
VectorNet: Encoding HD Maps and Agent Dynamics from

Vectorized Representation

Jiyang Gao1∗ Chen Sun2∗ Hang Zhao1 Yi Shen1

Dragomir Anguelov 1 Congcong Li1 Cordelia Schmid 2

1Waymo LLC 2 Google Research

{jiyanggao, hangz, yshen, dragomir, congcongli}@waymo.com, {chensun, cordelias}@google.com

Abstract

Behavior prediction in dynamic, multi-agent systems is

an important problem in the context of self-driving cars,

due to the complex representations and interactions of road

components, including moving agents (e.g. pedestrians and

vehicles) and road context information (e.g. lanes, traffic

lights). This paper introduces VectorNet, a hierarchical

graph neural network that first exploits the spatial locality

of individual road components represented by vectors and

then models the high-order interactions among all compo-

nents. In contrast to most recent approaches, which ren-

der trajectories of moving agents and road context infor-

mation as bird-eye images and encode them with convolu-

tional neural networks (ConvNets), our approach operates

on a vector representation. By operating on the vectorized

high definition (HD) maps and agent trajectories, we avoid

lossy rendering and computationally intensive ConvNet en-

coding steps. To further boost VectorNet’s capability in

learning context features, we propose a novel auxiliary task

to recover the randomly masked out map entities and agent

trajectories based on their context. We evaluate VectorNet

on our in-house behavior prediction benchmark and the re-

cently released Argoverse forecasting dataset. Our method

achieves on par or better performance than the competitive

rendering approach on both benchmarks while saving over

70% of the model parameters with an order of magnitude

reduction in FLOPs. It also outperforms the state of the art

on the Argoverse dataset.

1. Introduction

This paper focuses on behavior prediction in complex

multi-agent systems, such as self-driving vehicles. The core

interest is to find a unified representation which integrates

the agent dynamics, acquired by perception systems such as

∗ equal contribution.
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Figure 1. Illustration of the rasterized rendering (left) and vector-

ized approach (right) to represent high-definition map and agent

trajectories.

object detection and tracking, with the scene context, pro-

vided as prior knowledge often in the form of High Defini-

tion (HD) maps. Our goal is to build a system which learns

to predict the intent of vehicles, which are parameterized as

trajectories.

Traditional methods for behavior prediction are rule-

based, where multiple behavior hypotheses are generated

based on constraints from the road maps. More recently,

many learning-based approaches are proposed [5, 6, 10, 15];

they offer the benefit of having probabilistic interpretations

of different behavior hypotheses, but require building a rep-

resentation to encode the map and trajectory information.

Interestingly, while the HD maps are highly structured, or-

ganized as entities with location (e.g. lanes) and attributes

(e.g. a green traffic light), most of these approaches choose

to render the HD maps as color-coded attributes (Figure 1,

left), which requires manual specifications; and encode the

scene context information with ConvNets, which have lim-

ited receptive fields. This raise the question: can we learn

a meaningful context representation directly from the struc-

tured HD maps?

We propose to learn a unified representation for multi-
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Figure 2. An overview of our proposed VectorNet. Observed agent trajectories and map features are represented as sequence of vectors,

and passed to a local graph network to obtain polyline-level features. Such features are then passed to a fully-connected graph to model

the higher-order interactions. We compute two types of losses: predicting future trajectories from the node features corresponding to the

moving agents and predicting the node features when their features are masked out.

agent dynamics and structured scene context directly from

their vectorized form (Figure 1, right). The geographic ex-

tent of the road features can be a point, a polygon, or a curve

in geographic coordinates. For example, a lane boundary

contains multiple control points that build a spline; a cross-

walk is a polygon defined by several points; a stop sign is

represented by a single point. All these geographic entities

can be closely approximated as polylines defined by mul-

tiple control points, along with their attributes. Similarly,

the dynamics of moving agents can also be approximated

by polylines based on their motion trajectories. All these

polylines can then be represented as sets of vectors.

We use graph neural networks (GNNs) to incorporate

these sets of vectors. We treat each vector as a node in

the graph, and set the node features to be the start location

and end location of each vector, along with other attributes

such as polyline group id and semantic labels. The context

information from HD maps, along with the trajectories of

other moving agents are propagated to the target agent node

through the GNN. We can then take the output node fea-

ture corresponding to the target agent to decode its future

trajectories.

Specifically, to learn competitive representations with

GNNs, we observe that it is important to constrain the con-

nectivities of the graph based on the spatial and semantic

proximity of the nodes. We therefore propose a hierarchi-

cal graph architecture, where the vectors belonging to the

same polylines with the same semantic labels are connected

and embedded into polyline features, and all polylines are

then fully connected with each other to exchange informa-

tion. We implement the local graphs with multi-layer per-

ceptrons, and the global graphs with self-attention [30]. An

overview of our approach is shown in Figure 2.

Finally, motivated by the recent success of self-

supervised learning from sequential linguistic [11] and vi-

sual data [27], we propose an auxiliary graph completion

objective in addition to the behavior prediction objective.

More specifically, we randomly mask out the input node

features belonging to either scene context or agent trajecto-

ries, and ask the model to reconstruct the masked features.

The intuition is to encourage the graph networks to better

capture the interactions between agent dynamics and scene

context. In summary, our contributions are:

• We are the first to demonstrate how to directly incor-

porate vectorized scene context and agent dynamics in-

formation for behavior prediction.

• We propose the hierarchical graph network VectorNet

and the node completion auxiliary task.

• We evaluate the proposed method on our in-house be-

havior prediction dataset and the Argoverse dataset,

and show that our method achieves on par or better per-

formance over a competitive rendering baseline with

70% model size saving and an order of magnitude re-

duction in FLOPs. Our method also achieves the state-

of-the-art performance on Argoverse.

2. Related work

Behavior prediction for autonomous driving. Behavior

prediction for moving agents has become increasingly im-

portant for autonomous driving applications [7, 9, 19], and

high-fidelity maps have been widely used to provide context

information. For example, IntentNet [5] proposes to jointly

detect vehicles and predict their trajectories from LiDAR

points and rendered HD maps. Hong et al. [15] assumes

that vehicle detections are provided and focuses on behavior

prediction by encoding entity interactions with ConvNets.

Similarly, MultiPath [6] also uses ConvNets as encoder,
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but adopts pre-defined trajectory anchors to regress multi-

ple possible future trajectories. PRECOG [23] attempts to

capture the future stochasiticity by flow-based generative

models. Similar to [6, 15, 23], we also assume the agent de-

tections to be provided by an existing perception algorithm.

However, unlike these methods which all use ConvNets to

encode rendered road maps, we propose to directly encode

vectorized scene context and agent dynamics.

Forecasting multi-agent interactions. Beyond the au-

tonomous driving domain, there is more general interest to

predict the intents of interacting agents, such as for pedes-

trians [2, 13, 24], human activities [28] or for sports play-

ers [12, 26, 32, 33]. In particular, Social LSTM [2] models

the trajectories of individual agents as separate LSTM net-

works, and aggregates the LSTM hidden states based on

spatial proximity of the agents to model their interactions.

Social GAN [13] simplifies the interaction module and pro-

poses an adversarial discriminator to predict diverse futures.

Sun et al. [26] combines graph networks [4] with varia-

tional RNNs [8] to model diverse interactions. The social

interactions can also be inferred from data: Kipf et al. [18]

treats such interactions as latent variables; and graph atten-

tion networks [16, 31] apply self-attention mechanism to

weight the edges in a pre-defined graph. Our method goes

one step further by proposing a unified hierarchical graph

network to jointly model the interactions of multiple agents,

and their interactions with the entities from road maps.

Representation learning for sets of entities. Traditionally

machine perception algorithms have been focusing on high-

dimensional continuous signals, such as images, videos or

audios. One exception is 3D perception, where the inputs

are usually in the form of unordered point sets, given by

depth sensors. For example, Qi et al. propose the Point-

Net model [20] and PointNet++ [21] to apply permutation

invariant operations (e.g. max pooling) on learned point em-

beddings. Unlike point sets, entities on HD maps and agent

trajectories form closed shapes or are directed, and they

may also be associated with attribute information. We there-

fore propose to keep such information by vectorizing the in-

puts, and encode the attributes as node features in a graph.

Self-supervised context modeling. Recently, many works

in the NLP domain have proposed modeling language con-

text in a self-supervised fashion [11, 22]. Their learned rep-

resentations achieve significant performance improvement

when transferred to downstream tasks. Inspired by these

methods, we propose an auxiliary loss for graph represen-

tations, which learns to predict the missing node features

from its neighbors. The goal is to incentivize the model to

better capture interactions among nodes.

3. VectorNet approach

This section introduces our VectorNet approach. We first

describe how to vectorize agent trajectories and HD maps.

Next we present the hierarchical graph network which ag-

gregates local information from individual polylines and

then globally over all trajectories and map features. This

graph can then be used for behavior prediction.

3.1. Representing trajectories and maps

Most of the annotations from an HD map are in the form

of splines (e.g. lanes), closed shape (e.g. regions of inter-

sections) and points (e.g. traffic lights), with additional at-

tribute information such as the semantic labels of the an-

notations and their current states (e.g. color of the traffic

light, speed limit of the road). For agents, their trajecto-

ries are in the form of directed splines with respect to time.

All of these elements can be approximated as sequences of

vectors: for map features, we pick a starting point and di-

rection, uniformly sample key points from the splines at the

same spatial distance, and sequentially connect the neigh-

boring key points into vectors; for trajectories, we can just

sample key points with a fixed temporal interval (0.1 sec-

ond), starting from t = 0, and connect them into vectors.

Given small enough spatial or temporal intervals, the result-

ing polylines serve as close approximations of the original

map and trajectories.

Our vectorization process is a one-to-one mapping be-

tween continuous trajectories, map annotations and the vec-

tor set, although the latter is unordered. This allows us to

form a graph representation on top of the vector sets, which

can be encoded by graph neural networks. More specifi-

cally, we treat each vector vi belonging to a polyline Pj as

a node in the graph with node features given by

vi = [ds
i ,d

e
i ,ai, j] , (1)

where ds
i and de

i are coordinates of the start and end points

of the vector, d itself can be represented as (x, y) for 2D

coordinates or (x, y, z) for 3D coordinates; ai corresponds

to attribute features, such as object type, timestamps for tra-

jectories, or road feature type or speed limit for lanes; j is

the integer id of Pj , indicating vi ∈ Pj .

To make the input node features invariant to the locations

of target agents, we normalize the coordinates of all vectors

to be centered around the location of target agent at its last

observed time step. A future work is to share the coordinate

centers for all interacting agents, such that their trajectories

can be predicted in parallel.

3.2. Constructing the polyline subgraphs

To exploit the spatial and semantic locality of the nodes,

we take a hierarchical approach by first constructing sub-

graphs at the vector level, where all vector nodes belonging

to the same polyline are connected with each other. Con-

sidering a polyline P with its nodes {v1,v2, ...,vP }, we

define a single layer of subgraph propagation operation as

v
(l+1)
i = ϕrel

(

genc(v
(l)
i ), ϕagg

({

genc(v
(l)
j )

}))

(2)
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Figure 3. The computation flow on the vector nodes of the same

polyline.

where v
(l)
i is the node feature for l-th layer of the subgraph

network, and v
(0)
i is the input features vi. Function genc(·)

transforms the individual node features, ϕagg(·) aggregates

the information from all neighboring nodes, and ϕrel(·) is

the relational operator between node vi and its neighbors.

In practice, genc(·) is a multi-layer perceptron (MLP)

whose weights are shared over all nodes; specifically,

the MLP contains a single fully connected layer followed

by layer normalization [3] and then ReLU non-linearity.

ϕagg(·) is the maxpooling operation, and ϕrel(·) is a sim-

ple concatenation. An illustration is shown in Figure 3. We

stack multiple layers of the subgraph networks, where the

weights for genc(·) are different. Finally, to obtain polyline

level features, we compute

p = ϕagg

({

v
(Lp)
i

})

(3)

where ϕagg(·) is again maxpooling.

Our polyline subgraph network can be seen as a gener-

alization of PointNet [20]: when we set ds = de and let a

and l to be empty, our network has the same inputs and com-

pute flow as PointNet. However, by embedding the order-

ing information into vectors, constraining the connectivity

of subgraphs based on the polyline groupings, and encoding

attributes as node features, our method is particularly suit-

able to encode structured map annotations and agent trajec-

tories.

3.3. Global graph for high­order interactions

We now consider modeling the high-order interactions

on the polyline node features {p1,p2, ...,pP } with a global

interaction graph:

{

p
(l+1)
i

}

= GNN
({

p
(l)
i

}

,A
)

(4)

where {p
(l)
i } is the set of polyline node features, GNN(·)

corresponds to a single layer of a graph neural network, and

A corresponds to the adjacency matrix for the set of poly-

line nodes.

The adjacency matrix A can be provided a heuristic,

such as using the spatial distances [2] between the nodes.

For simplicity, we assume A to be a fully-connected graph.

Our graph network is implemented as a self-attention oper-

ation [30]:

GNN(P) = softmax
(

PQP
T
K

)

PV (5)

where P is the node feature matrix and PQ, PK and PV

are its linear projections.

We then decode the future trajectories from the nodes

corresponding the moving agents:

vfuture
i = ϕtraj

(

p
(Lt)
i

)

(6)

where Lt is the number of the total number of GNN layers,

and ϕtraj(·) is the trajectory decoder. For simplicity, we use

an MLP as the decoder function. More advanced decoders,

such as the anchor-based approach from MultiPath [6], or

variational RNNs [8, 26] can be used to generate diverse

trajectories; these decoders are complementary to our input

encoder.

We use a single GNN layer in our implementation, so

that during inference time, only the node features corre-

sponding to the target agents need to be computed. How-

ever, we can also stack multiple layers of GNN(·) to model

higher-order interactions when needed.

To encourage our global interaction graph to better cap-

ture interactions among different trajectories and map poly-

lines, we introduce an auxiliary graph completion task.

During training time, we randomly mask out the features

for a subset of polyline nodes, e.g. pi. We then attempt to

recover its masked out feature as:

p̂i = ϕnode

(

p
(Lt)
i

)

(7)

where ϕnode(·) is the node feature decoder implemented as

an MLP. These node feature decoders are not used during

inference time.

Recall that pi is a node from a fully-connected, un-

ordered graph. In order to identify an individual polyline

node when its corresponding feature is masked out, we

compute the minimum values of the start coordinates from

all of its belonging vectors to obtain the identifier embed-

ding pid
i . The inputs node features then become

p
(0)
i =

[

pi;p
id
i

]

(8)

Our graph completion objective is closely related to the

widely successful BERT [11] method for natural language
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processing, which predicts missing tokens based on bidi-

rectional context from discrete and sequential text data. We

generalize this training objective to work with unordered

graphs. Unlike several recent methods (e.g. [25]) that gener-

alizes the BERT objective to unordered image patches with

pre-computed visual features, our node features are jointly

optimized in an end-to-end framework.

3.4. Overall framework

Once the hierarchical graph network is constructed, we

optimize for the multi-task training objective

L = Ltraj + αLnode (9)

where Ltraj is the negative Gaussian log-likelihood for

the groundtruth future trajectories, Lnode is the Huber loss

between predicted node features and groundtruth masked

node features, and α = 1.0 is a scalar that balances the two

loss terms. To avoid trivial solutions for Lnode by lowering

the magnitude of node features, we L2 normalize the poly-

line node features before feeding them to the global graph

network.

Our predicted trajectories are parameterized as per-step

coordinate offsets, starting from the last observed location.

We rotate the coordinate system based on the heading of the

target vehicle at the last observed location.

4. Experiments

In this section, we first describe the experimental set-

tings, including the datasets, metrics and rasterized + Con-

vNets baseline. Secondly, comprehensive ablation studies

are done for both the rasterized baseline and VectorNet.

Thirdly, we compare and discuss the computation cost, in-

cluding FLOPs and number of parameters. Finally, we com-

pare the performance with state-of-the-art methods.

4.1. Experimental setup

4.1.1 Datasets

We report results on two vehicle behavior prediction bench-

marks, the recently released Argoverse dataset [7] and our

in-house behavior prediction dataset.

Argoverse motion forecasting [7] is a dataset designed for

vehicle behavior prediction with trajectory histories. There

are 333K 5-second long sequences split into 211K training,

41K validation and 80K testing sequences. The creators cu-

rated this dataset by mining interesting and diverse scenar-

ios, such as yielding for a merging vehicle, crossing an in-

tersection, etc. The trajectories are sampled at 10Hz, with

(0, 2] seconds are used as observation and (2, 5] seconds for

trajectory prediction. Each sequence has one “interesting”

agent whose trajectory is the prediction target. In addition

to vehicle trajectories, each sequence is also associated with

map information. The future trajectories of the test set are

held out. Unless otherwise mentioned, our ablation study

reports performance on the validation set.

In-house dataset is a large-scale dataset collected for be-

havior prediction. It contains HD map data, bounding box

and tracking annotations from an automatic in-house per-

ception system, and manually labeled vehicle trajectories.

The total number of vehicle trajectories are 2.2M and 0.55M

for train and test sets. Each trajectory has a length of 4 sec-

onds, where the (0, 1] second is the history trajectory used

as observation, and (1, 4] seconds are the target future tra-

jectories to be evaluated. The trajectories are sampled from

real world vehicles’ behaviors, including stationary, going

straight, turning, lane change and reversing, and roughly

preserves the natural distribution of driving scenarios. For

the HD map features, we include lane boundaries, stop/yield

signs, crosswalks and speed bumps.

For both datasets, the input history trajectories are de-

rived from automatic perception systems and are thus noisy.

Argoverse’s future trajectories are also machine generated,

while In-house has manually labeled future trajectories.

4.1.2 Metrics

For evaluation we adopt the widely used Average Displace-

ment Error (ADE) computed over the entire trajectories

and the Displacement Error at t (DE@ts) metric, where

t ∈ {1.0, 2.0, 3.0} seconds. The displacements are mea-

sured in meters.

4.1.3 Baseline with rasterized images

We render N consecutive past frames, where N is 10 for

the in-house dataset and 20 for the Argoverse dataset. Each

frame is a 400×400×3 image, which has road map infor-

mation and the detected object bounding boxes. 400 pixels

correspond to 100 meters in the in-house dataset, and 130

meters in the Argoverse dataset. Rendering is based on the

position of self-driving vehicle in the last observed frame;

the self-driving vehicle is placed at the coordinate location

(200, 320) in in-house dataset, and (200, 200) in Argov-

erse dataset. All N frames are stacked together to form a

400×400×3N image as model input.

Our baseline uses a ConvNet to encode the rasterized

images, whose architecture is comparable to IntentNet [5]:

we use a ResNet-18 [14] as the ConvNet backbone. Un-

like IntentNet, we do not use the LiDAR inputs. To obtain

vehicle-centric features, we crop the feature patch around

the target vehicle from the convolutional feature map, and

average pool over all the spatial locations of the cropped

feature map to get a single vehicle feature vector. We em-

pirically observe that using a deeper ResNet model or ro-

tating the cropped features based on target vehicle headings

do not lead to better performance. The vehicle features are
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then fed into a fully connected layer (as used by IntentNet)

to predict the future coordinates in parallel. The model is

optimized on 8 GPUs with synchronous training. We use

the Adam optimizer [17] and decay the learning rate every

5 epochs by a factor of 0.3. We train the model for a total

of 25 epochs with an initial learning rate of 0.001.

To test how convolutional receptive fields and feature

cropping strategies influence the performance, we conduct

ablation study on the network receptive field, feature crop-

ping strategy and input image resolutions.

4.1.4 VectorNet with vectorized representations

To ensure a fair comparison, the vectorized representation

takes as input the same information as the rasterized repre-

sentation. Specifically, we extract exactly the same set of

map features as when rendering. We also make sure that the

visible road feature vectors for a target agent are the same

as in the rasterized representation. However, the vectorized

representation does enjoy the benefit of incorporating more

complex road features which are non-trivial to render.

Unless otherwise mentioned, we use three graph lay-

ers for the polyline subgraphs, and one graph layer for the

global interaction graph. The number of hidden units in all

MLPs are fixed to 64. The MLPs are followed by layer nor-

malization and ReLU nonlinearity. We normalize the vec-

tor coordinates to be centered around the location of target

vehicle at the last observed time step. Similar to the raster-

ized model, VectorNet is trained on 8 GPUs synchronously

with Adam optimizer. The learning rate is decayed every 5

epochs by a factor of 0.3, we train the model for a total of

25 epochs with initial learning rate of 0.001.

To understand the impact of the components on the per-

formance of VectorNet, we conduct ablation studies on the

type of context information, i.e. whether to use only map

or also the trajectories of other agents as well as the impact

of number of graph layers for the polyline subgraphs and

global interaction graphs.

4.2. Ablation study for the ConvNet baseline

We conduct ablation studies on the impact of ConvNet

receptive fields, feature cropping strategies, and the resolu-

tion of the rasterized images.

Impact of receptive fields. As behavior prediction often re-

quires capturing long range road context, the convolutional

receptive field could be critical to the prediction quality. We

evaluate different variants to see how two key factors of re-

ceptive fields, convolutional kernel sizes and feature crop-

ping strategies, affect the prediction performance. The re-

sults are shown in Table 1. By comparing kernel size 3, 5

and 7 at 400×400 resolution, we can see that a larger kernel

size leads to slight performance improvement. However, it

also leads to quadratic increase of the computation cost. We

also compare different cropping methods, by increasing the

crop size or cropping along the vehicle trajectory at all ob-

served time steps. From the 3rd to 6th rows of Table 1 we

can see that a larger crop size (3 v.s. 1) can significantly

improve the performance, and cropping along observed tra-

jectory also leads to better performance. This observation

confirms the importance of receptive fields when rasterized

images are used as inputs. It also highlights its limitation,

where a carefully designed cropping strategy is needed, of-

ten at the cost of increased computation cost.

Impact of rendering resolution. We further vary the reso-

lutions of rasterized images to see how it affects the predic-

tion quality and computation cost, as shown in the first three

rows of Table 1. We test three different resolutions, includ-

ing 400× 400 (0.25 meter per pixel), 200× 200 (0.5 meter

per pixel) and 100× 100 (1 meter per pixel). It can be seen

that the performance increases generally as the resolution

goes up. However, for the Argoverse dataset we can see that

increasing the resolution from 200×200 to 400×400 leads

to slight drop in performance, which can be explained by

the decrease of effective receptive field size with the fixed

3×3 kernel. We discuss the impact on computation cost of

these design choices in Section 4.4.

4.3. Ablation study for VectorNet

Impact of input node types. We study whether it is help-

ful to incorporate both map features and agent trajecto-

ries for VectorNet. The first three rows in Table 2 corre-

spond to using only the past trajectory of the target vehi-

cle (“none” context), adding only map polylines (“map”),

and finally adding trajectory polylines (“map + agents”).

We can clearly observe that adding map information sig-

nificantly improves the trajectory prediction performance.

Incorporating trajectory information furthers improves the

performance.

Impact of node completion loss. The last four rows of Ta-

ble 2 compares the impact of adding the node completion

auxiliary objective. We can see that adding this objective

consistently helps with performance, especially at longer

time horizons.

Impact on the graph architectures. In Table 3 we study

the impact of depths and widths of the graph layers on tra-

jectory prediction performance. We observe that for the

polyline subgraph three layers gives the best performance,

and for the global graph just one layer is needed. Making

the MLPs wider does not lead to better performance, and

hurts for Argoverse, presumably because it has a smaller

training dataset. Some example visualizations on predicted

trajectory and lane attention are shown in Figure 4.

Comparison with ConvNets. Finally, we compare our

VectorNet with the best ConvNet model in Table 4. For the

in-house dataset, our model achieves on par performance

with the best ResNet model, while being much more eco-
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Resolution Kernel Crop In-house dataset Argoverse dataset

DE@1s DE@2s DE@3s ADE DE@1s DE@2s DE@3s ADE

100×100 3×3 1×1 0.63 0.94 1.32 0.82 1.14 2.80 5.19 2.21

200×200 3×3 1×1 0.57 0.86 1.21 0.75 1.11 2.72 4.96 2.15

400×400 3×3 1×1 0.55 0.82 1.16 0.72 1.12 2.72 4.94 2.16

400×400 3×3 3×3 0.50 0.77 1.09 0.68 1.09 2.62 4.81 2.08

400×400 3×3 5×5 0.50 0.76 1.08 0.67 1.09 2.60 4.70 2.08

400×400 3×3 traj 0.47 0.71 1.00 0.63 1.05 2.48 4.49 1.96

400×400 5×5 1×1 0.54 0.81 1.16 0.72 1.10 2.63 4.75 2.13

400×400 7×7 1×1 0.53 0.81 1.16 0.72 1.10 2.63 4.74 2.13
Table 1. Impact of receptive field (as controlled by convolutional kernel size and crop strategy) and rendering resolution for the ConvNet

baseline. We report DE and ADE (in meters) on both the in-house dataset and the Argoverse dataset.

Context Node Compl. In-house dataset Argoverse dataset

DE@1s DE@2s DE@3s ADE DE@1s DE@2s DE@3s ADE

none - 0.77 0.99 1.29 0.92 1.29 2.98 5.24 2.36

map no 0.57 0.81 1.11 0.72 0.95 2.18 3.94 1.75

map + agents no 0.55 0.78 1.05 0.70 0.94 2.14 3.84 1.72

map yes 0.55 0.78 1.07 0.70 0.94 2.11 3.77 1.70

map + agents yes 0.53 0.74 1.00 0.66 0.92 2.06 3.67 1.66
Table 2. Ablation studies for VectorNet with different input node types and training objectives. Here “map” refers to the input vectors from

the HD maps, and “agents” refers to the input vectors from the trajectories of non-target vehicles. When “Node Compl.” is enabled, the

model is trained with the graph completion objective in addition to trajectory prediction. DE and ADE are reported in meters.

Polyline Subgraph Global Graph DE@3s

Depth Width Depth Width In-house Argoverse

1 64 1 64 1.09 3.89

3 64 1 64 1.00 3.67

3 128 1 64 1.00 3.93

3 64 2 64 0.99 3.69

3 64 2 256 1.02 3.69

Table 3. Ablation on the depth and width of polyline subgraph and

global graph. The depth of polyline subgraph has biggest impact

on DE@3s.

nomically in terms of model size and FLOPs. For the Ar-

goverse dataset, our approach significantly outperforms the

best ConvNet model with 12% reduction in DE@3. We ob-

serve that the in-house dataset contains a lot of stationary

vehicles due to its natural distribution of driving scenarios;

those cases can be easily solved by ConvNets, which are

good at capturing local pattern. However, for the Argoverse

dataset where only “interesting” cases are preserved, Vec-

torNet outperforms the best ConvNet baseline by a large

margin; presumably due to its ability to capture long range

context information via the hierarchical graph network.

4.4. Comparison of FLOPs and model size

We now compare the FLOPs and model size between

ConvNets and VectorNet, and their implications on perfor-

mance. The results are shown in Table 4. The prediction de-

coder is not counted for FLOPs and number of parameters.

We can see that the FLOPs of ConvNets increase quadrati-

Model FLOPs #Param DE@3s

In-house Argo

R18-k3-c1-r100 0.66G 246K 1.32 5.19

R18-k3-c1-r200 2.64G 246K 1.21 4.95

R18-k3-c1-r400 10.56G 246K 1.16 4.96

R18-k5-c1-r400 15.81G 509K 1.16 4.75

R18-k7-c1-r400 23.67G 902K 1.16 4.74

R18-k3-c3-r400 10.56G 246K 1.09 4.81

R18-k3-c5-r400 10.56G 246K 1.08 4.70

R18-k3-t-r400 10.56G 246K 1.00 4.49

VectorNet w/o aux. 0.041G×n 72K 1.05 3.84

VectorNet w aux. 0.041G×n 72K 1.00 3.67

Table 4. Model FLOPs and number of parameters comparison for

ResNet and VectorNet. R18-kM -cN -rS stands for the ResNet-18

model with kernel size M ×M , crop patch size N ×N and input

resolution S × S. Prediction decoder is not counted for FLOPs

and parameters.

cally with the kernel size and input image size; the number

of parameters increases quadratically with the kernel size.

As we render the images centered at the self driving vehicle,

the feature map can be reused among multiple targets, so the

FLOPs of the backbone part is a constant number. How-

ever, if the rendered images are target-centered, the FLOPs

increases linearly with the number of targets. For Vector-

Net, the FLOPs depends on the number of vector nodes and

polylines in the scene. For the in-house dataset, the average

number of road map polylines is 17 containing 205 vectors;

the average number of road agent polylines is 59 contain-
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Figure 4. (Left) Visualization of the prediction: lanes are shown in

grey, non-target agents are green, target agent’s ground truth tra-

jectory is in pink, predicted trajectory in blue. (Right) Visualiza-

tion of attention for road and agent: Brighter red color corresponds

to higher attention score. It can be seen that when agents are fac-

ing multiple choices (first two examples), the attention mechanism

is able to focus on the correct choices (two right-turn lanes in the

second example). The third example is a lane-changing agent, the

attended lanes are the current lane and target lane. In the fourth

example, though the prediction is not accurate, the attention still

produces a reasonable score on the correct lane.

ing 590 vectors. We calculate the FLOPs based on these

average numbers. Note that, as we need to re-normalize the

vector coordinates and re-compute the VectorNet features

for each target, the FLOPs increase linearly with the num-

ber of predicting targets (n in Table 4).

Model DE@3s ADE

Constant Velocity [7] 7.89 3.53

Nearest Neighbor [7] 7.88 3.45

LSTM ED [7] 4.95 2.15

Challenge Winner: uulm-mrm 4.19 1.90

Challenge Winner: Jean 4.17 1.86

VectorNet 4.01 1.81
Table 5. Trajectory prediction performance on the Argoverse Fore-

casting test set when number of sampled trajectories K=1. Results

were retrieved from the Argoverse leaderboard [1] on 03/18/2020.

Comparing R18-k3-t-r400 (the best model among Con-

vNets) with VectorNet, VectorNet significantly outperforms

ConvNets. For computation, ConvNets consumes 200+

times more FLOPs than VectorNet (10.56G vs 0.041G) for

a single agent; considering that the average number of ve-

hicles in a scene is around 30 (counted from the in-house

dataset), the actual computation consumption of VectorNet

is still much smaller than that of ConvNets. At the same

time, VectorNet needs 29% of the parameters of ConvNets

(72K vs 246K). Based on the comparison, we can see that

VectorNet can significantly boost the performance while at

the same time dramatically reducing computation cost.

4.5. Comparison with state­of­the­art methods

Finally, we compare VectorNet with several baseline ap-

proaches [7] and some state-of-the-art methods on the Ar-

goverse [7] test set. We report K=1 results (the most likely

predictions) in Table 5. The baseline approaches include the

constant velocity baseline, nearest neighbor retrieval, and

LSTM encoder-decoder. The state-of-the-art approaches

are the winners of Argoverse Forecasting Challenge. It can

be seen that VectorNet improves the state-of-the-art perfor-

mance from 4.17 to 4.01 for the DE@3s metric when K=1.

5. Conclusion and future work

We proposed to represent the HD map and agent dynam-

ics with a vectorized representation. We designed a novel

hierarchical graph network, where the first level aggre-

gates information among vectors inside a polyline, and the

second level models the higher-order relationships among

polylines. Experiments on the large scale in-house dataset

and the public available Argoverse dataset show that the

proposed VectorNet outperforms the ConvNet counterpart

while at the same time reducing the computational cost by

a large margin. VectorNet also achieves state-of-the-art per-

formance (DE@3s, K=1) on the Argoverse test set. A nat-

ural next step is to incorporate the VectorNet encoder with

a multi-modal trajectory decoder (e.g. [6, 29]) to generate

diverse future trajectories.
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