion of cartoon animations, but extracted edges often
contain gaps and cannot always be reliably joined. We
overcome this problem by using a novel trapped-ball
method to stably segment each frame into regions. This
process is guided by edges, but can cope with gaps in the
edges. The color in each region need not be uniform: any
desired color model may be used (our experiments use a
quadratic model). We separately reconstruct the static
background and extract moving foreground objects to

618 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 4, JULY/AUGUST 2009

. S.-H. Zhang, T. Chen, Y.-F. Zhang, and S.-M. Hu are with Tsinghua
National Laboratory for Information Science and Technology, Department
of Computer Science and Technology, Tsinghua University, Beijing
100084, China. E-mail: zhangsh@gmail.com, chent@cg.cs.tsinghua.edu.cn,
macsyz@gmail.com, shimin@tsinghua.edu.cn.

. R.R. Martin is with the School of Computer Science, Cardiff University,
Cardiff, Wales CF24 3AA, UK. E-mail: ralph@cs.cf.ac.uk.

Manuscript received 24 Apr. 2008; revised 14 Aug. 2008; accepted 19 Dec.
2008; published online 5 Jan. 2009.
Recommended for acceptance by S.Y. Shin.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org, and reference IEEECS Log Number TVCG-2008-04-0057.
Digital Object Identifier no. 10.1109/TVCG.2009.9.

1077-2626/09/$25.00 � 2009 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: Tsinghua University Library. Downloaded on March 07,2010 at 02:33:26 EST from IEEE Xplore. Restrictions apply.

provide a layered representation in which the regions and
decorative lines are vectorized; we also record their
motions. Simple user-assistance is required to complete
the background.

The contributions of this paper are 1) the new trapped-
ball segmentation method, which is fast, supports non-
uniformly colored regions, and allows robust region
segmentation even in the presence of imperfectly linked
region edges; 2) the separate handling of decorative lines as
special objects during image decomposition, avoiding
results containing multiple short, thin oversegmented
regions; and 3) extraction of a single patch-based back-
ground for all frames, which provides a basis for consistent,
flicker-free animations.

2 RELATED WORK

S�ykora et al.’s [3], [4], [5] work on vectorization of cartoon
animations is the most closely related previous work to
ours. In their approach, cartoons must have a foreground
layer consisting of dynamic regions each enclosed by clearly
visible outlines. They rely heavily on correct and complete
detection of the enclosing outlines, which are detected using
an edge detector similar to a Laplacian of Gaussian filter.
Foreground and background are extracted using outlines in
each frame, and then a graph-based region matching
process is used to find the region relations and transforma-
tions between frames. Due to this requirement for strong
outlines, their approach fails on many cartoons in practice,
such as the one in Fig. 2. Our method can handle more
complicated cartoons with nonuniform shading and weaker
edges. Significantly, we are able to compute a high-quality
segmentation without perfect edge detection.

High-quality vectorization of cartoons requires accurate
segmentation into relatively few meaningful regions. There
is a vast literature on image segmentation. Many sophisti-
cated color-based methods, such as mean-shift segmenta-
tion [6], typically generate an oversegmented result with too
many regions with flat shading and meaningless shape
when applied to cartoons. Commercial software, such as
Adobe Live Trace, CorelTrace, and AutoTrace, also typically

produces regions with flat shading. Ardeco [1] can find
regions of quadratically varying color. However, as this
method initially labels the pixels randomly and refines the
labeling, it also often produces many small regions, and
hence, is unsuitable for our purpose. We generate larger
initial regions based on edge information and then refine
these regions using color compatibility to find precise
region boundaries. Because we use edge information to find
initial regions, the final regions are larger and more
meaningful. However, we only label each pixel once, so
our method is much faster than many other segmentation
methods, taking just a few seconds per frame.

Qu et al. [7] proposed a colorization technique that
propagates color over regions which is very suitable for
“manga colorization,” A level-set-based method is used to
segment manga images. Since manga is drawn in black and
white for printing, artists usually use patterns like hatching
and screening to illustrate shading, unlike cartoon anima-
tions which usually contain color regions with fewer
patterns. The only similarity is that both of our segmentation
processes encounter the same problem of preventing region
growing through incomplete boundaries. Their method
depends on tuning parameters to determine the size of the
gaps to close, whereas our approach gives good segmenta-
tion results without supervision, as explained in Section 4.

Sun et al. also present a semiautomatic image vectoriza-
tion method [2]. Complex images must be manually
decomposed into several semantic parts. Each part is then
modeled using an optimized gradient mesh Coons patch,
allowing for smooth color variation. Use of a gradient mesh
means that relatively few regions are needed to represent an
object. As the authors note, their method has problems with
images containing complicated topologies, very thin struc-
tures, or many small holes.

Clearly, simply applying segmentation and vectorization
on a frame by frame basis will not produce good results,
especially in the presence of raster compression artifacts and
occlusion. Segmentation which is not coherent between
frames will cause flickering in the vectorized output.
Previous approaches to temporally coherent video segmen-
tation [8], [9], [10] have tried to avoid such problems via
optimization. Although such methods may be appropriate
for real-world video, they do not produce precise enough
results for cartoons, as even minute inappropriate regions
andoutlines are clearly visible, especiallywhenpresent in the
background, due to the smooth shading found in cartoons.
We assume that the cartoon has an unchanging background
over a sequence of frames, allowing us to achieve temporal

ZHANG ET AL.: VECTORIZING CARTOON ANIMATIONS 619

Fig. 2. Cartoon gallery.

Fig. 1. (a) Original videos. (b) Vectorization results showing region

boundaries and decorative lines.

Authorized licensed use limited to: Tsinghua University Library. Downloaded on March 07,2010 at 02:33:26 EST from IEEE Xplore. Restrictions apply.

coherence by extracting a unified background before detec-
tion of foreground objects and their motions.

Background subtraction has been extensively studied for
complex scenes which, e.g., have dynamic backgrounds or
changing lighting [11], [12], [13]. Typically, two separate
processes are used for background subtraction and fore-
ground region extraction. While generally performing well,
they often neglect pixels near boundaries, which may cause
flickering of the background. As cartoons generally have
fewer features with a clearer structure, we use a patch-
based background filling method at the same time as
performing foreground region extraction to ensure that all
foreground pixels are appropriately allocated to regions.

3 OVERVIEW

Temporal video segmentation, which can segment a whole
video into independent video sequences, each with a
different (possibly moving) background shot, is a well-
studied problem [14], [15]. We assume that such segmenta-
tion has already been performed. We focus on vectorization
of a single sequence, comprising a static background,
possibly with camera motion relative to it, and foreground
moving objects. Such static backgrounds are widely used in
cartoon making.

Fig. 3 shows the framework of our system. We assume
that the input is a raster 2D animated cartoon, which is of
low quality due to lossy compression at some stage. We
vectorize each raster cartoon sequence as follows:

. In each frame, decorative lines are detected first, and
these, together with edge detection results, are used
to build a mask. The image is then segmented into
regions using a trapped-ball method, controlled by
this mask.

. To achieve interframe coherence, the frames in the
sequence are registered by finding the homography,
using the approach in [16]. A static panoramic

background image is reconstructed by first initializ-
ing it with unchanging areas and refined by adding
regions identified as belonging to the background.
The moving objects are extracted as a foreground
layer, together with their between-frame motions.

. The background and foreground key objects are
vectorized: their boundaries are represented as
curves and their interiors filled using quadratic (or
potentially any other) color models, and the vector-
ized animation is output.

We now consider particular aspects in detail.

4 SINGLE FRAME DECOMPOSITION

An important requirement for improving visual coherence
is to decompose the cartoon image into relatively few
meaningful objects. Typically, cartoon images contain two
types of objects: colored regions and decorative lines-see
Fig. 2. Colored regions need not have a uniform color, but
may be based on some simple model of color as a function
of position, e.g., a quadratic model.

Due to the typically large differences in shading between
neighboring regions in cartoons, edge information provides
a strong hint for meaningful region segmentation. We thus
use a Canny edge detector [17] to extract edge information
to guide image decomposition.

However, directly using edge information to find region
boundaries and decorative lines has various challenges:

. Especially when processing compressed video,
whatever parameter settings are used, any simple
edge detector typically leads to various edges being
missing, others containing gaps, and spurious
noisy edges.

. Edges found only to pixel-position accuracy are
insufficient for temporally coherent segmentation:
camera motion does not generally involve a whole
number of pixels per frame.

620 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 4, JULY/AUGUST 2009

Fig. 3. Vectorization framework. The input at top left is the original cartoon video, and the output at bottom right the vectorized animation.

Authorized licensed use limited to: Tsinghua University Library. Downloaded on March 07,2010 at 02:33:26 EST from IEEE Xplore. Restrictions apply.

. Wide decorative lines produce two parallel edges,
which can lead to many thin, and short, over-
segmented regions.

We take these into account as follows: First, the decorative
lines are separately extracted in each frame.

The pixels covered by these lines are then combined with
other pixels belonging to edges detected in the frame, using
a standard Canny edge detector, to give a mask to control
image segmentation. Segmentation of each frame is per-
formed using a novel trapped-ball model, allowing us to
overcome imperfections in the edge detection results. The
idea is that a suitably large ball moves around inside a
region delimited by the edge mask. Even if the edge mask
locally has a gap, the ball is too big to go through it, and so
will be limited to the initial region. In practice, we use
morphological operations from image processing to imple-
ment this conceptual framework. We allow spatial variation
of color within each region. By default, a quadratic model is
used, but other models could be substituted depending on
user requirements on computation time and image quality.

We now give further details of decorative line detection
and trapped ball segmentation.

4.1 Decorative Line Detection

Unlike real video, which contains just edges between regions
of different color, cartoons also often contain drawn decorative
lines, with small but finite width. The former correspond to a
high color gradient, while the latter are specifically drawn by
artists to convey structure, motion, or other artistic meaning.
Some decorative lines are located within regions, while
others may emphasize region boundaries. Commonly used
edge detectors like the Canny edge detector are not suited to
decorative line detection-such detectors would find two
edges: one on either side of the decorative line, leading to the
decorative line being considered as a narrow region.
Furthermore, edge detectors typically lead to results with
gaps, so to produce connected decorative lines as narrow
regions, we would need either an edge-linking method, or a
flood-filling method which could ignore gaps of a certain
size. To avoid such issues, we detect decorative lines
separately from edges using a specialized approach.

While S�ykora et al.’s method [3], [4], [5] also detects
decorative lines forming outlines of regions, they rely on an
artistic style which produces closed decorative lines. Un-
fortunately, decorative lines do not take this form in most
recent cartoon art styles: often, at least some regions are only
delimited by edges (i.e., color steps) in the image rather
than explicit decorative lines. S�ykora et al. also assume that
decorative lines are the darkest regions in a cartoon, which
again does not always hold. One way to link line points is to

use alpha-shape techniques [18]. Though this work has
theoretical importance, in practical use, the results are similar
to those produced by traditional heuristic edge linking. We
use a simple and fast algorithm based on traditional heuristic
methods and exploit the characteristics of cartoon images to
improve the result. Experiments show that our result ismuch
better than a traditional general-purpose edge linking
algorithm. Our processing comprises three steps.

First, we find points on the centerline of each decorative
line (we call these line points, to distinguish them from edge
points). To do so, we convolve the image with a second
derivative of a Gaussian. Local maxima of the result
correspond to line points and are found by using nonmax-
ima suppression as in the original Canny edge detector [17].
This also gives a local line orientation at each line point.

We next link the line points to give as-long-as-possible
contiguous lines. Steger’s linking algorithm works by
repeatedly adding points to the current line provided that
their orientation is consistent with that of the line. This
approach can break down due to noise in the orientation
estimates. Suppose the orientations at successive points
along the line are . . . ; �k�2; �k�1; �k. Steger uses �k as the
orientation of the line to find the next point which will be
added to the line. We overcome noise by replacing �k by a
smoothed version �0

k when deciding whether to add the
next point to the line. We use a weighted average giving
points closer to the current point a greater weight:

�0
k ¼

X

i

!k�i�i=
X

i

!k�i:

The parameter ! should be in ð0; 1Þ; we have used ! ¼ 0:3 in
all our examples.

Finally, a traditional Canny edge detector is used to find
both edges of each decorative line, from which we can
estimate its width. For robustness, we check for and discard
outliers, assuming that the width changes smoothly, and
also discard lines of width larger than 10 pixels.

Sample output is shown in Fig. 4a, where each colored
line is one decorative line. Detecting such decorative lines
separately and representing them explicitly as lines with a
known width greatly improves the quality of the final
vectorized result: otherwise, many short, thin, regions are
found instead, leading to an oversegmented result.

4.2 Trapped-Ball Region Segmentation

Next, we find the regions, which should be large and
represented by a single consistent color model. A segmen-
tation mask is formed comprising the decorative lines, and
conventional edges where there is a sudden change of color
(the latter are shown as black pixels in Fig. 4a). This mask

ZHANG ET AL.: VECTORIZING CARTOON ANIMATIONS 621

Fig. 4. Single cartoon frame segmentation. (a) Segmentation mask, (b) trapped-ball segmentation, (c) our segmentation result, and (d) mean shift

segmentation result.

Authorized licensed use limited to: Tsinghua University Library. Downloaded on March 07,2010 at 02:33:26 EST from IEEE Xplore. Restrictions apply.

gives guidance as to where region boundaries should be,
but in practice, the mask will not form contiguous, “water-
tight” boundaries, precluding simple flood filling.

One possibility is to try to make the mask watertight by
performing edge-linking [19] on the mask. Unfortunately,
such methods cannot guarantee to close all gaps, and even a
single failure may result in two large regions being
inappropriately fused. Another approach is to design a
leak-proof floodfill algorithm of the kind often used in
commercial software, e.g., Adobe Flash. If performing level
set segmentation, a relaxation factor can be used to prevent
leakage [7].However, suchmethods can only prevent leaking
from gaps up to a certain size which is either explicitly
defined or implicitly determined by other parameters. There
is no robust way to determine such parameters.

Thus, instead, we have designed a novel trapped-ball
algorithm particularly suited to cartoon segmentation. The
basic idea behind our segmentation method is to move a
ball around, limited by the mask; each separate area in
which the ball may move determines a region of the image.
Fig. 4b illustrates trapped-ball segmentation. A best first rule is
used: at the start of the algorithm, we use a large ball, and
then iterate with balls of smaller and smaller radius. Choice
of ball sizes is discussed later. In practice, the same effect as
moving a ball can be achieved by using morphological
operations [20] from image processing, as we now explain.

In detail, to find regions, the following three steps
are iterated:

Trapped-ball filling. A ball-shaped morphological struc-
turing element of radius R is used. Fig. 5 illustrates the
morphological operations in use on part of the image. Given
the original mask Fig. 5a (note the gaps in the thin lines), we
first use floodfilling, giving Fig. 5b, shown without the mask
in Fig. 5c. We then use a circular structuring element having
the size of the trapped ball, and perform an erosion operation
on Fig. 5c, giving Fig. 5d, and then a dilation operation on
Fig. 5d to give Fig. 5e,which is the result of the first pass of our
trapped-ball filling, shown with the mask for reference in
Fig. 5f (note that theblue region ispresumed toextendoutside
the red box, explaining why erosion does not shrink the blue
region at the edges of the red box).

Color modeling. After using the above process on the
whole image, multiple large regions result. We assume that
a single color model is an adequate fit to each such region,
an assumption which works well in practice, in terms of
producing visually acceptable results, even if counter-
examples are not hard to construct-certainly, any sudden
changes in color would have produced edges. By default,
we use a quadratic color model in HSV color space, as used
by Ardeco [1]. For each channel, the color of the ith region
at pixel ðx; yÞ is modeled by the function fiðx; yÞ ¼
ai0 þ ai1xþ ai2yþ ai3x

2 þ ai4xyþ ai5y
2. The parameters aij

are determined by solving a linear system equation for all

pixels belonging to region i. As each region must be larger
than the ball, we can be certain that there are adequate data
for fitting a color model.

Region growing. We next grow the regions generated by
trapped-ball filling. This is necessary because the ball
cannot penetrate into narrow pockets belonging to regions
or pass through narrow necks separating parts of the same
region. Growing is subject to two constraints. Firstly, edge
pixels may not be added to a region. Secondly, pixels added
to a region should agree with its color mode to within
perceptual limits. We proceed as follows. Initially, each
pixel is labeled to indicate its region, or as null if not yet
assigned to any region. We define the reconstruction error
of a labeled pixel to be the difference between its actual
color and that predicted by the corresponding color model.
To perform region growing, we put all region pixels at the
boundary of each region into a priority queue sorted by
reconstruction error with respect to the region they belong
to. Then, we repeatedly pop the pixel with minimum
reconstruction error from the queue. We next consider each
of its unlabeled neighbors and the reconstruction error
resulting if it is labeled as belonging to the same region. If
the error is sufficiently small (in practice, less than 20), the
pixel’s label is updated and it is added to the priority queue.
We repeat these steps until the queue is empty or the least
reconstruction error is too large.

As the above steps are iterated, all labeled pixels are
added to the segmentation mask, so that subsequent
iterations do not consider pixels which are already labeled.

After the first iteration, some pixels may remain
unlabeled, so we reduce the ball radius by 1, and iterate,
labeling and growing smaller regions, and so on, until the
ball radius reaches 1. By this stage, all pixels must have
been labeled, and the image fully segmented.

Theoretically, the initial radius used should be equal to
the maximum distance of any pixel from some edge pixel.
In practice, for speed, we use a value of 8 pixels, as in our
experience, any gaps in the mask are almost always smaller
than this. Clearly, if highest quality results are desired, the
user can increase the initial ball radius setting.

Finally, we may wish to eliminate regions which are
too small. A user-chosen “fine detail” parameter in the
range 0-200 pixels decides the minimum permissible size of
a region. Any regions smaller than this are merged with the
neighboring region with the most similar color model. This
helps to provide a balance between file size and quality in
the final result.

Unlike the method in [7], our trapped-ball filling step can
deal with any size of gaps, since the ball size is reduced
iteratively.The regiongrowing steputilizes color information
allowing it to fill in narrow regions rather than leaving gaps.

Fig. 4c illustrates our segmentation result for the earlier
example and compares it with the mean shift segmentation

622 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 4, JULY/AUGUST 2009

Fig. 5. Trapped-ball segmentation achieved by using morphological operations.

Authorized licensed use limited to: Tsinghua University Library. Downloaded on March 07,2010 at 02:33:26 EST from IEEE Xplore. Restrictions apply.

result (see Fig. 4d). Here we used the EDISON system [21]
based on edge detection results as a weight map for mean
shift segmentation. The spatial and color bandwidths for
mean shift were set to 7 and 8, respectively, with a gradient
window size of 5� 5, mixture parameter of 0.5, and
threshold of 0.5 for the weight map.

Because the mean shift approach neither uses color
models nor treats decorative lines separately, it produces
oversegmented results for three particular kinds of regions:
regions with shading, e.g., the character’s chest armor;
regions with video compression artifacts, e.g., background
regions, and regions corresponding to lines. Clearly, our
result has fewer regions and the regions found are more
meaningful. This is mainly due to our use of edge masks as
a hard constraint, which, while unsuited to general images,
can provide very good results for cartoons. Mean shift
segmentation aims to segment images in general, so it
cannot use such a hard constraint, but instead, uses gradient
as a weight map. Furthermore, as the mean shift algorithm
does not use color models, it will produce multiple
segments for regions of varying shade.

As our segmentation algorithm is based on the assump-
tions that edge information in cartoons is very important
and provides semantic hints, and hence, regions delimited
by the edge mask can be fitted by color models, it may fail
when edges are too weak or regions are too complicated, as
further discussed in Section 7.

The morphological operations needed to carry out the
trapped-ball filling process take OðnÞ time using the algo-
rithm in [22]. Error sortingneededduring regiongrowing can
be done by using an index heap or Fibonacci heap, so the
whole segmentation process has linear time complexity.

5 INTERFRAME COHERENCE

To achieve a high-quality vectorized result, we must avoid
even small amounts of flickering due to lack of temporal
coherence. This is especially important in the background,
as it is static, making flicker more apparent. Most methods
for achieving temporal coherence in video are based on
global optimization and do not consider the particular
requirements for background coherence.

Registering the images in a sequence allows us to locate
each frame Ii in a global coordinate system by transforming
it to ~Ii via a homography Hi. To do so, we make various
assumptions: 1) the foreground area is not too large
compared to the whole image and 2) the background
motion comprises translation and scaling. While these may
sound restrictive, they generally hold for many cartoon
animations. Under these assumptions, registration methods
such as SIFT [16] matching or even brute force search work
well. Using RANSAC, we can detect outliers and overcome
the jitter between frames. We obtain visual coherence by
separately reconstructing the background as a single static
panoramic image and extracting the foreground objects in
the global coordinate system.

5.1 Background Filling and Foreground Extraction

Usually, a cartoon comprises several scenes. Each scene is a
sequence of frames with a constant background, on top of
which moving foreground objects are placed. A camera
motion is then often added to produce the final cartoon scene.
We remove the camera motion by registration, resulting in a
background which should be entirely static. We now discuss

how we find the initial background for a scene and then
refine it using per-frame decomposition results.

Let B be the global background image (larger than
individual frames, because of camera motion), and let M be
a map of the same size which, for each pixel, estimates the
probability that it belongs to the background. Initially,Mq is
set to 0 for every pixel q, meaning that Bq is unknown.

Unlike [11] which is based on Gaussian mixture models,
we construct an initial background based on median pixel
values in appropriate frames, as the background of a cartoon
should be unchanging. At the same time, we estimate the
background probability of each pixel. Taking each image ~I in
turn, we find the set Sq of pixels corresponding to each pixel
Bq by extracting the corresponding pixel Piq in each
registered image ~Ii, if such a pixel exists. Bq is set to the
median color ofSq andMq is the fraction of Sq where the pixel
color differs from the median value by less than Tc, where
Tc is determined by perceptual ability to distinguish color
differences, here taken to be 10 units. IfMq is sufficient large,
i.e., larger than 90 percent, we regard Bq as a “stable”
background pixel, in that its color is almost unchanging over
time. Fig. 6a shows the “stable” pixels belonging to the
background for a particular video.

As a cartoon has well-defined features, we assume that
each region in each frame either belongs to the background
or the foreground. However, different parts of the back-
ground may be occluded by foreground regions in each
frame. By estimating the probability that each region
belongs to the background, we then use a patch-based filling
method to dynamically change the probability map and
refine the background image as well as to decide which
foreground objects are. To be able to recover those parts of
the background that are occluded by foreground regions at
various times, we examine all regions and compute the
probability that they belong to the background: Pij is this

ZHANG ET AL.: VECTORIZING CARTOON ANIMATIONS 623

Fig. 6. Illustration of background filling and layer representation.
(a) Stable background pixels. (b) Final filled background. (c) Foreground
over background.

Authorized licensed use limited to: Tsinghua University Library. Downloaded on March 07,2010 at 02:33:26 EST from IEEE Xplore. Restrictions apply.

probability for region Rij, the jth region in frame i, and is
found by averaging the probabilities for its pixels:

Pij ¼
X

jPiq�Bq j<Tc; 8Piq2Rij

Mq=jRijj:

A larger value of Pij means that the region has a larger
probability of belonging to the background. All regions in
all frames are next sorted in descending order of prob-
ability. Pixels belonging to the region with highest prob-
ability are added to the background, and M is updated
accordingly. The background probability of each region
remaining in the list is then updated and the list resorted.
We then consider the remaining regions with highest
background probability, and so on. This process is quick
as only a few regions need to be updated and resorted each
time. This process terminates when either the background
image has been completed, or when the highest probability
of any remaining region being background is below some
threshold value, at which point remaining objects in the list;
are considered to be foreground objects. We usually use 0.3-
0.4 as this threshold, depending on the quality of the input
video. Too low a value may incorrectly fuse background
and foreground areas, while too high a value results in too
small a detected background, with certain background
areas being treated as foreground regions at higher cost.
Generally, the lower the threshold that can be used, the
better, as having a larger background area will provide
better temporal coherence in the results.

At the end of this process, the background image may
still contain holes where foreground objects always occlude
the background. Clearly, such holes are irrelevant. Fig. 6b
shows the results after filling the background in this way.

While automatic background image filling usually works
well, certain background areas may be uncovered in only a
few frames and, thus, cannot be detected automatically.
Simple user interaction is thus used to add such regions to
the background. This interaction needs only a few mouse
clicks, combined with scanning through the video, and does
not take long. At the same time, the user may remove
regions which have been inappropriately assigned to the
background image (e.g., the stationary feet of a cartoon
character, the rest of whose body is moving).

5.2 Foreground Object Tracking

For such high-level tasks such as editing, and for the final
video to be highly compressible, it is important to identify
corresponding foreground regions whenever possible in
successive frames and to find the key objects, which we
then represent in vectorized form. However, as cartoons are
hand drawn, the shapes of objects can be slightly different
between neighboring frames, even if unchanged semanti-
cally. This issue hinders key object detection. We use
tracking [16] and motion-based segmentation methods [10]
to be able to follow key objects between frames.

The motion of large foreground objects between adjacent
frames can easily be detected by tracking or matching, as the
motions are typically small. Small regions are more tricky to
track, but tend tomove alongwith neighboring large regions.

We follow the approach in [10], which groups pixels
according to their motion, with the difference that we use
large foreground objects as seeds for region tracking. We
compute their homographies and place them, together with
neighboring regions with similar transformations, into

groups, each in a different initial layer. This may result in
allocation of certain regions to more than one group, so we
use a graph-cut algorithm [10] to decide the final grouping
of regions as well as occlusions.

Regions which are successfully tracked are replaced in
subsequent frames by the original region plus the corre-
sponding transformation: the segmentation results found in
subsequent frames are discarded. The groups found can be
represented as one key object and a sequence of transforma-
tions, and they typically have semantic significance (for
example, an arm of one color with a hand of another), which
is useful for further editing and other high-level processes.

5.3 Vectorization

We now have a set of regions assigned to foreground layers
or the background. To achieve a seamless and accurate
vectorization result, the mutual boundaries of adjacent
regions in the same layer (and hence which are moving
together) must be determined, as well as other boundaries.
Boundary curves are terminated at end points, which are
points where more than two regions meet (green points in
Fig. 7) or boundary points with a local maximum of
curvature (red points in Fig. 7). We fit one or more cubic
Bézier curves to each boundary point sequence between
adjacent endpoints, to achieve a given tolerance. We use
tolerances between 4 and 20 pixels, allowing a trade-off
between quality and file size.

Solid regions are represented by their boundary curves
and color model parameters. Decorative lines are repre-
sented by a polyline with accompanying width and color at
each vertex. Regions in the background layer only need to
be vectorized once. Each foreground object is also vector-
ized once, and its transformation in each frame is also
stored. It is straightforward to convert our vectorized
output into Adobe Flash swf format for use in the Flash
vector animation editor.

6 EXPERIMENTAL RESULTS

Figs. 1 and 8 show various cartoon vectorization results.
Inolder cartoons (Figs. 8aandFigs. 8b), a constant colormodel
issufficient foreachregion; inmodern2Dcartoons (Figs.1and
8c), a quadratic color model is more typically required.

We have implemented a prototype system on an Intel
Core 2 Duo 2.4 GHz machine, with 1 GB of memory. From a
user input source cartoon video, it can provide various
intermediate outputs including per frame segmentation, a
static background image and the final vectorized file which
gives the color model and boundary representation of each

624 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 4, JULY/AUGUST 2009

Fig. 7. Vectorization of segmentation results.

Authorized licensed use limited to: Tsinghua University Library. Downloaded on March 07,2010 at 02:33:26 EST from IEEE Xplore. Restrictions apply.

region. We also provide an optional interactive step during
background reconstruction: the user can browse the per
frame segmentation results and add desired regions to the
background or remove regions from it. Our segmentation
and interframe region matching algorithms are particularly
efficient, as they take advantage of the relatively simple
nature of cartoons, allowing stable detection of large regions.
On 640� 480 input, segmentation typically takes 2-3 seconds
per frame, background and foreground extraction take 4-
8 seconds, and vectorization takes under 1 second; times vary
with complexity of scene, but around 10 seconds per frame is
typical, whichmeans that an entire cartoon can be vectorized
in an acceptable length of time. In contrast, Ardeco [1] takes

72-125 seconds per frame for 512� 512 images, the Stanford
VectorMagic image result in Fig. 9 took over 100 seconds, and
the method in [2] takes around 250-1,000 seconds per object.

Fig. 9 compares our vectorization results for a single
frame to those produced by Stanford VectorMagic and
Adobe Illustrator Live Trace. Our result gives more a
visually appealing segmentation with fewer regions, with
decorative lines also identified.

Figs. 10a and 10b show how our results can be readily
edited using Adobe Flash. The left-hand example shows,
how Tom the cat has been extracted from one clip (see
Fig. 8a), and inserted between the background and fore-
ground (Jerry the mouse, in bed) of another clip, using

ZHANG ET AL.: VECTORIZING CARTOON ANIMATIONS 625

Fig. 8. Vectorization results. Columns 1, 3: original video frames; columns 2, 4: corresponding vectorization results. (a)-(b) Two clips from Tom &

Jerry; (c) A clip from Saint Seiya.

Fig. 9. (a) Vectorization results using VectorMagic, our method and Adobe Illustrator Live Trace. (b) Region boundaries.

Authorized licensed use limited to: Tsinghua University Library. Downloaded on March 07,2010 at 02:33:26 EST from IEEE Xplore. Restrictions apply.

simple drag-and-drop. The right-hand example shows a
simple edit to Jerry’s ear which was done on just two frames,
and continues as the region is propagated through the video
(the original image sequence is illustrated in Fig. 8b).
(Editing was needed on two frames as Jerry’s ear underwent
a large change in shape part way through the original input
sequence-note that the original was hand drawn.)

Table 1 compares the file sizes of our vectorized output
to the original DivX compressed raster videos. The table
reports DivX 6 compressed video sizes (DivX), high-quality
vectorized output with decomposition detail level 0 and
curve fitting tolerance 4 (Vec1), and acceptable quality with
decomposition detail level 200 and curve fitting tolerance 20
(Vec2). For high-quality output, our vectorization method
typically leads to a file size of roughly half that required by
DivX 6 compressed video. This can be further reduced by
another factor of 2 for lower but still acceptable quality
output. We note that if our method is used to accelerate
network transmission of cartoons, a desired bit rate can be
adaptively achieved by adjusting the curve fitting and fine
detail tolerances mentioned earlier. See also Fig. 13.

7 DISCUSSION

7.1 Comparison

We now compare our results with those from the methods in
[1], [2], [3], [4], [5], using images taken from their work (see
Fig. 11). S�ykora et al.’s method [3], [4], [5] imposes very
strong constraints on the cartoons processed, i.e. regions
must have thick, closed black outlines and constant color. As
a result, their method failed on most cartoons we tried,
making a direct comparison difficult. Our trapped-ball
model for segmentation means that we can handle region
boundaries which need be neither closed nor clear, greatly
increasing the applicability of our technique. Compared to
Ardeco [1], we can produce almost the same quality of
results even for noncartoon images, despite these not being
our main goal. In Fig. 11b, themean pixel difference between

output of this method and the original image (L2 norm in
RGB color space) is 9 units, whereas in our result, the mean
error is 4 units. The resulting vectorized output fromArdeco
has a more posterized appearance than our result: in
particular, the face and shoulder of the woman have more
noticeable steps in shading. Price and Barrett [23] and Sun
et al. [2] give methods for vectorizing images that contain
objects with complex but smoothly changing textures; they
use meshes to describe those textures. Their work thus has
very different motivation from ours: cartoons often contain
untextured regions with generally well-defined boundaries.
(Considering texture as a particular kind of color model
would be an interesting extension to our current work.) Both
of these methods need users to manually create initial
meshes for each object in the image, and would be very hard
to extend to video. However, these methods provide very
low reconstruction errors, often of less than 1 unit per pixel,
which our method cannot. We note that, often, input video
clips suffer from compression artifacts. Our output may
actually have higher visual quality than the input: least-
squares reconstruction errors are not a satisfactory metric for
assessing vectorization quality.

7.2 Limitations

Our method targets cartoons, which have a particular type
of artistic content, including smoothly (but not necessarily
uniformly) colored regions and decorative lines. Our
method produces suboptimal results when

. Adjacent regions have similar color or edges which
are weak for some reason: boundaries may be
incorrectly placed or regions incorrectly fused. For
example, in Fig. 11c, the shadow of the pepper in our
result is poorly segmented); while in Fig. 12b, poor
segmentation results where light crosses the char-
acter’s hair.

. Foreground objects adjacent to the background have
a similar color to it. This can result in foreground
objects being assigned to the background. An
example is Jerry’s foot in Fig. 8b. (Colors are
compared after color modeling. After color model-
ing, the region color of the foot is considered to be
similar to that of the background.)

. There are complex textures in the scenes such as
grass or forest. In this case, an inappropriate color
model is used for the kinds of regions present, and
large colored regions do not represent the texture
well, resulting in large reconstruction errors.

626 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 4, JULY/AUGUST 2009

Fig. 10. Editing: (a) Composition of two clips taking a character from one scene and putting him in another. (b) Object editing changing the shape of

the character’s ears.

TABLE 1
File Size Comparison (See Text)

Authorized licensed use limited to: Tsinghua University Library. Downloaded on March 07,2010 at 02:33:26 EST from IEEE Xplore. Restrictions apply.

ZHANG ET AL.: VECTORIZING CARTOON ANIMATIONS 627

Fig. 11. Comparison with other vectorization methods. Columns: original video frames, our results and others’ results. Rows: results produced by

S�ykora et al.’s method, Ardeco, and Sun et al.’s method, respectively.

Fig. 12. Cases producing poor results. First column: original cartoon images; second column: our vectorized output, third column: our decomposition

result.

Authorized licensed use limited to: Tsinghua University Library. Downloaded on March 07,2010 at 02:33:26 EST from IEEE Xplore. Restrictions apply.

Certain art styles such as watercolor painting, and highly
detailed cartoon clips with shining light effects or complex
textures are thus not well suited to our method. We provide
examples of such cases in Fig. 12. Fortunately, scenes with
effects like those in Fig. 12b are fairly rare. One possible way
to handle them is to first model and compensate for the
lighting, as artists usually use some kind of model to
generate such lighting effects. Replacing color models by
texture models is an interesting future extension to our
work to cope with the scenes with textures (see Fig. 12a).
Overall, while such difficult cases lead to suboptimal results
in terms of fidelity to the original, or quality of segmenta-
tion, we are still able to obtain meaningful output-our
algorithm degrades gracefully.

In some cartoons, the background is much more
complicated than the foreground, as it only needs drawing
by the artist once, and more effort can thus be expended on
it. Vectorizing such a background image would result in
many small regions and a large file size. One possible
response is to produce a somewhat less detailed back-
ground by adjusting the region segmentation process to use
a larger value for the fine detail parameter. (This may be
acceptable, as the user mainly concentrates his gaze on the
foreground objects.) Another solution is to simply store the
background as a bitmap-as this is a common background
for all frames, this would add relatively little extra storage
requirement to the final result.

8 CONCLUSIONS

We have presented a system for transforming 2D rasterized
animated cartoons into vectorized representation. The
output animations are visually flicker free, smaller in file
size than the input, and contain large regions, potentially
suited to applications such as editing and multimedia
information retrieval. Decorative lines are output separately
to colored regions.

Our system takes advantage of the particular nature of
cartoons to rapidly achieve high-quality image decomposi-
tion with more meaningful segmentation results than
existing methods. The segmentation approach supports
arbitrary color models for each object.

A number of extensions would further enhance our
system. The most desirable is to provide higher level
understanding of the foreground regions by using a more

sophisticated method to merge adjacent regions with
semantic significance. This requires sophisticated handling
of changes in shape of objects between frames to eliminate
errors inhanddrawings. Furthermore, awhole filmmayhave
many scenes, shared amongst which there may be common
characters in identical poses; these too should be identified,
both to provide further compression and to enhance the
usefulness of the results for high-level processing. Currently,
we cannot handle cartoons with ill-defined region bound-
aries, caused, e.g., by shining light, smoke, flames, and
motion blurs, nor can we handle cartoons with textured
regions. We hope to extend our segmentation approach to
cope with these.

ACKNOWLEDGMENT

The authors would like to thank Warner Bros. Entertain-
ment, Inc., and Toei Animation for granting them licenses
to reproduce the following cartoons, respectively: Tom and
Jerry, Saint Seiya. They also would like to thank the
anonymous reviewers for their valuable comments. This
work was supported by the National Basic Research Project
of China (Project Number 2006CB303106), the Natural
Science Foundation of China (Project Number U0735001)
and Specialized Research Fund for the Doctoral Program of
Higher Education (Project Number 20060003057), and an
EPSRC UK travel grant.

REFERENCES

[1] G. Lecot and B. Levy, “Ardeco: Automatic Region Detection and
Conversion,” Proc. 17th Eurographics Symp. Rendering, pp. 349-360,
2006.

[2] J. Sun, L. Liang, F. Wen, and H.-Y. Shum, “Image Vectorization
Using Optimized Gradient Meshes,” ACM Trans. Graphics, vol. 26,
no. 3, p. 11, 2007.

[3] D. S�ykora, J. Buriánek, and J. �Zára, “Colorization of Black-and-
White Cartoons,” Image and Vision Computing, vol. 23, no. 9,
pp. 767-852, 2005.

[4] D. S�ykora, J. Buriánek, and J. �Zára, “Sketching Cartoons by
Example,” Proc. Second Eurographics Workshop Sketch-Based Inter-
faces and Modeling, pp. 27-34, 2005.

[5] D. S�ykora, J. Buriánek, and J. Zára, “Video Codec for Classical
Cartoon Animations with Hardware Accelerated Playback,” Proc.
First Int’l Symp. Advances in Visual Computing, vol. 3804, pp. 43-50,
2005.

[6] D. Comaniciu and P. Meer, “Mean Shift: A Robust Approach
Toward Feature Space Analysis,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 24, no. 5, pp. 603-619, May 2002.

628 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 4, JULY/AUGUST 2009

Fig. 13. Vectorized representations with different fidelity of detail. Data sizes: (a) 24 kB. (b) 9 kB.

Authorized licensed use limited to: Tsinghua University Library. Downloaded on March 07,2010 at 02:33:26 EST from IEEE Xplore. Restrictions apply.

[7] Y. Qu, T.-T. Wong, and P.-A. Heng, “Manga Colorization,” ACM
Trans. Graphics (Proc. ACM SIGGRAPH ’06), vol. 25, no. 3,
pp. 1214-1220, 2006.

[8] C.L. Zitnick, N. Jojic, and S.B. Kang, “Consistent Segmentation for
Optical Flow Estimation,” Proc. Int’l Conf. Computer Vision, pp. II:
1308-1315, 2005.

[9] M.P. Kumar, P.H.S. Torr, and A. Zisserman, “Learning Layered
Motion Segmentation of Video,” Proc. Int’l Conf. Computer
Vision, pp. I: 33-40, 2005.

[10] J. Xiao and M. Shah, “Motion Layer Extraction in the Presence of
Occlusion Using Graph Cuts,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 27, no. 10, pp. 1644-1659, Oct. 2005.

[11] C. Stauffer and W.E.L. Grimson, “Adaptive Background Mixture
Models for Real-Time Tracking,” Computer Vision and Pattern
Recognition, pp. 2246-2252, 1999.

[12] H.W. Kang and S.Y. Shin “Tour Into The Video: Image-Based
Navigation Scheme for Video Sequences of Dynamic Scenes,”
Proc. ACM Symp. Virtual Reality Software and Technology (VRST ’02),
pp. 73-80, 2002.

[13] A. Monnet, A. Mittal, N. Paragios, and V. Ramesh, “Background
Modeling and Subtraction of Dynamic Scenes,” Proc. Ninth IEEE
Int’l Conf. Computer Vision (ICCV ’03), p. 1305, 2003.

[14] I. Koprinska and S. Carrato, “Temporal Video Segmentation: A
Survey,” Signal Processing Image Comm., vol. 16, pp. 477-500, Jan.
2001.

[15] Y. Gong and X. Liu, “Video Shot Segmentation and Classifica-
tion,” Proc. Int’l Conf. Pattern Recognition (ICPR ’00), vol. 1,
pp. 860-863, 2000.

[16] D.G. Lowe, “Object Recognition from Local Scale-Invariant
Features,” Proc. Int’l Conf. Computer Vision, pp. 1150-1157, 1999.

[17] J. Canny, “A Computational Approach to Edge Detection,” IEEE
Trans. Pattern Analysis and Machine Intelligence, vol. 8, no. 6,
pp. 679-698, 1986.

[18] F. Bernardini and C.L. Bajaj, “Sampling and Reconstructing
Manifolds Using Alpha-Shapes,” Proc. Ninth Canadian Conf.
Computational Geometry, pp. 193-198, 1997.

[19] C. Steger, “An Unbiased Detector of Curvilinear Structures,” IEEE
Trans. Pattern Analysis and Machine Intelligence, vol. 20, no. 2,
pp. 113-125, Feb. 1998.

[20] M. Sonka, V. Hlavac, and R. Boyle, Image Processing, Analysis, and
Machine Vision. Chapman and Hall, 1993.

[21] C.M. Georgescu, “Synergism in Low Level Vision,” Proc. Int’l
Conf. Pattern Recognition, pp. 150-155, 2002.

[22] A. Meijster, J.B.T.M. Roerdink, and W.H. Hesselink, “A General
Algorithm for Computing Distance Transforms in Linear Time,”
Math. Morphology and its Applications to Image and Signal Processing,
pp. 331-340, 2000.

[23] B. Price and W. Barrett, “Object-Based Vectorization for Inter-
active Image Editing,” The Visual Computer, vol. 22, no. 9, pp. 661-
670, 2006.

Song-Hai Zhang received the PhD degree from
Tsinghua University in 2007. He is currently a
postdoctoral researcher of computer science at
Tsinghua University, China. His research inter-
ests include image and video processing, geo-
metric computing.

Tao Chen is currently working toward the PhD
degree in the Department of Computer Science
and Technology, Tsinghua University. His re-
search interests are image and video processing.

Yi-Fei Zhang received the Master’s degree from
Tsinghua University in 2007, and is currently an
employee of Google China. His research inter-
ests are image and video processing.

Shi-Min Hu received the PhD degree from
Zhejiang University in 1996. He is currently a
chair professor of computer science at Tsinghua
University, China. His research interests include
digital geometry processing, video processing,
rendering, computer animation, and computer-
aided geometric design. He is on the editorial
board of Computer-Aided Design. He is a
member of the IEEE.

Ralph R. Martin received the PhD degree from
Cambridge University in 1983. He is currently a
professor at Cardiff University. He has pub-
lished more than 170 papers and 10 books,
covering such topics as reverse engineering,
solid and surface modeling, intelligent sketch
input, geometric reasoning, and various aspects
of computer graphics. He is on the editorial
boards of Computer-Aided Design, Computer-
Aided Geometric Design, and the International
Journal of Shape Modeling.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

ZHANG ET AL.: VECTORIZING CARTOON ANIMATIONS 629

Authorized licensed use limited to: Tsinghua University Library. Downloaded on March 07,2010 at 02:33:26 EST from IEEE Xplore. Restrictions apply.

