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Abstract. Given a ring of ternions R, i. e., a ring isomorphic to that of upper
triangular 2×2 matrices with entries from an arbitrary commutative field F , a
complete classification is performed of the vectors from the free left R-module
Rn+1, n ≥ 1, and of the cyclic submodules generated by these vectors. The
vectors fall into 5 + |F | and the submodules into 6 distinct orbits under the
action of the general linear group GLn+1(R).

Particular attention is paid to free cyclic submodules generated by non-
unimodular vectors, as these are linked with the lines of PG(n, F ), the n-
dimensional projective space over F . In the finite case, F = GF(q), explicit
formulas are derived for both the total number of non-unimodular free cyclic
submodules and the number of such submodules passing through a given vec-
tor. These formulas yield a combinatorial approach to the lines and points of
PG(n, q), n ≥ 2, in terms of vectors and non-unimodular free cyclic submod-
ules of Rn+1.
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1. Introduction

Projective spaces over rings (see [10] for the standard terminology, notation and
the necessary background information), and projective lines in particular (see [1]),
have recently become the subject of considerable interest due to rather unexpected
recognition of their relevance for the field of quantum physics in general and quan-
tum information theory in particular; we refer to [5,6], and the references therein.
Being motivated by these intriguing applications, we have had – in the framework
of a broader international collaboration – a detailed look at the structure of a
variety of finite projective ring lines and planes (see, e. g. [9]) and came across
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some interesting aspects (see, among others, [7]) which, to the best of our knowl-
edge, have not yet been the subject of a systematic mathematical treatment. These
aspects mostly relate to the properties of free cyclic submodules generated by vec-
tors of a free R-module of a given unital ring R, and can be summarised into
the following open problems: how the interrelation between different free cyclic
submodules over a particular ring is encoded in the structure of the ideals of the
ring; what kind of finite rings feature “outliers”, i. e., vectors not belonging to any
free cyclic submodule generated by unimodular vectors; what the conditions are
for a non-unimodular vector to generate a free cyclic submodule; and, finally, how
the substructure generated by such non-unimodular free cyclic submodules relates
to the parent ring geometry. These questions lead to projective lattice geometry
in the sense of [2]. In order to partially answer some of them, we have already
examined the case of the smallest ring of ternions [8] – this being, remarkably, the
lowest order ring where one not only finds “outliers”, but also free cyclic submod-
ules generated by (some of) them. In the present paper we extend and generalise
the findings of [8] to an arbitrary ring of ternions, with finite cases handled in
somewhat more detail.

2. Ternions

Let F be a (commutative) field. We denote by R the ring of ternions, i. e., upper
triangular 2 × 2 matrices over F , with the usual addition and multiplication for
matrices. The ring R is non-commutative, with I (the 2×2 identity matrix over F )
being its multiplicative identity and 0 (the 2× 2 zero matrix over F ) the additive
one.1 The ring R has precisely two (two-sided) ideals other than 0 and R, namely
the sets

I1 :=
{(

0 y
0 z

)∣∣∣∣ y, z ∈ F

}
and I2 :=

{(
x y
0 0

)∣∣∣∣ x, y ∈ F

}
. (1)

Furthermore, all sets

I1(b : c) :=
{(

0 zb
0 zc

)∣∣∣∣ z ∈ F

}
with (0, 0) �= (b, c) ∈ F 2 (2)

are proper right ideals of R. In fact, I1(b : c) depends only on the ratio b : c. Note
that the ratio 1 : 0 is also allowed here. Similarly, all sets

I2(a : b) :=
{(

xa xb
0 0

)∣∣∣∣ x ∈ F

}
with (0, 0) �= (a, b) ∈ F 2 (3)

are proper left ideals of R. It is an easy exercise to show that there are no other
proper one-sided ideals in R apart from the ones given by (2) and (3). Recall that

1In what follows, the symbol “0” stands, by abuse of notation, for both the zero-element of the
field F and the zero matrix of R, the difference being always fairly obvious from the context.
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the Jacobson radical of R (denoted by radR) equals the intersection of all maximal
left (or right) ideals. So

radR = I1(1 : 0) = I2(0 : 1) . (4)

Note that a ternion is invertible (a unit) if, and only if, its diagonal entries are
non-zero. The set of invertible ternions will be written as R∗. It is a group under
multiplication.

3. Classifying vectors and cyclic submodules

We consider now the free left R-module Rn+1 for some integer n ≥ 1. (The assump-
tion n ≥ 1 is needed, for example, to guarantee that all six cases which appear in
the proof of Lemma 1 below actually occur. We refrain from discussing the trivial
cases n = −1 and n = 0 throughout the paper.) We use boldface letters for vectors
and matrices with entries from R. Any s× t matrix (Aij) over R can be considered
as a 2s × 2t matrix over F which is partitioned in 2 × 2 blocks formed by the
upper triangular matrices Aij , and vice versa. Multiplication of matrices over R is
equivalent to multiplication of matrices over F under this one-one correspondence.
Thus, in particular, it is easy to check whether a square matrix over R is invertible
by calculating the determinant of the associated matrix over F .

Our first aim is to classify the (row) vectors of the free left module Rn+1 up to
the natural action of the general linear group GLn+1(R). Given a vector X =
(X0,X1, . . . , Xn) ∈ Rn+1 let IX denote the right ideal of R which is generated by
X0,X1, . . . , Xn.

Lemma 1. Two vectors X,Y ∈ Rn+1 are in the same GLn+1(R)-orbit if, and only
if, the right ideals IX and IY coincide.

Proof. If a vector X ∈ Rn+1 is multiplied by a matrix A ∈ GLn+1(R), then the
coordinates of Y := X ·A belong to IX . By virtue of the inverse matrix A−1, we
see that actually IX = IY .

In order to show the converse, we establish that the orbit of any vector X =
(X0,X1, . . . , Xn) contains a distinguished vector which depends only on the right
ideal IX . In our discussion below we make use of two obvious facts. Firstly, we
may permute the coordinates of a vector in an arbitrary way by multiplying it
with a permutation matrix. Secondly, if X is a non-zero vector with X0 �= 0, say,
then one of the entries of the ternion X0 is a scalar w �= 0. Multiplying X by the
invertible matrix A = diag(w−1I, I, . . . , I) gives a vector X ′ := X ·A such that
the entry of the ternion X ′

0 at the same position equals 1 ∈ F . So, without loss of
generality, we may assume w = 1 from the very beginning.

Case 1: IX = 0, so that X = (0, 0, . . . , 0) is already the distinguished vector.
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Case 2: IX = radR. Thus X has the form (X0,X1, . . . , Xn) with Xi = ( 0 yi

0 0 ) and
y0 = 1, say. Multiplying X by the invertible matrix⎛

⎜⎜⎝
I −y1I . . . −ynI
0 I . . . 0
. . . . . . . . . . . . . . . . . . . . .
0 0 . . . I

⎞
⎟⎟⎠

gives the distinguished vector (( 0 1
0 0 ), 0, . . . , 0).

Case 3: IX = I1(b : 1) for some b ∈ F . Hence we may assume X = (X0, w1X0, . . . ,
wnX0) with X0 = ( 0 b

0 1 ) and w1, . . . , wn ∈ F . Multiplying X by the invertible
matrix ⎛

⎜⎜⎝
I −w1I . . . −wnI
0 I . . . 0
. . . . . . . . . . . . . . . . . . . . . .
0 0 . . . I

⎞
⎟⎟⎠

gives the distinguished vector ( 0 b
0 1 , 0, . . . , 0). The scalar b which appears in this

vector depends only on the right ideal I1(b : 1).

Case 4: IX = I1, whence at least one coordinate of X has to be off the Jacobson
radical. So the coordinates of X read Xi = ( 0 yi

0 zi
) with z0 = 1, say. We introduce

the shorthand

di := det
(

y0 yi

z0 zi

)
= y0zi − yi for i = 1, 2, . . . , n

and proceed in two steps as follows: Define

X ·

⎛
⎜⎜⎝

I −z1I . . . −znI
0 I . . . 0
. . . . . . . . . . . . . . . . .
0 0 . . . I

⎞
⎟⎟⎠ =

((
0 y0

0 1

)
,

(
0 −d1

0 0

)
, . . . ,

(
0 −dn

0 0

))
=: X ′.

Since IX �= I1(y0 : 1), at least one of d1, d2, . . . , dn, say d1, is unequal to 0. Now
multiplying X ′ by the invertible matrix⎛

⎜⎜⎜⎜⎜⎜⎝

I 0 0 . . . 0
y0d

−1
1 I −d−1

1 I −d2d
−1
1 I . . . −dnd−1

1 I

0 0 I . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 . . . I

⎞
⎟⎟⎟⎟⎟⎟⎠

gives the distinguished vector (( 0 0
0 1 ), ( 0 1

0 0 ), 0, . . . , 0).

Case 5: IX = I2. We may assume that Xi =
(

xi yi

0 0

)
and x0 = 1, because at least

one coordinate of X has to be off the Jacobson radical. Multiplying X by the
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invertible matrix⎛
⎜⎜⎝

A00 −X1 . . . −Xn

0 I . . . 0
. . . . . . . . . . . . . . . . . . . . . .
0 0 . . . I

⎞
⎟⎟⎠ , where A00 :=

(
1 −y0

0 1

)
,

gives the distinguished vector (( 1 0
0 0 ), 0, 0, . . . , 0).

Case 6: IX = R. Assume, first, that none of the entries of X is invertible. Hence
we have, for example, X0 ∈ I2 \ I1 and X1 ∈ I1 \ I2. Define

X ·

⎛
⎜⎜⎜⎜⎝

I 0 0 . . . 0
I I 0 . . . 0
0 0 I . . . 0
. . . . . . . . . . . . . . . .
0 0 0 . . . I

⎞
⎟⎟⎟⎟⎠ =: X ′.

Then X ′
0 = X0 + X1 is a unit. Thus, we may restrict ourselves to the case when

one of the entries of X, say X0, is a unit. Now, multiplying X by the invertible
matrix ⎛

⎜⎜⎜⎜⎝

X−1
0 −X−1

0 X1 −X−1
0 X2 . . . −X−1

0 Xn

0 I 0 . . . 0
0 0 I . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . I

⎞
⎟⎟⎟⎟⎠

gives the distinguished vector (I, 0, . . . , 0). �

The previous proof shows that for n ≥ 1 the vectors of Rn+1 fall into 5+|F | orbits.

Lemma 2. Under the action of the general linear group GLn+1(R), n ≥ 1, the
cyclic submodules of Rn+1 fall into six orbits with the following representatives:

R(0, 0, . . . , 0) =
{
(0, 0, . . . , 0)

}
. (5)

R
((

0 1
0 0

)
, 0, . . . , 0

)
=

{((
0 y
0 0

)
, 0, . . . , 0

)∣∣∣ y ∈ F
}

. (6)

R
((

0 0
0 1

)
, 0, . . . , 0

)
=

{((
0 y
0 z

)
, 0, . . . , 0

)∣∣∣ y, z ∈ F
}

. (7)

R
((

0 0
0 1

)
,
(

0 1
0 0

)
, 0, . . . , 0

)
=

{((
0 y
0 z

)
,
(

0 x
0 0

)
, 0, . . . , 0

)∣∣∣ x, y, z ∈ F
}

. (8)

R
((

1 0
0 0

)
, 0, . . . , 0

)
=

{((
x 0
0 0

)
, 0, . . . , 0

)∣∣∣ x ∈ F
}

. (9)

R (I, 0, . . . , 0) =
{((

x y
0 z

)
, 0, . . . , 0

)∣∣∣ x, y, z ∈ F
}

. (10)

Proof. The assertion follows immediately from the classification of vectors in
Lemma 1. �
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It is worth noting that the cyclic submodule given in (7) is generated by any vector
X with IX = I1(b : 1) for an arbitrary b ∈ F . This illustrates once more that the
classification of cyclic submodules is coarser than the classification of vectors.

In the terminology of [2, p. 1129] the cyclic2 submodules of Rn+1 are the points
of the projective lattice geometry given by Rn+1. The only free points, i. e., free
cyclic submodules, appearing in Lemma 2 are given in (8) and (10). The point
in (10) is unimodular, because there exists an R-linear form Rn+1 → R which
takes (I, 0, . . . , 0) to I ∈ R. The point in (8) is not unimodular, since none of its
vectors is mapped to I ∈ R under an R-linear form. We shall not be concerned
with the orbits of the remaining points from Lemma 2, since none of them is free.

The orbit of (10) under the action of GLn+1(R) is thus the set of “ordinary”
(i. e., unimodular free) points. Note that only the elements of this set are called
“points” in [3, 4], and [10]. See also the section on Barbilian spaces in projective
lattice geometries in [2, p. 1135–1136]. The orbit of (8) gives rise to the set of “ex-
traordinary” (i. e., non-unimodular free) points of the projective lattice geometry
associated with Rn+1. It is the latter set we shall consider in the sequel, due to its
link with the n-dimensional projective space PG(n, F ).

4. Linking non-unimodular free cyclic submodules with lines of
PG(n, F )

The free R-left module Rn+1 turns into a 3(n + 1)-dimensional vector space over
F by restricting the ring of scalars from R to F . (We tacitly do not distinguish
between x ∈ F and the ternion x · I ∈ R.) Each R-submodule of Rn+1 is at the
same time an F -subspace of this vector space. In this section we focus our attention
to the R-submodule (rad R)n+1 ⊂ Rn+1. There exists an obvious F -linear bijection
between (rad R)n+1 → Fn+1 which is given by((

0 y0

0 0

)
,

(
0 y1

0 0

)
, . . .

(
0 yn

0 0

))
�→ (y0, y1, . . . , yn) . (11)

In the proof of the following result we use this mapping to consider (radR)n+1

as an underlying vector space for the projective space PG(n, F ). Note that we
cannot take radR (together with addition and multiplication from R) as the field
of scalars for this vector space, but we have to let F play this role.

Theorem 1. Let R be the ring of ternions over a field F . The lines of the projective
space PG(n, F ), n ≥ 1, are precisely the intersections of (rad R)n+1 with the non-
unimodular free cyclic submodules of the module Rn+1.

Proof. Under the action of GLn+1(R) on Rn+1 the set (rad R)n+1 is invariant.
Consequently, GLn+1(R) acts as an F -linear transformation on (radR)n+1. Con-
versely, given an F -linear bijection of (radR)n+1 it will correspond, in terms of

2In [2] such submodules are called 1-generated rather than “cyclic”. The latter term has a different
meaning there [2, p. 1121].
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the coordinates given by (11), to a unique matrix (aij) ∈ GLn+1(F ). This matrix
over F determines the matrix (aijI) ∈ GLn+1(R) which in turn induces the given
transformation on (radR)n+1. Thus the F -linear bijections of (radR)n+1 are pre-
cisely the R-linear bijections of Rn+1 restricted to (rad R)n+1. We add in passing
that this action of GLn+1(R) on (radR)n+1 is not faithful.

The non-unimodular free cyclic submodule (8) meets (rad R)n+1 in a two-dimen-
sional F -subspace or, said differently, in a line of PG(n, F ). All non-unimodular
free cyclic submodules of Rn+1 (and, likewise, all lines of PG(n, F )) form an orbit
under the action of the group GLn+1(R). This proves the assertion. �

The previous result describes only the lines of PG(n, F ) as certain subsets of
(rad R)n+1. However, for n ≥ 2 this implies that also the points of this projective
space are known: A subset p of (radR)n+1 is a point if, and only if, there exist
non-unimodular free cyclic submodules RX and RY of Rn+1 such that

RX ∩ (rad R)n+1 �= RY ∩ (rad R)n+1 ,

p = RX ∩ RY ∩ (rad R)n+1 , and |p| > 1 .

Thus the vectors of (radR)n+1 together with the “traces” of the non-unimodular
free cyclic submodules of Rn+1 completely determine the structure of PG(n, F ) for
n ≥ 2. There is yet another approach to points which makes use of unimodular free
cyclic submodules. It works even for n ≥ 1: The points of PG(n, F ) are precisely
the intersections of (rad R)n+1 with the unimodular free cyclic submodules of the
module Rn+1. This follows like in the proof of Theorem 1 from the fact that the
meet of the submodule (10) with (radR)n+1 is a point of PG(n, F ), and from the
actions of GLn+1(R) on Rn+1 and (radR)n+1.

Finally, we note that Theorem 1 also furnishes the proof of the validity of the
conjecture raised in [8] about the connection between non-unimodular free cyclic
submodules of R3, where R is the ring of ternions over a Galois field GF(q), and
lines of the projective plane PG(2, q).

5. Combinatorics of the finite case

We assume throughout this section that F is a Galois field GF(q) with q elements.
So |R| = q3, and the number of units in R is given by |R∗| = q(q − 1)2.

Our first aim is to count the numbers mi of vectors of Rn+1 fitting into cases
i = 1, 2, . . . , 6 according to the classification from the previous section. All of these
numbers are non-zero due to our general assumption n ≥ 1, which is also adopted
in this section.

Case 1: The zero-vector is the only vector arising in this case, whence m1 = 1.

Case 2: There are |rad R|n+1 = qn+1 vectors with entries from the radical of R,
including the zero-vector. We obtain therefore m2 = qn+1 − 1.
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Case 3: First we consider a fixed b ∈ F . Any vector X with IX = I1(b : 1) has
the form (

w0

(
0 b
0 1

)
, w1

(
0 b
0 1

)
, . . . , wn

(
0 b
0 1

))

with (0, 0, . . . , 0) �= (w0, w1, . . . , wn) ∈ Fn+1. As b varies in F , we get m3 =
q(qn+1 − 1).

Case 4: There are |I1|n+1 = q2(n+1) vectors with entries from the ideal I1, including
the vectors from cases 1, 2, and 3. Hence

m4 = q2(n+1) − m3 − m2 − m1 = q(qn − 1)(qn+1 − 1) .

Case 5: We proceed as before and obtain from |I2| = q2 that

m5 = q2(n+1) − m2 − m1 = qn+1(qn+1 − 1) .

Case 6: All remaining vectors fall into this case. We read off from |Rn+1| = q3(n+1)

that
m6 = |Rn+1| − m5 − m4 − m3 − m2 − m1 = qn+1(qn+1 − 1)2 .

We consider now the set N of all vectors of Rn+1 which belong to at least one
non-unimodular free cyclic submodule of Rn+1. For this set to be non-empty we
must have n ≥ 1. Under these circumstances the set N comprises precisely the
q2(n+1) vectors fitting into cases 1–4 according to our classification.

Theorem 2. Let R be the ring of ternions over GF(q). There are precisely

μ :=
(qn − 1)(qn+1 − 1)

(q − 1)2
(12)

non-unimodular free cyclic submodules in Rn+1 for n ≥ 1. The number of such
submodules containing a vector X ∈ Rn+1 equals

μ1 := μ if IX = 0 , (13)

μ2 :=
(q + 1) (qn − 1)

q − 1
if IX = radR , (14)

μ3 :=
qn − 1
q − 1

if IX = I1(b : 1) for some b ∈ F , (15)

μ4 := 1 if IX = I1 . (16)

Proof. Equation (16) holds trivially. The number of non-unimodular free cyclic
submodules is m4/|R∗| which yields (12) and (13). In order to establish (14) we
count in two ways the number of pairs (X, RY ), where RY is a non-unimodular
free cyclic submodule and the vector X ∈ RY is subject to IX = radR.

First we fix Y and count the number of appropriate vectors X. Since all vectors
Y with IY = I1 are in one orbit of GLn+1(R), it is sufficient to consider as Y the
distinguished vector obtained in case 4. By (8), the vectors of RY have the form((

0 y
0 z

)
,

(
0 x
0 0

)
, 0, . . . , 0

)
with x, y, z ∈ F . (17)
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Such a vector has the required properties if, and only if, z = 0 and (x, y) �= (0, 0).
Hence there are q2 − 1 vectors of this kind. Consequently, as Y varies also, the
number of pairs (X, RY ) is equal to

(q2 − 1) ·μ =
(q + 1)(qn − 1)(qn+1 − 1)

(q − 1)
.

Counting in a different way, we find that this number equals μ2m2, whence indeed

μ2 =
(q + 1)(qn − 1)

(q − 1)
.

The proof of (15) can be accomplished in the same fashion. The coordinates of a
vector given in (17) generate a right ideal I1(b : 1) for some b ∈ F if, and only
if, z �= 0 and x = 0. The last condition is due to the fact that second ternion
coordinate of the vector appearing in (17) has to be a scalar multiple of the first
one. Hence there are q(q − 1) vectors of this kind. This gives

q(q − 1) ·μ =
q(qn − 1)(qn+1 − 1)

(q − 1)
= μ3m3 = μ3 · q(qn+1 − 1) ,

from which the formula for μ3 is immediate. �

We notice that

μ = μ1 = |PG(n − 1, q)| · |PG(n, q)| ,
μ2 = |PG(n − 1, q)| · |PG(1, q)| ,
μ3 = |PG(n − 1, q)| .

Thus for n ≥ 2 these numbers are distinct and all of them are greater than μ4 = 1.
Under these circumstances the four types of vectors in N can be distinguished by
the number of non-unimodular free cyclic submodules in which they are contained.
Consequently, the set N and the family of non-unimodular free cyclic submodules
determine the lines and points of the projective space PG(n, q) according to Theo-
rem 1 and the subsequent remarks. This provides now the theoretical background
for the Fano-Snowflake from [8], which is depicted in Figure 1, and puts the con-
struction from there in a general context by allowing an arbitrary dimension n ≥ 2
and any prime power q.

6. Conclusion

Given the free left R-module Rn+1, n ≥ 1, of an arbitrary ring of ternions R, we
provide a complete classification of the vectors from Rn+1 (Lemma 1) and the
cyclic submodules generated by them (Lemma 2), up to the action of the group
GLn+1(R). There exist altogether 5+|F | distinct orbits of vectors and six (two free,
one of them non-unimodular) ones of submodules. The non-unimodular free cyclic
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Figure 1. The “Fano-Snowflake” – a diagrammatic illustration
of the n = q = 2 case. The 26 − 1 = 63 vectors of N \ {(0, 0, 0)}
are represented by circles, whose sizes reflect the number of non-
unimodular free cyclic submodules of R3 they are contained in.
As the zero vector is not shown, each submodule of this kind is
represented by 23−1 = 7 circles lying on a common polygon; three
big, two medium-sized, and two small circles corresponding, re-
spectively, to the vectors from case 2 (μ2 = 9), case 3 (μ3 = 3), and
case 4 (μ4 = 1). The patterns of the μ = 21 polygons were cho-
sen in such a way to make (the lines of) the Fano plane PG(2, 2)
sitting in the middle of the “snowflake” readily discernible. The
illustration is essentially three-dimensional. There is also a single
“vertical branch” of the “snowflake” which emanates from the the
middle of the figure and ramifies into three smaller branches.

submodules are linked with the lines of PG(n, F ) (Theorem 1). In the finite case, we
count explicitly the total number of non-unimodular free cyclic submodules as well
as the cardinalities of their subsets passing through a given vector (Theorem 2).
In light of the fact that there are only few papers on projective geometries over
ternions, we hope that our findings will stir the interest of mathematicians into a
more systematic treatment of exciting open problems in this particular branch of



Vol. 92 (2009) Projective Spaces Linked with Ternions 89

ring geometries, and will also prove fruitful for envisaged applications of projective
geometries over ternions in quantum physics.
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