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Abstract. We introduce veering branched surfaces as a dual way of studying veering
triangulations. We then discuss some surgical operations on veering branched surfaces.
Using these, we provide explicit constructions of some veering branched surfaces whose
dual veering triangulations correspond to geodesic flows of negatively curved surfaces.
We construct these veering branched surfaces on (i) complements of Montesinos links
whose double branched covers are unit tangent bundles of negatively curved orbifolds,
and (ii) complements of full lifts of filling geodesics in unit tangent bundles of negatively
curved surfaces, when the geodesics have no triple intersections and have (n ≥ 4)-gons
as complementary regions. As an application, this provides explicit Markov partitions of
geodesic flows on negatively curved surfaces. In an appendix, we classify the drilled unit
tangent bundles which admit a veering triangulation corresponding to a geodesic flow, by
characterizing when there are no perfect fits.

1. Introduction

Veering triangulations were introduced by Ian Agol in [Ago11] as a tool for studying map-
ping tori of pseudo-Anosov homeomorphisms. The veering triangulations combinatorially
encapsulate the pseudo-Anosov monodromies by encoding a periodic folding sequence of
train tracks. Recently, due to work of Agol, Guéritaud, Schleimer, Segerman, Landry,
Minsky, Taylor, and the author ([Gué16], [SS19], [SS20], [LMT21], [SS21], [AT22], [SS23],
[SSa]), it has been realized that this is merely a special case of a bigger picture: veering
triangulations can be used to combinatorially encode pseudo-Anosov flows without perfect
fits in general.

We briefly explain what we mean by this, for the definitions, precise statements and
references see Section 2. Given a pseudo-Anosov flow ϕ on an orientable closed 3-manifold
N and a collection of closed orbits C, one can construct a veering triangulation on the
cusped 3-manifold N\C, provided that ϕ and C satisfy a technical condition called no perfect
fits. Conversely, given a veering triangulation on a cusped 3-manifold M , one can construct
a pseudo-Anosov flow on the Dehn filled closed 3-manifold M(s) which satisfies the no
perfect fits condition, provided that the filling coefficient s satisfies a natural intersection
number condition. In fact, work of Schleimer and Segerman, to appear, shows that the
two directions of construction are inverses of each other. Even without knowledge of
this, however, the two directions of construction already allow us to study pseudo-Anosov
flows in new ways using veering triangulations. One of the advantages of doing so is that
veering triangulations are discrete objects, and so the associated constructions can often be
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described explicitly using some finite collection of data. One of the goals of this paper is to
demonstrate this feature.

As we pointed out, the application of veering triangulations to study suspension flows of
pseudo-Anosov mapping tori was the original motivation behind their conception. Another
class of pseudo-Anosov flows that are frequently studied are geodesic flows of negatively
curved surfaces. These are flows on the unit tangent bundle of surfaces (or orbifolds in
general) with a negatively curved Riemannian metric, which sends a vector v to the vector
γ′(t) at time t, if γ is the geodesic with initial velocity v. One reason why these are popular
to study is that together with suspension flows of Anosov maps, they constitute all of the
algebraic Anosov flows in dimension 3, meaning they are the only Anosov flows that are
induced by a left invariant vector field on the right quotient of a 3-dimensional Lie group,
see [Tom75].

Another reason is that throughout the development of low-dimensional topology, it has
always been an important topic to study closed curves on a surface, in particular their
topological type and their growth rates, see for example [FLP12], [MM99], [Mir16]. Now,
closed orbits of the geodesic flow of a negatively curved surface correspond precisely to
isotopy classes of closed curves, hence one can hope to answer some of the surface-theoretic
questions by studying these geodesic flows on 3-manifolds.

Yet another reason is that geodesic flows form the prototype for contact Anosov flows. These
are Anosov flows which are also Reeb flows to some contact form. Foulon and Hasselblat
showed in [FH13] that one can construct many examples of contact Anosov flows starting
with geodesic flows, and Barbot showed in [Bar01] that contact Anosov flows must be skew
R-covered in general, hence induce representations into Homeo(R).

In view of the importance of geodesic flows, it is natural to ask: What do the veering
triangulations that correspond to them look like? In this paper, we provide some answers to
this question by introducing the tool of veering branched surfaces, and explicitly constructing
examples of these which are dual to veering triangulations corresponding to geodesic
flows.

We first explain the motivation behind veering branched surfaces. Given a veering triangu-
lation of a 3-manifold M , one can combinatorially construct its unstable branched surface B.
In terms of the correspondence between veering triangulations and pseudo-Anosov flows, the
unstable branched surface carries the unstable lamination of the flow in the filled 3-manifold
M(s). We observe that using some basic properties, we can completely characterize, among
all branched surfaces, the ones that arise as the unstable branched surface of some veering
triangulation. Moreover, from the unstable branched surface one can recover the veering
triangulation by taking the dual ideal triangulation. Hence by defining a veering branched
surface to be a branched surface that satisfies the characterizing properties of an unstable
branched surface, we see that studying veering branched surfaces is an equivalent, and
in a sense, dual, way of studying veering triangulations. We state this concretely as the
following proposition. For definitions see Section 3.
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Proposition 3.2. Let B be a veering branched surface in an oriented 3-manifold M whose
complementary regions are all cusped torus shells. Then the dual ideal triangulation of B is
a veering triangulation ∆ of M , and B can be identified with the unstable branched surface
for ∆.

The advantage of working with veering branched surfaces however, is that one can construct
and manipulate branched surfaces inside desirable ambient 3-manifolds, instead of working
with triangulations that comprise the 3-manifolds themselves. Indeed, in this paper we
introduce the generalized notion of an almost veering branched surface and two basic
surgical operations: horizontal and vertical surgery, which one can perform on almost
veering branched surfaces to construct veering branched surfaces thus their dual veering
triangulations, but might otherwise be difficult to visualize from the perspective of the
triangulation.

One should compare our horizontal and vertical surgery with Schleimer and Segerman’s
veering Dehn surgery. In all three cases, an annulus or a Möbius band carried by the
2-skeleton of the veering triangulation is slit open and tetrahedra are inserted within.
In Schleimer and Segerman’s terminology, an annulus with all flat edges is slit open for
horizontal surgery, while an annulus with some sharp edges is slit open for vertical surgery.
More details of veering Dehn surgery will appear in [SSb], and comparing these surgery
operations will be a topic of future work.

The horizontal surgery operation, or rather variants of it, is the main tool we use for
constructing veering branched surfaces in this paper. Even though our techniques work
more generally, for this paper we will focus on the following two particular settings, and
only indicate how to generalize in the remarks.

Construction 1.1. Consider a closed orientable genus zero orbifold S with negative Euler
characteristic. Let c be a simple closed curve on S that passes through all the cone points.

Let
↔
c be the full lift of c in the unit tangent bundle of S, defined to be {±c′(t)} ⊂ T 1S.

There is an involution on T 1S\↔c induced by reflecting S across c, and the quotient of this
involution is a Montesinos link complement.

In this setting, we can construct explicit veering branched surfaces on T 1S\↔c . These
veering branched surfaces are dual to veering triangulations which correspond to the geodesic
flow on T 1S. Moreover, they can be quotiented down to veering branched surfaces on the
corresponding Montesinos link complements.

Construction 1.2. Consider a closed orientable surface S with negative Euler characteristic.
Let c be a filling collection of mutually nonparallel curves on S, which has no triple
intersections and whose complementary regions in S are (n ≥ 4)-gons. Define the full lift

of c,
↔
c , as above.

In this setting, we can construct explicit veering branched surfaces on T 1S\↔c . These veering
branched surfaces are dual to veering triangulations which correspond to the geodesic flow
on T 1S.
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Even though our constructions of the veering branched surfaces are explicit, we do not
claim to have explicit descriptions of the veering triangulations themselves, due to the
fact that computing dual triangulations is a difficult task by hand. Without knowing the
triangulations however, there are still useful invariants which can be computed directly
from their dual veering branched surfaces.

We point out one of these in particular. Given a veering triangulation of a 3-manifold
M , one can combinatorially define its reduced flow graph Φred, which is a directed graph
naturally embedded in M . In terms of the correspondence between veering triangulations
and pseudo-Anosov flows, the reduced flow graph encodes a Markov partition for the pseudo-
Anosov flow on M(s). In particular one can study the periodic orbits of the pseudo-Anosov
flow by studying cycles carried by Φred. Indeed, a quantitative approach of this has been
carried out in [LMT20] and [LMT21].

Now by dualizing the definition of the (reduced) flow graph, it is not difficult to read it off
from the veering branched surface dual to the given veering triangulation. Hence we can
in particular determine the reduced flow graphs of the veering triangulations dual to the
veering branched surfaces in Construction 1.2, see for example Figure 27. These will then
encode explicit Markov partitions for geodesic flows.

Construction 1.3. Let S be a closed orientable orbifold with negative Euler characteristic.
We can construct explicit Markov partitions for the geodesic flow on T 1S. If S is a surface,
we can arrange for the Markov partition to have −108χ(S) flow boxes.

The problem of representing geodesic flows in terms of explicit systems of symbolic dynamics
has a long history, see for example [Ser81], [Ser86], [AF91], [KU07]. However, it is not
always made clear how the corresponding Markov partitions look like. The point is that
the graph encoding a Markov partition on its own does not contain instructions of how
to join up the top and bottom faces of the flow boxes at each vertex, and this is crucial
information if one wants to study problems about knottedness and linkedness of orbits.
Some of the more recent work, for example [Ghy07], [Pin14], [Deh15], and [DP18], do
contain this additional information, and in this paper this information is included naturally
as part of our approach.

Another remark is that, to the author’s knowledge, the approach in most of the previous
work is geometric, making use of some auxiliary hyperbolic metric (with [Ghy07] and
[Pin14] being notable exceptions), whereas our approach is entirely topological. Finally, we
remark that our methods also give explicit Markov partitions for (the nonwandering set of)
geodesic flows on cusped hyperbolic surfaces, via a doubling trick.

Coming out of this paper, an obvious direction for future research is to construct veering
triangulations or branched surfaces for geodesic flows with other types of orbits drilled out.
The careful reader will notice, however, that we mentioned the technical condition of no
perfect fits must be satisfied for this task to be possible. One should therefore ascertain
when this no perfect fits condition holds, before trying to do the construction in general.
We make some progress towards this by characterizing exactly when there are no perfect
fits. The exact result is the following, see Appendix A for definitions.
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Theorem A.2. Let Σ be a closed oriented hyperbolic surface and c be a collection of
oriented closed geodesics. Then the geodesic flow on T 1Σ has no perfect fits relative to the

lift
→
c if and only if every oriented closed geodesic d on Σ has a positive intersection point

with some element of c.

In particular, if c is a collection of closed geodesics, then the geodesic flow on T 1Σ has no

perfect fits relative to the full lift
↔
c if and only if c is filling.

Another direction for future work is to clarify what the veering triangulations dual to the
veering branched surfaces constructed in this paper look like. To that end, we compiled,
in an indirect way, tables of all the veering triangulations dual to the veering branched
surfaces in Construction 1.1 that appear in the veering triangulation census [GSS], and have
included these tables in Appendix B. By studying the triangulations listed in the tables
carefully, one might be able to work out some patterns and infer the form of the veering
triangulations, or at least some of their invariants, in general.

Here is an outline of this paper. In Section 2, we recall some background knowledge
about veering triangulations, pseudo-Anosov flows, geodesic flows and Montesinos links. In
Section 3, we define veering branched surfaces and almost veering branched surfaces, and
show how veering branched surfaces are dual to veering triangulations. In Section 4, we
introduce some surgical operations on almost veering branched surfaces. The two basic ones
are horizontal and vertical surgery. We also explain a variant of horizontal surgery, which we
call halved concurrent horizontal surgery, which will be used extensively in Section 5.

In Section 5, we explain Construction 1.1 by separating into a few different cases depending
on the number and order of the cone points. In Section 6, we explain Construction 1.2
using some of the knowledge from Section 5. From this we will derive Construction 1.3. In
Section 7, we discuss some questions and future directions coming out of this paper.

There are two appendices. In Appendix A, we prove Theorem A.2. In Appendix B, we
identify the veering triangulations we constructed on Montesinos link complements in
Construction 1.1 which appear in the veering triangulation census, and compile their IsoSig
codes in some tables.

Acknowledgements. I would like to thank Ian Agol and Michael Landry for their support
and encouragement throughout this project. I would like to thank Saul Schleimer, Henry
Segerman, Mario Shannon, and Jonathan Zung for helpful conversations. I would like to
thank Pierre Dehornoy and Caroline Series for comments on an earlier version. I would
like to thank the anonymous referees’ comments for improving the presentation of the
paper.

Notational conventions. Throughout this paper,

• XY will denote the metric completion of X\Y with respect to the induced path
metric from X. In addition, we will call the components of XY the complementary
regions of Y in X.

• X̃ will denote the universal cover of X, unless otherwise stated.
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• Notation such as Rt, [0, 1]t, etc. will mean that we use the variable t as the coordinate
on R, [0, 1], etc.

2. Background

2.1. Veering triangulations. We recall the definition of a veering triangulation.

An ideal tetrahedron is a tetrahedon with its 4 vertices removed. The removed vertices are
called the ideal vertices.

Let M be the interior of a compact oriented 3-manifold with torus boundary components.
An ideal triangulation of M is a decomposition of M into ideal tetrahedra glued along pairs
of faces.

A taut structure on an ideal triangulation is a labelling of the dihedral angles by 0 or π,
such that

• Each tetrahedron has exactly two dihedral angles labelled π, and they are opposite
to each other.

• The angle sum around each edge in the triangulation is 2π.

A transverse taut structure is a taut structure along with a coorientation on each face, such
that for any edge labelled 0 in a tetrahedron, exactly one of the faces adjacent to it is
cooriented inwards.

A transverse taut ideal triangulation is an ideal triangulation with a transverse taut
structure.

Definition 2.1. A veering structure on a transverse taut ideal triangulation of M is a
coloring of the edges by red or blue, so that if we look at each tetrahedron with a π-labelled
edge in front, the four outer 0-labelled edges, starting from an end of the front edge and
going counter-clockwise, are colored red, blue, red, blue, respectively. We call such a
tetrahedron a veering tetrahedron.

A veering triangulation is a transverse taut ideal triangulation with a veering structure.

Figure 1 shows a veering tetrahedron in a veering triangulation.

We next recall the definitions of the unstable branched surface and the (reduced) flow graph
associated to a veering triangulation.

Definition 2.2. Let M be a 3-manifold. A branched surface B is a compact subset of M
locally of the form of one of the pictures in Figure 2.

The set of points where B is locally of the form of Figure 2 middle or right is called the
branch locus of B and is denoted by brloc(B). The points where B is locally of the form of
Figure 2 right are called the triple points of B. The complementary regions of brloc(B) in
B are called the sectors of B.
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π

π
0

0

0 0

Figure 1. A tetrahedron in a transverse veering triangulation. There are
no restrictions on the colors of the top and bottom edges.

Figure 2. The local models for branched surfaces. The arrows indicate the
maw coorientation of the branch locus.

The branch locus brloc(B) is a union of smoothly embedded circles. We call each such circle
a component of brloc(B). Equivalently, one can consider the complementary regions of B in
M . The boundary of these regions consist of smoothly embedded faces meeting along cusp
circles. Each component of brloc(B) is the image of such a cusp circle. Each component of
brloc(B) has a canonical coorientation on B, which we call the maw coorientation, given
locally by the direction from the side with more sectors to the side with less sectors. See
the arrows in Figure 2.

The sectors of B are surfaces with boundary, with corners at where the boundary locally
switches from lying along one component of the branch locus to another. We define the
index of a surface with corners S as ind(S) := χtop(S)− 1

4
#corners, where χtop(S) is the

Euler characteristic of the underlying topological surface. This definition of index is additive:
if a surface with corners S is divided by a collection of curves and arcs into surfaces with
corners S1, ..., Sk, then ind(S) =

∑
ind(Si). We will also call the complementary regions of

the corners in ∂S the sides of S.

If every component of brloc(B) contains at least one triple point, then one can define a
cellular structure on brloc(B) by declaring the 0-cells to be the triple points, and the 1-cells
to be the complementary regions of the triple points in brloc(B). Furthermore, if each
sector is topologically a disc, then we can define a cellular structure on B by declaring the
2-cells to be the sectors. In this scenario, we can define the dual ideal triangulation to B:
Let N be the space obtained by attaching cones over each component of ∂(MB) onto B.
Construct a triangulation ∆′ of N by first placing a vertex at each cone point. Then for
each sector of B, pick a point in the interior of the sector and cone it off, i.e. join it to the
cone points of the two cones on either side of the sector along straight paths, to form edges
of ∆′. Then for each 1-cell in brloc(B), pick a point in its interior and join it to the points
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we chose in the interior of the 3 sectors the edge is adjacent to, along disjoint paths in those
sectors, then cone off these paths to form faces of ∆′. Finally, define the complementary
regions of the 2-complex we constructed so far in N to be the tetrahedra. This gives us a
triangulation ∆′ of N . Now delete all the cone points to get an ideal triangulation ∆ of a
regular neighborhood of B in M .

Definition 2.3. ([Mos96]) Consider a solid torus D2 × S1. Let l be a nonempty collection
of parallel simple closed curves on its boundary which are not parallel to the meridian.
Let p > 0 be the geometric intersection number between the meridian and l. Then the
3-manifold obtained by placing cusp circles along l is called a p-cusped solid torus, or cusped
solid torus for short.

Similarly, consider a solid torus with its core drilled out, S1 × [0,∞) × S1. Let l be a
nonempty collection of parallel simple closed curves on its boundary. Then the 3-manifold
obtained by placing cusp circles along l is called a cusped torus shell.

Definition 2.4. Let ∆ be a veering triangulation of a 3-manifold M . For each tetrahedron
of ∆, define a branched surface inside by placing a quadrilateral with vertices on the top
and bottom edges and the two side edges of the same color as the top edge, then adding a
triangular sector for each side edge of the opposite color to the top edge, as in Figure 3 left.
These branched surfaces in each tetrahedron can be arranged to match up across faces,
thus glue up to a branched surface in M , which we call the unstable branched surface B.

We record some simple yet important properties of the unstable branched surface.

Proposition 2.5. Let ∆ be a veering triangulation of a 3-manifold M and let B be its
unstable branched surface.

(i) Each sector of B is a disc with 4 corners.

(ii) Each component of MB is a cusped torus shell.

(iii) The components of brloc(B) can be oriented in a way such that at each triple point,
the orientation of each component induces the maw coorientation on the other
component.

(iv) Consider B as a cell complex as in Definition 2.2. Then ∆ is the dual ideal
triangulation to B.

Proof. All of these are straightforward, but we will write down some references for the
interested reader. For (i), see [SS19, Section 6]. For (ii), see [AT22, Proposition 2.9]. For
(iii), orient the components within each tetrahedron to go from the top faces to the bottom
faces. For (iv), see [SS19, Section 6] again. □

From now on, we will implicitly orient the components of brloc(B) as in (iii) above.
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Figure 3. Left: The portion of the unstable branched surface and the flow
graph within each veering tetrahedron. Right: The portion of the flow graph
on each sector of the unstable branched surface.

Definition 2.6. Each component of MB contains an end of M , by Proposition 2.5 (ii).
We call the cusp circles on a component of MB the ladderpole curves on the corresponding
end of M . We call the collection of all ladderpole curves on an end of M the ladderpole
class on that end.

Definition 2.7. Let ∆ be a veering triangulation of a 3-manifold M . Define the flow graph
Φ to be a directed graph with the set of vertices equal to the set of edges of ∆, and adding
3 edges for each tetrahedron, going from the top edge and the two side edges of opposite
color to the top edge into the bottom edge.

Φ can be naturally embedded in the unstable branched surface B, hence in M , by placing
each vertex at the top corner of the sector of B its corresponding edge of ∆ meets, and
placing the edges that exit that vertex within that sector of B. See Figure 3 right. Note
that the tangent planes to B determine a framing of the edges of Φ in M .

Define a planar ordering of a set to be an equivalence class of linear orderings up to complete
reversal. (The motivation of this terminology comes from the fact that one can rotate a line
by π in a plane, reversing the linear ordering of a set of elements on it.) The embedding of
Φ in B also determines planar orderings on the sets of incoming and outgoing edges at each
vertex of Φ.

We will sometimes abuse notation and include the embedding of Φ in M , the framing of its
edges in M , and the planar orderings of the incoming and outgoing edges at each vertex as
part of the data of Φ.

Definition 2.8. A proper subgraph G′ of a directed graph G is an infinitesimal component
if there are no edges from vertices in G′ to vertices outside of G′.

The reduced flow graph Φred is the maximal subgraph of the flow graph Φ that has no
infinitesimal components.

Proposition 2.9. The infinitesimal components of Φ consist of disjoint cycles, and Φred

can be obtained by deleting these cycles along with the edges that enter them.
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Proof. This is shown in [AT22, Section 3]. In fact, in that paper we show something
stronger: the disjoint cycles must lie in special subsets of the veering triangulation called
walls. However, we will not need this additional fact in this paper. □

Φred inherits from Φ an embedding in M , a framing of its edges in M , and planar orderings
of the incoming and outgoing edges at each vertex. Again, we will sometimes abuse notation
and include these as part of the data of Φred.

Remark 2.10. Our conventions in defining the unstable branched surface and flow graph
is consistent with that in [AT22], but might be different from that of other authors. We
provide here a dictionary between our convention and two other sets of conventions that we
know of:

In work of Schleimer and Segerman, what we call the unstable branched surface is called
the upper branched surface (in dual position).

In work of Landry, Minsky, and Taylor, what we call the unstable branched surface is called
the stable branched surface, and the edges of the flow graph are oriented in the opposite
direction.

2.2. Pseudo-Anosov flows. We recall the definition of a pseudo-Anosov flow.

Definition 2.11. Consider the map

[
λ−1 0
0 λ

]
: R2 → R2, for λ > 1. This preserves the

foliations of R2 by horizontal and vertical lines respectively. Let ϕn,0,λ : R2 → R2 be the
lift of this map over z 7→ z

n
2 that preserves the lift of the quadrants. (When n is odd,

one has to choose a branch of z 7→ z
n
2 but it is easy to see that the result is independent

of the choice.) Let ϕn,k,λ : R2 → R2 be the composition of ϕn,0,λ and rotation by 2πk
n

anticlockwise. Meanwhile, let ls, lu be the singular foliations of R2 obtained by pulling
back the foliations by horizontal and vertical lines under z 7→ z

n
2 , respectively. These are

preserved by ϕn,k,λ. Let Φn,k,λ be the mapping torus of ϕn,k,λ, let Λ
s,Λu be the suspensions

of ls, lu respectively, and consider the suspension flow on Φn,k,λ. Call the suspension of the
origin the pseudo-hyperbolic orbit of Φn,k,λ.

Definition 2.12. A pseudo-Anosov flow on a closed 3-manifold N is a C1-flow ϕt satisfying:

• There is a finite collection of closed orbits {γ1, ..., γs}, called the singular orbits,
such that ϕt is smooth away from the singular orbits.

• There is a path metric d on N , which is induced from a Riemannian metric g away
from the singular orbits.

• Away from the singular orbits, there is a splitting of the tangent bundle into three
ϕt-invariant line bundles TM = Es ⊕ Eu ⊕ Tϕt, such that

|dϕt(v)| < Cλ−t|v|
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Figure 4. A perfect fit rectangle.

for every v ∈ Es, t > 0, and

|dϕt(v)| < Cλt|v|

for every v ∈ Eu, t < 0, for some C, λ > 1.

• Each singular orbit γi has a neighborhood Ni and a map fi sending Ni to a
neighborhood of the pseudo-hyperbolic orbit in Φni,ki,λ, for some ni ≥ 3, such that
fi is bi-Lipschitz on Ni and smooth away from γi, preserves the orbits, and sends
Es, Eu to line bundles tangent to Λs,Λu respectively. In this case, we say that γi is
ni-pronged. By extension, we also say that a non-singular orbit is 2-pronged.

We call the (possibly singular) foliation which is tangent to Es⊕Tϕt away from the singular
orbits and given by the image of Λs ⊂ Φni,ki,λ under fi near the singular orbits the stable
foliation Λs. We define the unstable foliation Λu similarly.

A pseudo-Anosov flow without singular orbits is called an Anosov flow.

Definition 2.13. Let ϕ be a pseudo-Anosov flow on a closed 3-manifold N , and let C be a

collection of closed orbits of ϕ. Lift these up to a flow ϕ̃ on the universal cover Ñ with a

collection of orbits C̃ which is the preimage of C.

It is shown in [FM01, Proposition 4.2] that the orbit space O of ϕ̃ is homeomorphic to
R2, and the images of Λs,Λu are two (possibly singular) 1-dimensional foliations Os,Ou,
respectively.

A perfect fit rectangle is a rectangle-with-one-ideal-vertex properly embedded in O such
that 2 opposite sides of the rectangle lie along leaves of Os and the remaining 2 opposite
sides lie along leaves of Ou, and such that the restrictions of Os and Ou to the rectangle
foliate it as a product, i.e. conjugate to the foliations of [0, 1]2\{(1, 1)} by vertical and
horizontal lines. See Figure 4.

The collection of orbits C̃ can be regarded as a set of points in O. We will say that ϕ has

no perfect fits relative to C if there are no perfect fit rectangles in O disjoint from C̃.

We recall some definitions in the study of pseudo-Anosov flows.
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Definition 2.14. Given a pseudo-Anosov flow on a closed 3-manifold N , a flow box is a
set of the form Is × Iu × [0, 1]t ⊂ N , where Is, Iu are intervals, such that:

• Every {s} × {u} × [0, 1]t lies along a flow line, with t decreasing being the flow
direction

• Every Is × {u} × [0, 1]t lies along a leaf of the stable foliation Λs

• Every {s} × Iu × [0, 1]t lies along a leaf of the unstable foliation Λu

A Markov partition is a collection of flow boxes {I(i)s ×I
(i)
u × [0, 1]t}i covering N with disjoint

interiors, such that

(I(i)s × I(i)u × {1}) ∩ (I(j)s × I(j)u × {0}) =
⋃
k

J (ij,k)
s × I(i)u × {1} =

⋃
k

I(j)s × J (ji,k)
u × {0}

for some finite collection of subintervals J
(ij,k)
s ⊂ I

(i)
s and J

(ji,k)
u ⊂ I

(j)
u . Intuitively, when

flowing downwards, the flow boxes stretch over multiple flow boxes in the unstable direction
and contract to only cover a portion of a flow box in the stable direction.

Define a directed graph G by letting the set of vertices be the flow boxes, and putting an

edge from (I
(j)
s × I

(j)
u × [0, 1]t) to (I

(i)
s × I

(i)
u × [0, 1]t) for every J

(ij,k)
s .

Notice that G has a natural embedding in N by placing the vertices in the interior of
the corresponding flow box and placing the edges through the corresponding intersections

J
(ij,k)
s × I

(i)
u × {1}. The product structure of the flow boxes determines a framing on the

edges in N . Also, the sets of incoming and outgoing edges at each vertex of G have natural

planar orderings given by the positions of J
(ij,k)
s/u in I

(i)
s/u.

G together with the information of its embedding in N is said to encode the Markov partition.
Sometimes we will abuse notation and consider the framing of the edges of G in N and
planar orderings of the incoming and outgoing edges at each vertex as part of the data of G.

Markov partitions allow one to study pseudo-Anosov flows using symbolic dynamics. For
example, it is a standard fact that if one has a Markov partition of a pseudo-Anosov flow ϕ
which is encoded by G ⊂ N , then for every closed loop carried by G, there is a closed orbit
of ϕ homotopic to it; conversely, for every closed orbit of ϕ, there is a closed loop carried
by G homotopic to some multiple of it, see for example [AT22, Corollary 5.16].

The additional data of the framing of the edges and planar orderings of the incoming and
outgoing edges at each vertex allows one to upgrade this statement from ‘homotopic’ to
‘isotopic’, at least for primitive loops and orbits, since one can now decide the relative
positions of a loop carried by G when it passes through edges and vertices multiple
times.

In fact, one can essentially recover a Markov partition from the graph that encodes it along
with this additional data: Place a flow box at each vertex of the graph and connect up the
corresponding flow boxes along their top and bottom faces for each edge, according to the
framing and the planar orderings. The side faces of the union of flow boxes can then be
glued up, since the semiflow on each component of these must consist of a closed orbit and
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orbits spiralling into or out of the closed orbit. For more information, see [Mos96, Sections
3.1-3.4].

Definition 2.15. Two flows ϕ1 and ϕ2 on a 3-manifold N are said to be orbit equivalent if
there is a homeomorphism of N taking the flow lines of ϕ1 to those of ϕ2 in an orientation
preserving way (but not necessarily respecting the parametrization of the flow lines).

We will often abuse notation and consider two pseudo-Anosov flows as the same if they are
orbit equivalent.

To state Theorem 2.16 below, we introduce some shorthand notations. Let M be a compact
3-manifold with torus boundary components, and let M be its interior. Let C be the set of
boundary components of M , which can be canonically identified with the set of ends of M .
Given a collection of curves on each boundary component of M , s = (si)i∈C , we write M(s)
for the closed 3-manifold obtained by Dehn filling M along si. Also, given two collections
of (multi-)curves on each boundary component of M , s = (si)i∈C and t = (ti)i∈C , we write
|⟨s, t⟩| ≥ k to mean that the geometric intersection number between si and ti is greater or
equal to k, for every i ∈ C.

Theorem 2.16. Let M be the interior of a compact 3-manifold with torus boundary
components, and let C be the set of ends of M . Given a veering triangulation ∆ on M , let l
be the collection of ladderpole classes on the ends of M . Then for every collection of slopes
s on the ends of M such that |⟨s, l⟩| ≥ 2, M(s) carries a pseudo-Anosov flow ϕ. Moreover,
we have the following properties of ϕ:

(a) There exist closed orbits ci isotopic to cores of the filling solid tori. Each ci is
|⟨si, li⟩|-pronged, and ϕ has no perfect fits relative to the collection {ci}.

(b) The unstable branched surface B carries the unstable lamination of ϕ (which is
obtained by blowing air into the singular leaves of the unstable foliation).

(c) The reduced flow graph Φred of ∆ encodes a Markov partition of ϕ. This includes
the data of the framing of its edges and the planar orderings of the incoming and
outgoing edges at each vertex.

Proof. The existence of a pseudo-Anosov flow on M(s) was first proven by Schleimer and
Segerman. Their construction appears in [SS23] and will be further elaborated on in [SSa].
Additional properties (a) and (b) are satisfied by their construction. Meanwhile, an alternate
construction has been written up in [AT22, Section 5]. Additional properties (a)-(c) are
satisfied by this construction, see [AT22, Theorem 5.1, Proposition 5.13, Proposition 5.15]
respectively. □

As remarked in the introduction, Schleimer and Segerman’s construction provides a cor-
respondence between veering triangulations and pseudo-Anosov flows, in a suitable sense.
At the time of writing, the complete proof of this fact is not yet available, but see the
introduction of [SS19] for an outline of the proof.
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2.3. Geodesic flows. We recall some basic facts about geodesic flows.

Definition 2.17. Let Σ be a closed 2-dimensional orbifold with a Riemannian metric g.
Consider its unit tangent bundle T 1Σ = {v ∈ TΣ : ||v||g = 1}. The geodesic flow ϕt on this
3-manifold is defined by ϕt(γ

′(0)) = γ′(t) for every unit speed geodesic γ.

Let c be a collection of oriented geodesics on Σ. Suppose elements of c are parametrized

with unit speed. The lift of c in T 1Σ is defined to be
→
c := {c′i(t) : ci is an element of c}.

This is a collection of orbits of the geodesic flow.

Similarly, let c be a collection of unoriented geodesics on Σ. Suppose elements of c are
parametrized with unit speed in some orientation. Then the full lift of c in T 1Σ is defined to

be
↔
c := {±c′i(t) : ci is an element of c}. This is again a collection of orbits of the geodesic

flow.

When g has negative curvature everywhere, it is a classical fact that the geodesic flow ϕ
is an Anosov flow. This is first proven in [Hop39], but see the appendix in [Bal95] for a
more modern exposition. It is also well known that Anosov flows are structurally stable,
i.e. the orbit equivalence class is preserved under any C1 perturbation to the underlying
vector field, see [Rob74] for a proof. Together with the fact that the space of negatively
curved Riemannian metrics on a 2-dimensional orbifold with negative Euler characteristic
is nonempty and connected ([Ham88]), this means that we can talk about the geodesic flow
on the unit tangent bundle of an orbifold S with negative Euler characteristic when we
mean the geodesic flow under some negatively curved Riemannian metric. Also, given a
collection of homotopically nontrivial and mutually nonparallel (un)oriented curves c, we
can talk about the (full) lift of c when we mean the (full) lift of the geodesic representative
of c under some negatively curved Riemannian metric.

One reason why geodesic flows are important to the study of pseudo-Anosov flows is that
they account for virtually all pseudo-Anosov flows on Seifert fibered 3-manifolds. More
precisely,

Theorem 2.18. Let N be a Seifert fibered space carrying a pseudo-Anosov flow ϕ. Then
N is a finite cover of the unit tangent bundle of some hyperbolic orbifold T 1Σ, and ϕ is
orbit equivalent to the lift of the geodesic flow on T 1Σ.

Proof. This is essentially proved in [BF13] and [Bar95]. We provide a sketch of the argument
found across the two papers.

Let S be the base orbifold of N and let h ∈ π1N be the class of a regular fiber. The proof of
[BF13, Theorem 4.1] starts by analyzing the action of h on the leaf space Hs of the stable

foliation on Ñ , showing that it is homeomorphic to R. This means that ϕ is an R-covered
Anosov flow. In fact, by [Bar95, Theorem 2.8], ϕ must be a skew R-covered Anosov flow or
else N would have Solv geometry.

Now in general from a skew R-covered Anosov flow, one can construct a step map τs :
Hs → Hs such that Hs/τs is a circle, and such that the action of π1N on Hs descends to
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an action on this circle. In the proof of [BF13, Theorem 4.1], by further analyzing the
action of π1N on Hs, it is shown that h acts trivially on Hs/τs, and the quotiented action
of π1N/⟨h⟩ = πorb

1 S on Hs/τs is a convergence group action. Hence by [Gab92] or [CJ94],
πorb
1 S can be conjugated to a Fuchsian group. Let ρ : πorb

1 S → PSL2R be this Fuchsian

representation, which bestows S with a hyperbolic structure Σ. Also, let ρ̃ : π1N → P̃SL2R
be the lift of ρ.

Denoting the element of P̃SL2R x to x+ l by sh(l) and conjugating such that τs = sh(1),
ρ̃(h) must be of the form sh(r) for some r ∈ Z. Since ρ is a Fuschian representation, for

H = ⟨ρ̃(π1N), sh(1)⟩, P̃SL2R/H ∼= PSL2R/ρ(πorb
1 S) ∼= T 1Σ. Hence P̃SL2R/ρ̃(π1N) ∼= N is

the |r|th fiberwise cyclic cover of T 1Σ.

To prove the second part of the statement, note that P̃SL2R/H ∼= T 1Σ carries the geodesic

flow, which is a skew R-covered Anosov flow. Its cover P̃SL2R/ρ̃(π1N) ∼= N thus carries
the lifted flow, which is also skew R-covered Anosov. It is easy to see that the action of
π1N on the leaf space of the stable foliation of this Anosov flow is exactly ρ̃. Hence by
[Bar95, Theorem 4.6], the original flow is orbit-equivalent to this lift of the geodesic flow
on T 1Σ. □

We also recall the following classical theorem. This follows from the more general statement
of [CRM20, Theorem 1.3].

Theorem 2.19. Let S be a 2-dimensional closed orbifold with negative Euler characteristic,
and let c be a filling collection of homotopically nontrivial and mutually nonparallel curves.

Then T 1S\↔c is a hyperbolic 3-manifold.

2.4. Montesinos links. We recall some notation and basic facts about Montesinos links.
We refer to [BS09] for more detailed explanations.

Definition 2.20. Let S be a 2-sphere with 4 marked points. Label the 4 marked points as
NE, NW, SW, SE. Suppose S bounds a 3-ball B, fix a projection of B to a disc, so that
the 4 marked points are mapped to the NE, NW, SW, SE corners of the disc respectively.
For us, a tangle will mean the projection of a (tame) embedding of two arcs in B where the
endpoints of the arcs lie on the 4 marked points.

For each finite sequence of integers (a0, ..., ak), define a tangle in the following way. If k is
even, start with two disjoint arcs connecting NE with NW and SW with SE, then add ak
half twists around the NW and SW corners, then −ak−1 half twists around the NE and
NW corners, and so on. If k is odd, start with two disjoint arcs connecting NE with SE
and NW with SW, then add −ak half twists around the NE and NW corners, then ak−1

half twists around the NW and SW corners, and so on.

We call such a tangle a rational tangle, and associate to it the rational number a0 +
1

a1+
1
...

.

In Figure 5 top left we illustrate an example of a rational tangle which corresponds to the
rational number 2 + 1

3+ 1
4

.
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a0 +
1

a1+
1
a2

a1

a2
a0

Figure 5. Definition of a Montesinos link.

A Montesinos link is a knot or link obtained by inserting rational tangles into the empty
regions of the knot diagram illustrated in Figure 5 bottom. If the rational numbers associated
to the rational tangles we inserted are q1

p1
, ..., qn

pn
, we denote the corresponding Montesinos

link by M( q1
p1
, ..., qn

pn
). We remark that the same knot or link may be representable as a

Montesinos link for various different choices of qi
pi
.

A key fact about Montesinos links is that they are exactly those knots and links whose
double branched cover is a Seifert fibered space. In fact, the double branched cover of
M( q1

p1
, ..., qn

pn
) is the Seifert fibered space with base orbifold S2 with cone points of index

p1, ..., pn and singular fibers above those cone points having parameters (pi, qi). In the
sequel, we will denote such an orbifold by S2(p1, .., pn) and such a Seifert fibered space as
(S2, (p1, q1), ..., (pn, qn)).

There is a neat way of seeing how this double branched cover works. Take a n-gon Q with
edges l1, ..., ln and consider a trivial circle bundle T over Q. Choose parametrizations li×R/Z
of the bundle over li, in a way such that the second coordinates in the parametrizations
shift down by qi

2pi
going from li × R/Z to li+1 × R/Z (here indices should be taken mod

n). Now this shift can only be well-defined mod Z, so there is still the ambiguity of how
the parametrizations fit together when going around ∂T . We fix this by requiring that in
the universal cover of T , if we start at l1 × {0} and follow horizontal lines li × {t} around
∂Q× {t}, we will return to l1 × { e

2
} for e =

∑ qi
pi
.

Now define an involution ιi on each li×R/Z by reflecting across the horizontal lines li×{0}
and li ×{1

2
}. Then T quotiented by the ιi on its faces is homeomorphic to S3, and the lines

of reflection form the Montesinos link M( q1
p1
, ..., qn

pn
). Intuitively, we are folding up each face
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Figure 6. Understanding the double branched cover of M( 1
p1

+ 1, 1
p2

−
1, ..., 1

pn
− 1) near one of the rational tangles with pi = 4.

of T , but on the fibers above the vertices of Q, the two foldings differ by a shift, so those
fibers are folded up in 2pi-ply fashion, from the action of a dihedral group.

From this picture, we can construct the double branched cover of M( q1
p1
, ..., qn

pn
) by taking

two copies of T and gluing their faces together via ιi. It can be seen that the result will be
the Seifert fibered space (S2, (p1, q1), ..., (pn, qn)).

In this paper, we will only be interested in the cases when the Seifert fibered space
(S2, (p1, q1), ..., (pn, qn)) is the unit tangent bundle over an orbifold. This is the case when
q1
p1

= 1
p1

+ 1 and qi
pi

= 1
pi
− 1 for i ̸= 1. In this case, the picture above simplifies, and can be

illustrated as in Figure 6.

The reason why we mentioned this perspective is that it allows one to see why these
Montesinos links are related to geodesic flows. Give Q a Riemannian metric where the sides
li are geodesics and the angle between li and li+1 is π

pi
. Then the unit tangent bundle of

Q is a trivial circle bundle over Q. If we orient the li coherently, say, to all go from li−1

to li+1, we can then choose parametrizations of the bundle over li using parallel transport,
where, say, li × {0} is the lift of li and li × {1

2
} is the lift of −li. It is straightforward to see

that these parametrizations satisfy the conditions imposed above, and the involutions ιi we
defined are induced by reflections across li.

Now if we construct the double branched cover of M( 1
p1

+ 1, 1
p2

− 1, ..., 1
pn

− 1) by gluing

together two copies of T 1Q as above, we get the unit tangent bundle over the orbifold
obtained by doubling Q, which is exactly S2(p1, ..., pn). The boundary of Q is a geodesic
c in this orbifold, and the double branched covering is induced by reflection across c. In

particular, the Montesinos link M( 1
p1

+ 1, 1
p2

− 1, ..., 1
pn

− 1) is the image of
↔
c .

We record this fact as a proposition.
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Proposition 2.21. Let n ≥ 1, p1, ..., pn ≥ 2. Let c be a curve that passes through
the cones points of order p1, ..., pn in S2(p1, ..., pn) in that order. Reflection across c
induces a double branched cover T 1S2(p1, ..., pn) → S3. The branch locus of the covering in

T 1S2(p1, ..., pn) is the full lift
↔
c . The branch locus of the covering in S3 is the Montesinos

link M( 1
p1

+ 1, 1
p2

− 1, ..., 1
pn

− 1).

3. Veering branched surfaces

In this section, we will introduce the notion of veering branched surfaces. Their definition is
modeled after the properties of the unstable branched surface listed in Proposition 2.5, and
they end up being essentially equivalent to veering triangulations, hence the name.

Definition 3.1. Let M be the interior of a compact 3-manifold with torus boundary
components, and let B be a branched surface in M . B along with a choice of orientations
on the components of its branch locus is veering if:

(i) Each sector of B is homeomorphic to a disc.

(ii) Each component of MB is a cusped solid torus or a cusped torus shell.

(iii) At each triple point, the orientation of each component of brloc(B) induces the maw
coorientation on the other component.

We will often abuse notation and consider the orientations on the components of the branch
locus as part of the data of B.

Proposition 3.2. Let B be a veering branched surface in an oriented 3-manifold M whose
complementary regions are all cusped torus shells. Then the dual ideal triangulation of B is
a veering triangulation ∆ of M , and B can be identified with the unstable branched surface
for ∆.

Proof. The orientations on the components of the branch locus induce orientations on the
sides of all the sectors of B. With this in mind, we first show the following lemma:

Lemma 3.3. Let B be a veering branched surface. Then each sector of B has 4 corners.
The orientations on the sides flip on two opposite corners.

Proof. Because of (iii), at each corner of a sector, the orientation of one side must induce
the maw coorientation on the other side. This implies that the orientations on the sides flip
on every other corner, hence the number of corners is divisible by 4. Together with (i), we
deduce that each sector is a 4n-gon, which has index 1− n.

Fix a component C of MB. By (ii), ∂C is a torus which is divided into annuli by the cusp
circles. Meanwhile, the intersection of ∂C with brloc(B) is a graph, the complementary
regions of which in ∂C are among the sectors of B. Suppose one of these complementary
regions is a disc with no corners. Then the disc must lie in the interior of one of the
annuli. But if the boundary of the disc has maw coorientation pointing outwards, then the
complementary region of B on the other side of the disc cannot be a cusped torus shell,
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L R

Figure 7. Defining the color of a triple point of a veering branched surface
in an oriented 3-manifold: The triple point on the left is blue while that on
the right is red.

and if the maw coorientation is pointing inwards, then the sector on ∂C surrounding the
disc cannot be homeomorphic to a disc. Hence we deduce that all sectors which appear
on ∂C have nonpositive index. But their indices must add up to give the index of a torus,
which is 0, so their indices have to be all 0. Together with the fact that each sector must
lie on the boundary of some complementary region of B, this proves the lemma. □

In particular, we now know that every component of brloc(B) must meet at least one triple
point. Hence we can define a cellular structure on B as in Definition 2.2 and talk about its
dual ideal triangulation ∆.

We define a veering structure on ∆. Each face of ∆ is dual to a 1-cell in brloc(B). We
coorient the face with the coorientation opposite to the one induced by the orientation on
the 1-cell.

Each tetrahedron of ∆ is dual to a triple point of B, which is adjacent to four 1-cells in
brloc(B), two of which are oriented inwards and two of which are oriented outwards. This
implies that among the four faces of each tetrahedron, two are cooriented inwards and two
are cooriented outwards. This induces a natural choice of dihedral angles among {0, π} on
each edge of a tetrahedron. Lemma 3.3 implies that the angle sum around each edge is 2π.
Hence we have defined a transverse taut structure on ∆.

Finally, each triple point of B is of one of the two forms illustrated in Figure 7. (Note that
this uses the assumption that M is oriented.) We color a triple point blue if it is of the
form on the left, and color it red if it is of the form on the right. Each edge of ∆ is the
top edge of a unique tetrahedron, and we color the edge with the same color as the triple
point dual to this tetrahedron. A good mnemonic to this is that an edge of ∆ is bLue or
Red if the sector of B dual to it has ‘fins’ on the bottom spiralling in the left-handed or
right-handed direction respectively.

To verify that this makes ∆ into a veering triangulation, we look at how the edges are
colored in each tetrahedron. There are two cases here depending on whether the dual triple
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point is colored blue or red, and in either case we see that the coloring satisfies Definition 2.1.
It is also straightforward to see that B is then the unstable branched surface of ∆. □

In other words, given a veering branched surface B on an orientable 3-manifold N , one can
drill out the cores of all the cusped solid torus components of NB to get a 3-manifold M
which carries a veering triangulation ∆, obtained by taking the dual ideal triangulation to
B in M . From now on, for simplicity, we will say that ∆ is the dual veering triangulation
to B, and conversely, B is the dual veering branched surface to ∆.

Remark 3.4. Notice that the definition of a veering triangulation only makes sense on
an oriented 3-manifold, while the definition of a veering branched surface makes sense for
non-orientable 3-manifolds as well. Hence veering branched surfaces serve as a generalization
of veering triangulations to the non-orientable case. In the language of [SS21], the dual ideal
triangulations to veering branched surfaces in general are what might be called transverse
locally veering triangulations.

We take the time to explain how to recover the flow graph Φ of a veering triangulation
∆ using just the data of its dual veering branched surface B: The set of vertices of Φ is
equal to the set of sectors of B, and there are 3 edges for each triple point, going from
the 3 sectors which the maw coorientations on the two components of the branch locus
passing through the triple point are pointing away from, into the sector which the maw
coorientations are pointing into. The embedding of Φ in B can also be recovered by placing
each vertex at the corner of the corresponding sector which the sides are oriented away
from, and placing the edges that exit that vertex within that sector.

We will also slightly generalize the notion of veering branched surfaces to what we call
almost veering branched surfaces. Despite not having as much relation to veering triangu-
lations, these serve as good intermediate objects when trying to build veering branched
surfaces.

Definition 3.5. Let M be the interior of a compact 3-manifold with torus boundary
components, and let B be a branched surface in M . B along with a choice of orientations
on the components of its branch locus is almost veering if:

(i) No sector of B is a disc without corners.

(ii) Each component of MB is a cusped solid torus or a cusped torus shell.

(iii) At each triple point, the orientation of each component of brloc(B) induces the maw
coorientation on the other component.

As in Definition 3.1, we will often abuse notation and consider the orientations on the
components of the branch locus as part of the data of B.

We have the following analogue of Lemma 3.3.

Lemma 3.6. Let B be an almost veering branched surface. Each sector of B is homeomor-
phic to a disc, an annulus, or a Möbius band. If a sector of B is homeomorphic to a disc,
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it has 4 corners and the orientations on the sides flips on two opposite corners. If a sector
of B is homeomorphic to an annulus or a Möbius band, it has no corners.

Proof. One can prove this using the same argument as in Lemma 3.3: First observe that
(iii) implies the number of corners in each sector is divisible by 4. In this case, sectors that
are discs with no corners are explicitly forbidden by (i), so the indices of all sectors are
nonpositive. Finally, an additivity argument implies that all these indices are 0. □

We also have the following observation.

Proposition 3.7. If B is an almost veering branched surface on a hyperbolic 3-manifold
M for which all components of MB are cusped torus shells, then B is automatically a
veering branched surface.

Proof. If M is orientable and there were any annulus sectors, then the complementary
regions of B on the two sides of the sector would contain parallel ends, which is impossible
for hyperbolic M . If M is non-orientable or if there are any Möbius band sectors, this
argument gives a contradiction in a finite cover of M . □

Before we end this section, we explain some notation that we will be using in the rest of
this paper.

Given an almost veering branched surface B in a 3-manifold M , recall that there are
implicitly chosen orientations for the components of its branch locus. We will also implicitly
coorient the components of the branch locus by the maw coorientation, unless otherwise
stated. These orientations and coorientations will be denoted by arrows in the figures.

Also, when M is oriented, we will say that a triple point of B is blue or red according to
Figure 7, as in the proof of Proposition 3.2. From that proof, we note that if B is veering
and dual to a veering triangulation ∆, then the number of blue or red triple points of B is
equal to the number of blue or red edges in ∆ respectively.

4. Surgeries on veering branched surfaces

In this section, we will describe some surgical operations one can perform on almost veering
branched surfaces. The two basic types are horizontal and vertical surgery, and we will also
describe a generalization of horizontal surgery. We will only be using horizontal surgery in
our constructions in the rest of this paper, but since vertical surgery admits a very similar
description, we introduce it here as well. It is also an interesting question how vertical
surgery can interact with the constructions we present in this paper, see Section 7.

The surgeries will be done along certain types of curves carried by almost veering branched
surfaces, hence we make the following preliminary definition.

Definition 4.1. Let B be a branched surface in a 3-manifold M . Let α ⊂ B be a smoothly
embedded curve which avoids the triple points of B.
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α is said to be orientation preserving if the tangent planes of B along α can be oriented
in a coherent way. Otherwise α is said to be orientation reversing. Similarly, α is said
to be coorientation preserving if the tangent planes of B along α can be cooriented in a
coherent way, otherwise α is coorientation reversing. Note that we do not assume that M
is orientable, hence orientation preserving does not imply coorientation preserving (and
vice versa).

Let N be a small tubular neighborhood of α in M . For N small enough, N ∩B is an annulus
or Möbius band A with sectors attached along disjoint arcs, with each arc corresponding to a
point of intersection between α and the branch locus of B. We call A a smooth neighborhood
of α in B. NA has one or two components, depending on whether α is coorientation
preserving. We refer to the components of NA as the regular half-neighborhoods of α in
B. Note that the restriction of B to each regular half-neighborhood is a branched surface,
specifically it is an annulus with sectors attached on one side.

4.1. Horizontal surgery.

Definition 4.2. Let B be an almost veering branched surface in a 3-manifold M and let
α ⊂ B be a smoothly embedded curve which avoids the triple points of B. Let N be a
tubular neighborhood of α in M and let A be a smooth neighborhood of α in B. We say
that α is a horizontal surgery curve if:

(1) α is orientation and coorientation preserving; hence A is an annulus and there are
two regular half-neighborhoods of α in B, which we label as N1 and N2.

(2) The arcs in the branch locus of N ∩ B are all oriented from the same boundary
component of A to the other.

(3) The arcs in the branch locus of each Ni ∩B are cooriented in the same direction,
but the two directions for the two regular half-neighborhoods are opposite to each
other.

See Figure 8 top for an illustration of a horizontal surgery curve.

Let α be a horizontal surgery curve on an almost veering branched surface B. As the name
suggests, we will explain how to do surgery along α. First we set up some orientation
conventions: Orient α so that the arcs in brloc(N1 ∩ B) are cooriented coherently as α.
Note that (arcs in brloc(N1 ∩B), α) determines an orientation of A. Orient the meridian µ
of N1 such that the basis (µ, α) on ∂N1 agrees with this orientation on A.

For each k ≥ 0, one can cut N1 out of M , and glue it back with a map that is identity on
∂N1A and sends the meridian to a curve of isotopy class µ− kα, such that the arcs in
the branch locus of N1 ∩B intersect those in N2 ∩B minimally. See Figure 8. This gives
us a branched surface B′ in another 3-manifold M ′, topologically obtained by doing 1

−k

surgery along α on M (with respect to the basis we chose above). We call this operation a
1
−k

horizontal surgery along α.
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Remark 4.3. Alternatively, one can also perform the surgery by cutting out N2 and gluing
it back appropriately. The resulting branched surface will be isotopic to B′ above.

Notice that α ⊂ B′ continues to be a horizontal surgery curve (as long as the gluing map
on ∂N1 is generic enough to avoid triple intersections of α and the branch loci of N1 ∩B
and N2 ∩B), and if we perform 1

−l
horizontal surgery on it, the total effect is equivalent to

doing 1
−k−l

horizontal surgery along the original α ⊂ B. For this reason, it often suffices to

consider 1
−1

horizontal surgeries, and for convenience we abbreviate doing 1
−1

horizontal
surgery along α as just doing horizontal surgery along α.

Proposition 4.4. Let α be a horizontal surgery curve on an almost veering branched
surface B. Let B′ be the branched surface obtained by doing 1

−k
horizontal surgery along α.

Then B′ is almost veering.

Furthermore, if B is veering then B′ is veering as well.

Proof. We need to check conditions (i)-(iii) in Definition 3.5.

Conditions (ii) and (iii) are straightforward. For (ii), the complementary regions of B can
be canonically identified with those of B′. For (iii), the orientations on the components of
brloc(B) induce orientations on those of brloc(B′), which satisfy (iii) for k ≥ 0.

For (i), we separate the sectors of B′ into three types and inspect them one by one. The
sectors of B′ that do not intersect A in their interior are among the sectors of B, hence are
discs with corners, annuli, or Möbius bands. The sectors of B′ whose interiors lie in A are
discs with 4 corners. Finally, for the sectors of B′ that meet ∂A in their interior, these are
homeomorphic to complementary regions of α in sectors of B and each contain at least one
corner.

In fact, once we know that B′ is almost veering, Lemma 3.6 implies that the last type of
sectors must be discs with corners. If B is veering, the analysis above combines with this
observation to show that every sector of B′ is a disc, hence B′ is veering. □

Let ni be the number of sectors attached along Ni. If B
′ is obtained by doing 1

−k
horizontal

surgery along α, then the number of triple points of B′ is kn1n2 more than that of B. If
M is oriented, then the added triple points are all of the same color. This color is red
if the orientation of N1 we chose above is coherent with the orientation of M , and blue
otherwise.

Remark 4.5. If α is a horizontal surgery curve, the 1-cells in the branch locus which it
passes through are dual to faces which join together as an annulus smoothly carried by the
2-skeleton of the dual veering triangulation. In fact, this is the reason why we call this
surgery ‘horizontal’. When we do horizontal surgery along α, we cut open the triangulation
along this annulus, and insert some tetrahedra in-between.

In [SS23], Schleimer and Segerman show that any veering triangulation can be canonically
decomposed as a union of veering solid tori. The core of each veering solid torus is an
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α

Figure 8. Doing horizontal surgery on a horizontal surgery curve α. Blue
triple points are produced from the surgery in this example.

example of a horizontal surgery curve. In this case, surgery along such a core is equivalent
to inserting more veering solid tori along the core.

4.2. Vertical surgery.

Definition 4.6. Let B be an almost veering branched surface in a 3-manifold M and let
α ⊂ B be an oriented smoothly embedded curve which avoids the triple points of B. Let
N be a tubular neighborhood of α in M and let A be a smooth neighborhood of α in B.
We say that α is a vertical surgery curve if:

(1) α is orientation and coorientation preserving; hence A is an annulus and there are
two regular half-neighborhoods of α in B, which we label as N1 and N2.

(2) The arcs in the branch locus of each Ni ∩B are oriented from the same boundary
component of A to the other, but the two orientations for the two regular half-
neighborhoods are opposite to each other.

(3) The arcs in the branch locus of N ∩B are all cooriented coherently as α.

See Figure 9 left for an illustration of a vertical surgery curve.

We explain how to do surgery along a vertical surgery curve α. Again, we first set up the
orientations: Note that (arcs in brloc(N1 ∩B), α) determines an orientation of A. Orient
the meridian µ of N1 such that the basis (µ, α) on ∂N1 agrees with this orientation on
A.

For each k ≥ 0, cut N1 out of M and glue it back with a map that is identity on ∂N1A
and sends the meridian to a curve of isotopy class µ+ kα, such that the arcs in the branch
locus of N1 ∩B intersect those in N2 ∩B minimally. See Figure 9. This gives us a branched
surface B′ in another 3-manifold M ′, topologically obtained by doing 1

k
surgery along α in
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α

Figure 9. Doing vertical surgery on a vertical surgery curve α. Blue triple
points are produced from the surgery in this example.

M (with respect to the basis we chose above). We call this operation a 1
k
vertical surgery

along α.

Remark 4.7. As in Remark 4.3, one can perform the surgery as cutting out N2 and gluing
it back appropriately.

As for horizontal surgery, notice that α ⊂ B′ continues to be a vertical surgery curve (for
generic gluing maps), and if we perform 1

l
vertical surgery on it, the total effect is equivalent

to doing 1
k+l

vertical surgery along the original α ⊂ B. We abbreviate doing 1
1
vertical

surgery along α as just doing vertical surgery along α.

The same argument as in Proposition 4.4 can be used to show the following proposition.

Proposition 4.8. Let α be a vertical surgery curve on an almost veering branched surface
B. Let B′ be the branched surface obtained by doing 1

k
vertical surgery along α. Then B′ is

almost veering.

Furthermore, if B is veering then B′ is veering as well.

Let ni be the number of sectors attached along Ni. If B
′ is obtained by doing 1

k
vertical

surgery along α, then the number of triple points of B′ is kn1n2 more than that of B. If
M is oriented, then the added triple points are all of the same color. This color is red
if the orientation of N1 we chose above is coherent with the orientation of M , and blue
otherwise.

Remark 4.9. If α is a vertical surgery curve, the 1-cells in the branch locus which α passes
through determines an annulus as in Remark 4.5, but here the annulus is not smoothly
carried by the 2-skeleton of the dual veering triangulation. Regardless, when one performs
vertical surgery along α, this annulus is cut open and some tetrahedra are inserted within.

One example of vertical surgery curves are the infinitesimal cycles of the flow graph, as
described in [AT22] (and perturbed to avoid triple points). In this case, the collection of
the added tetrahedra forms a wall in the terminology of [AT22].
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We also explain why we call this surgery ‘vertical’. Suppose B is veering, then by pushing α
to the top of each 1-cell in the branch locus it intersects, one can see that α is carried by the
1-skeleton of B. This 1-skeleton is called the dual graph of the dual veering triangulation ∆
in work of Landry-Minsky-Taylor, and by combining [LMT20, Proposition 5.7] and [AT22,
Corollary 5.16], we know that α is homotopic to a periodic orbit of the pseudo-Anosov flow
associated to ∆ under Theorem 2.16. We conjecture that the associated pseudo-Anosov
flow after vertical surgery along α is related to the original flow via Goodman-Fried surgery
on this periodic orbit. See [Sha21] for more information on Goodman-Fried surgery.

4.3. Variants of horizontal surgery: halved and concurrent. The idea behind hori-
zontal and vertical surgeries can be easily modified to produce variants. Here we introduce
a halved variant of horizontal surgery, which has the property of being equivariant under
an involution. This property will allow us to take veering branched surfaces constructed
on unit tangent bundles of genus zero orbifolds and quotient them down to Montesinos
link complements under a branched double cover. It turns out that this halved horizontal
surgery can be performed along multiple interacting sites concurrently. We will utilize this
to construct veering branched surfaces on unit tangent bundles when we have to modify
the order of more than one cone point of the base orbifold.

Definition 4.10. Let B ⊂ M be an almost veering branched surface. Let A ⊂ M be an
annulus such that:

(1) A is transverse to B and to brloc(B), and ∂A ⊂ B

(2) All intersections of A with brloc(B) lie in ∂A and induce the same coorientation on
A

(3) The boundary components of A are horizontal surgery curves on B.

(4) The train track A ∩ B on A consists of the two boundary components of A and
some branches in the interior going from one boundary component to the other,
combed in different directions on the two boundary components.

Then we say that the boundary components of A form a pair of parallel horizontal surgery
curves, and that A is a connecting annulus between them.

We explain a type of horizontal surgery one can perform along such a connecting annulus
A. Let α and β be the two boundary components of A. Take a neighborhood of A,
N ∼= A× [0, 1], where the coorientation on A in (2) is from A× {1} to A× {0}, and such
that ∂A× [0, 1] are smooth neighborhoods of α and β in B. Orient α so that the arcs in
brloc(N ∩B) which meet α are all cooriented coherently as α, and label the branches of
A∩B in the interior of A as b1, ..., bn in the order of transversal by α (indices taken mod n
here). As in Section 4.1, (arcs in brloc(N ∩B) which meet α, α) determines an orientation
on the smooth neighborhood of α. Orient the meridian µ of N such that the basis (µ, α)
on ∂N agrees with this orientation.

Now for each 0 ≤ j ≤ n, one can cut N out of M , and glue it back with a map that is
identity on A× {0}, takes bi × {1} to bi+j × {1} for each i (indices taken mod n here) on
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A× {1}, and sends the meridian to a curve of isotopy class µ− α, such that the arcs in the
branch locus of N ∩B intersect those in the other half regular neighborhoods of α and β
minimally. See Figure 10 (ignoring the gray lines for now).

This gives us a branched surface B′ in another 3-manifold M ′, topologically obtained by
doing 1

−1
surgery along α on M (with respect to the basis we chose above). We call this

operation a (−j
n
, j−n

n
) horizontal surgery along A.

Intuitively what we have done is perform j
n
of a horizontal surgery along α and n−j

n
of a

horizontal surgery along β, and together these ‘add up’ to a complete horizontal surgery.
Similar to our remark for basic horizontal surgery, observe that A ⊂ M ′ continues to be a
connecting annulus between a pair of parallel horizontal surgery curves (for generic gluing
maps), and one can repeat this procedure, in particular producing many branched surfaces
on the 3-manifolds obtained by 1

−k
surgery along α, for every k ≥ 0.

Proposition 4.11. Let A be a connecting annulus between a pair of parallel horizontal
surgery curves on an almost veering branched surface B. Let B′ be the branched surface
obtained by doing (−j

n
, j−n

n
) horizontal surgery along A. Then B′ is almost veering.

Furthermore, if B is veering then B′ is veering as well.

Proof. The same arguments as in Proposition 4.4 work here with one necessary modification
for condition (ii): the complementary regions of B may not be in one-to-one correspondence
with those of B′. But observe that the complementary regions of B which meet the interior
of A must be 2-cusped solid tori, and A must meet these components in meridional discs,
by (2) and (4). The complementary regions of B′ can be obtained by cutting and gluing
these 2-cusped solid tori along meridional discs, the results of which will be 2-cusped solid
tori again. □

The ability to do fractions of horizontal surgeries is of interest in the setting where we have
an involution on the 3-manifold. More precisely:

Lemma 4.12. Let ι : M → M be an involution with fixed point set being a link in M , such
that M → M/⟨ι⟩ is a branched double cover. If B is an (almost) veering branched surface
on M which is preserved by ι, and for which the fixed point set of ι does not intersect B,
then B/⟨ι⟩ is an (almost) veering branched surface in M/⟨ι⟩.

Furthermore, if A is a connecting annulus between a pair of parallel horizontal surgery
curves, and if ι preserves A and its fixed point set intersects A, then A/⟨ι⟩ is a disc whose
boundary curve is a horizontal surgery curve on B/⟨ι⟩.

Proof. Note that our hypothesis includes the assumption that ι preserves the orientations
on the components of brloc(B). Thus (iii) of Definition 3.1 (or Definition 3.5) is clear for
B/⟨ι⟩ with the induced orientation on its branch locus. (i) is also clear from the observation
that sectors of B double cover sectors of B/⟨ι⟩.
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β

α

Figure 10. Doing halved horizontal surgery along an equivariant connecting
annulus (in pink).

For (ii), the complementary regions of B double cover or double branched cover those
of B/⟨ι⟩, where the branch locus of the cover does not intersect the boundary of the
complementary regions. But by standard 3-manifold topology and the Smith conjecture
(proved in this setting by Waldhausen ([Wal69])), a cusped solid torus or cusped torus shell
can only double cover or double branched cover another cusped solid torus or cusped torus
shell respectively, if the branch locus of the cover lies away from the boundary, so B/⟨ι⟩
satisfies (ii) as well.

For the second part of the lemma, A double branched covers A/⟨ι⟩ hence A/⟨ι⟩ is a disc.
Either boundary component of A maps to the boundary curve of A/⟨ι⟩ hence the latter is
a horizontal surgery curve. □

In the setting of Lemma 4.12, we call A an equivariant connecting annulus. Let α and β
be the boundary components of A, and let N be a neighborhood of A as described above
which is in addition preserved by ι. Let n be the number of arcs in the branch locus of
N ∩ B which meet α; this is the same as the number of arcs which meet β, because of
the symmetry from ι. Let m be the number of arcs in the branch locus of the intersection
between B and the half regular neighborhood of α lying on the opposite side as N ; again
this is the same as that for β by symmetry. Moreover, the fact that no components of the
fixed point set of ι lies in B implies that n is even.

We perform (−2,−2) horizontal surgery along A as described above (i.e. we take j = n
2
)

to get B′ ⊂ M ′. Note that the gluing map can be chosen to be ι-equivariant, hence we
can define an involution ι′ on M ′ by gluing together the involutions on MN and N . The
objects M ′, ι′, and B′ then satisfy the assumptions of Lemma 4.12. See Figure 10, now
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with the gray lines. In particular, we have an (almost) veering branched surface B′/⟨ι′⟩ on
M ′/⟨ι′⟩.

For every k ≥ 0, we can repeat this procedure k times to get an (almost) veering branched
surface B′ on 3-manifold M ′, topologically obtained by doing 1

−k
surgery along α in M , and

which has an involution ι′. Moreover, B′ ⊂ M ′ descends to an (almost) veering branched
surface B′/⟨ι′⟩ ⊂ M ′/⟨ι′⟩. We will refer to the total operation going from B to B′ as halved
1
−k

horizontal surgery along the equivariant connecting annulus A.

Remark 4.13. The operation of going from M/⟨ι⟩ to M ′/⟨ι′⟩ can be described directly as
follows. Take the disc A/⟨ι⟩ ⊂ M/⟨ι⟩, for which the branch locus of ι on M/⟨ι⟩ intersects
in two points, cut it open, then reglue it with k half twists. The image of the branch locus
of ι after cutting and gluing will be the branch locus of ι′. The direction of the half twists
can be determined by orienting the boundary curve of A/⟨ι⟩ such that the arcs in the
branch locus of (N ∩B)/⟨ι⟩ are cooriented coherently with it, and twisting the bottom half
(A× {0})/⟨ι⟩ in the direction of its oriented boundary.

The number of triple points of B′ is kmn more than that of B, so the number of triple
points of B′/⟨ι′⟩ is kmn

2
more than that of B/⟨ι⟩. If M is oriented, then M/⟨ι⟩ is also

oriented by our assumptions on ι. In this case the knm
2

triple points added are all of the
same color: red if the orientation we chose on N matches that of M , blue otherwise.

Next, we explain a setting where we can do several of such halved horizontal surgeries
concurrently.

Definition 4.14. Suppose M, ι, and B satisfy the assumptions of Lemma 4.12. Let
A1, ..., As be equivariant connecting annuli, and let Ni

∼= Ai × [0, 1] be neighborhoods of Ai

as above. Let the boundary components of Ai be αi and βi. Orient αi and βi so that the
arcs in the branch locus of Ni ∩B are cooriented coherently. Meanwhile the orientations
on those arcs also induce coorientations of αi, βi on B (which are well-defined by (2) of
Definition 4.2).

Suppose that:

(1) αi and αj are disjoint for all i, j, and βi and βj are disjoint for all i, j

(2) αi and βj intersect transversely in B for all i, j.

(3) At each intersection point between αi and βj, Ai and Aj lie on different sides of B.

(4) At each intersection point between αi and βj , the orientation of αi is incoherent with
the coorientation of βj , and the orientation of βj is incoherent with the coorientation
of αi

Then we call {Ai} a system of equivariant connecting annuli.

Orient each Ni as above. (3) and (4) of Definition 4.14 implies that these orientations
match up where they overlap. For every ki ≥ 0, i = 1, ..., s, we can perform halved 1

−ki
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Figure 11. Doing concurrent halved horizontal surgery on a system of
equivariant connecting annuli (in pink). In the bottom figure, to avoid clutter,
we only draw the restriction of the branch locus to part of a surface carried
by the branched surface.

horizontal surgeries along each Ai simultaneously by cutting out each Ni and gluing it back
in with a map that is identity on Ai×{0}, shifts the branches on Ai×{1} by ki

2
cycles, and

sends the meridian µi to a curve of isotopy class µi − kiαi, such that the arcs in the branch
locus of Ni ∩B intersect minimally on smooth neighborhoods of αi, βi. See Figure 11 for
an illustration near an intersection point of αi and βj. This gives us a branched surface
B′ in another 3-manifold M ′, topologically obtained by doing 1

−ki
surgeries along αi on M .

We call this operation a concurrent halved 1
−ki

horizontal surgery on the system {Ai}.

Using the same argument as Proposition 4.11, one can show the following proposition.

Proposition 4.15. Let {Ai} be a system of equivariant connecting annuli on an almost
veering branched surface B. Let B′ be the branched surface obtained by doing concurrent
halved 1

−ki
horizontal surgery on {Ai}. Then B′ is almost veering.

Furthermore, if B is veering then B′ is veering as well.

Also, we can again define an involution ι′ on M ′ by gluing together the involutions on Ni

and MNi, under which M ′, ι′, and B′ satisfy the assumptions of Lemma 4.12. To directly
obtain M ′/⟨ι′⟩ from M/⟨ι⟩, one performs ki half twists along the discs Ai/⟨ι⟩.
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In terms of the 3-manifolds, concurrent halved horizontal surgery is just performing surgery
along the disjoint curves αi, but on the level of the branched surfaces, the various surgeries
interact with each other.

In particular, the fact that the surgery curves intersect each other adds extra terms to the
number of triple points produced by the operation: Let ni be the number of arcs in the
branch locus of Ni ∩B which meet αi (equivalently, that of βi), let mi be the number of
arcs in the branch locus of the intersection between B and the half regular neighborhood
of αi on the opposite side as Ni (equivalently, that of βi), and let qij be the number of
intersection points between αi and βj (equivalently, between αj and βi).

Performing the surgery along Ai on its own produces kimini triple points. If we perform all
the surgeries concurrently, then near each intersection point between αi and βj,

1
4
ninjkikj

additional triple points are produced. See Figure 11 for an example, where ni = nj =
2, ki = kj = 1 and one additional triple point is produced.

Adding these terms together gives the following formula.

Proposition 4.16. Let C = [1
4
qijninj], d = [nimi], and k = [ki]. The number of triple

points of B′ is kT (Ck + d) more than that of B, and the number of triple points of B′/⟨ι′⟩
is 1

2
kT (Ck + d) more than that of B/⟨ι⟩.

As before, if M is oriented, then the triple points added are all of the same color, red if the
chosen orientations on Ni match that of M , and blue otherwise.

5. Geodesic flows I: Genus zero orbifolds, Montesinos knots and links

In this section we explain Construction 1.1. We remind the reader of the setup. Let N be
the unit tangent bundle of the orbifold S2(p1, ..., pn). Suppose that e :=

∑
1
pi
− n+ 2 < 0,

so that the geodesic flow on N is Anosov. Let c be the simple closed curve passing through

the cone points of S2(p1, ..., pn) in the order of their indices (taken mod n), and let
↔
c be

the full lift of c. Let M = N\↔c . There is an involution ι of N such that N → N/⟨ι⟩ ∼= S3

is a branched double cover, with branch locus of the cover equal to the Montesinos link
M( 1

p1
+ 1, 1

p2
− 1, ..., 1

pn
− 1) ⊂ S3.

Our goal in this section will be to construct a veering branched surface on N , for which

the cores of the complementary regions are given by
↔
c . This veering branched surface

will be invariant under ι in the way described by Lemma 4.12, hence will descend to a
veering branched surface on the Montesinos link complement S3\M( 1

p1
+1, 1

p2
− 1, ..., 1

pn
− 1)

where all complementary regions are cusped torus shells, thus giving us a dual veering
triangulation. We will state this last result as a theorem.

Theorem 5.1. For every n, p1, ..., pn such that e :=
∑

1
pi
− n+ 2 < 0, there is a veering

triangulation on the Montesinos link complement S3\M( 1
p1

+ 1, 1
p2

− 1, ..., 1
pn

− 1).

Now, this theorem by itself is not new. It is already known that these Montesinos link
complements admit veering triangulations just from the fact that they are fibered with
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fully-punctured monodromy (by [CD20, Theorem E]) and hyperbolic (by Theorem 2.19).
Instead, the more significant point here is that our construction of the veering branched
surfaces is entirely explicit, whereas it is not clear what the monodromies of these fiberings
are, let alone periodic folding sequences of train tracks of the monodromies, which is what
one needs in order to construct the veering triangulation as in [Ago11]. We also point out
that by Theorem 2.18, the Anosov flows on T 1S2(p1, ..., pn) that correspond to the double
covers of the veering triangulations in Theorem 5.1 must be the geodesic flow.

In Appendix B, we will compile the IsoSig codes of those veering triangulations in Theo-
rem 5.1 which are present in the veering triangulation census [GSS].

We will divide the proof of Theorem 5.1 into four cases. Notice that (S2(p1, ..., pn), c) ∼=
(S2(pσ(1), ..., pσ(n)), c) for cyclic permutations and reversals σ ∈ Sn. So when n = 3, we can
always assume that p1 ≤ p2 ≤ p3. With this arranged, all the possibilities of p1, p2, p3 for
which e < 0 fall under three cases: (1) p1 = 2, p2 = 3, p3 > 6, (2) p1 = 2, (p2, p3) > (4, 4), and
(3) (p1, p2, p3) > (3, 3, 3), where we use the lexicographic ordering on tuples of integers.

For n = 4, we do not attempt to rearrange the pi, and simply note that e < 0 is equivalent
to (p1, p2, p3, p4) > (2, 2, 2, 2). For n ≥ 5, there are no restrictions on pi. We group all the
possibilities for n ≥ 4 together as case (4).

Each case proceeds by first constructing an almost veering branched surface on some unit
tangent bundle, then locating an appropriate system of equivariant connecting annulus,
and performing concurrent halved horizontal surgery on the system to get veering branched
surfaces on the family of unit tangent bundles that we want, which then descend, under
the involution, to veering branched surfaces on the family of Montesinos link complements
that we are considering. The construction for cases (1)-(3) are very similar to each other.
Meanwhile case (4) will be done via a different approach for the purposes of Section 6.

5.1. Case 1: n = 3, p1 = 2, p2 = 3, p3 > 6. We will first construct a branched surface
on T 1R2. Here we put the usual Euclidean coordinates x, y on R2 and set T 1R2 ∼=
R2

x,y × (R/2πZ)θ where tan θ is the slope.

Consider the G2 grid on R2. For concreteness, say, this is given by taking the union of the
lines

{y = 3n}n∈Z ∪ {y =
1√
3
x+ 2n}n∈Z ∪ {y =

√
3x+ 6n}n∈Z

∪{x =
√
3n}n∈Z ∪ {y = − 1√

3
x+ 2n}n∈Z ∪ {y = −

√
3x+ 6n}n∈Z

See the black lines in Figure 12.
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Figure 12. Using the G2 grid to construct an almost veering branched
surface on T 1S2(2, 3, 6).

Then consider the midway lines of this grid, i.e. lines that lie in the middle of each pair of
adjacent parallel lines. Concretely, these are

{y = 3n+
3

2
}n∈Z ∪ {y =

1√
3
x+ 2n+ 1}n∈Z ∪ {y =

√
3x+ 6n+ 3}n∈Z

∪{x =
√
3n+

√
3

2
}n∈Z ∪ {y = − 1√

3
x+ 2n+ 1}n∈Z ∪ {y = −

√
3x+ 6n+ 3}n∈Z

See the yellow lines in Figure 12.
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Figure 13. Rough picture of B̃0.

Now construct a branched surface in T 1R2 by taking the horizontal planes {θ = (2i−1)π
12

},
then attaching infinite strips of the form:

{y = 3n+
3

2
, θ ∈ [− π

12
,
π

12
] ∪ [

11π

12
,
13π

12
]}n∈Z

∪{y =
1√
3
x+ 2n+ 1, θ ∈ [

π

12
,
3π

12
] ∪ [

13π

12
,
15π

12
]}n∈Z

∪{y =
√
3x+ 6n+ 3, θ ∈ [

3π

12
,
5π

12
] ∪ [

15π

12
,
17π

12
]}n∈Z

∪{x =
√
3n+

√
3

2
, θ ∈ [

5π

12
,
7π

12
] ∪ [

17π

12
,
19π

12
]}n∈Z

∪{y = −
√
3x+ 6n+ 3, θ ∈ [

7π

12
,
9π

12
] ∪ [

19π

12
,
21π

12
]}n∈Z

∪{y = − 1√
3
x+ 2n+ 1, θ ∈ [

9π

12
,
11π

12
] ∪ [

21π

12
,
23π

12
]}n∈Z

and combing the lines of attachment such that the maw coorientation of {y = (tan θ0)x+
c0, θ = θ0+

π
12
} is given by − sin θ0

∂
∂x

+cos θ0
∂
∂y

and that of {y = (tan θ0)x+ c0, θ = θ0− π
12
}

is given by sin θ0
∂
∂x

− cos θ0
∂
∂y
. We also orient {y = (tan θ0)x + c0, θ = θ0 ± π

12
} by

cos θ0
∂
∂x

+ sin θ0
∂
∂y
.

Up to a small perturbation, we can arrange for these infinite strips to be transverse to the

fiber direction ∂
∂θ
. We call the resulting branched surface B̃0. Intuitively, we are attaching

strips that lift each oriented midway line and which lie between the horizontal layers.

This makes B̃0 into a ‘wasp nest’ with holes where the full lifts of the grid lines live. See
Figure 13.

Now consider the subgroup G+ in Isom+(R2) ∼= R2 ⋊ SO(2) generated by products of
even numbers of reflections across the grid lines. G+ quotients R2 down to the orbifold
S2(2, 3, 6), hence its lifted action quotients T 1R2 down to T 1S2(2, 3, 6). In fact, it is easy to
see that the quotient map T 1R2 → T 1S2(2, 3, 6) is a covering. Meanwhile, our construction



VEERING BRANCHED SURFACES, SURGERIES, AND GEODESIC FLOWS 35

of B̃0 can be made to be equivariant under G+; one only has to do the combings and

perturbations equivariantly. Hence B̃0 descends to a branched surface B0 on T 1S2(2, 3, 6).

The orientations we defined on the components of brloc(B̃0) are also equivariant under G+,
hence they descend to orientations on the components of brloc(B0).

Claim 5.2. B0 is an almost veering branched surface. The cores of its complementary

regions are given by
↔
c .

Proof. For the first statement, we check the conditions in Definition 3.5 one by one.

The sectors of B̃0 cover those of B0. One can check that the former consists of quadrilaterals
lying on the planes {θ = θ0} and the infinite strips. The quadrilaterals are topologically discs
hence can only homeomorphically cover quadrilateral sectors in B0. Similarly, the infinite
strips can only cover annulus or Möbius band sectors in B0. Hence (i) of Definition 3.5
is satisfied by B0. In fact, we do not get Möbius band sectors in B0 since G+ preserves
the fiber direction ∂

∂θ
hence maps the infinite strips to themselves in orientation preserving

ways.

Similarly, the complementary regions of B̃0 cover those of B0. The former consists of
2-cusped infinite cylinders, i.e. D2 × R with two cusp lines running along the R direction.
These can only cover 2-cusped solid tori. Hence (ii) of Definition 3.5 is satisfied by B0.
Similarly as above, since G+ preserves the fiber direction, the 2-cusped solid tori must in
fact be untwisted, i.e. there are two cusp circles on each solid torus.

Finally, the orientations on the components of brloc(B̃0) satisfy (iii) of Definition 3.5 at
each triple point, and so (iii) holds for B0 as well.

For the second statement, notice that the grid lines in R2 descend to the curve c in S2(2, 3, 6).

Hence the cores of the complementary regions of B̃0, which are given by full lifts of the
grid lines, descend to the full lift of c. From our argument showing (ii) above, these are the
cores of the complementary regions of B0. □

Now let G be the subgroup in Isom(R2) ∼= R2⋊O(2) generated by all products of reflections
across the grid lines. G+ is a index 2 subgroup of G, and G/G+ =: ⟨ι⟩ acts on S2(2, 3, 6)
by reflection across c. Hence ι acts on T 1S2(2, 3, 6) by the lift of this reflection across c.

In particular the fixed point set of ι is
↔
c , which by Claim 5.2 above, is the core of the

complementary regions of B0. Thus by Proposition 2.21, Proposition 4.11, and Lemma 4.12,
B0/⟨ι⟩ is an almost veering branched surface on S3, with the cores of its complementary
regions given by the Montesinos link M(3

2
,−2

3
,−5

6
).

Next we will locate a system of equivariant connecting annuli of B0. To do so, we work in
T 1R2. For each vertex (x0, y0) in the orbit of (0, 0) under G, consider the hexagon H in R2

with vertices (x0 ± 4
√
3

3
, y0), (x0 ± 2

√
3

3
, y0 ± 2), and consider the torus that is T 1R2|H . The

hexagon H for the point (0, 0) is drawn in dotted lines in the center of Figure 12.
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Figure 14. The intersection of T 1R2|E with B̃0. The arrows on the left
represent the vertical θ coordinate by the directions in Figure 12. The pink

region defines a connecting annulus Ã of B̃0. The black dots denote where
the full lifts of the grid lines intersect T 1R2|E. The pink vertical dotted lines

denote where the other translates of Ã intersect T 1R2|E.

Let E be the edge of H between (x0 − 2
√
3

3
, y0 + 2) and (x0 +

2
√
3

3
, y0 + 2), which is the red

segment in Figure 12. We draw T 1R2|E in Figure 14, where the arrows on the left represent
the vertical θ coordinate by the directions in Figure 12. Notice that E is the fundamental
domain of H under the action of the stabilizer of (x0, y0) in G+, and that H is the union
of 6 translates of E. Hence the whole torus T 1R2|H can be obtained by taking 6 copies of
Figure 14, and gluing them up cyclically with an upward shift of π

3
when moving to the

copy on the right. Equivalently, when we quotient by G+ to T 1S2(2, 3, 6), the image of
T 1R2|H can be obtained by taking just Figure 14 and gluing the left and right sides with a
shift of π

3
.

Consider the pink region in Figure 14. By taking the union of these regions in the 6 copies

of T 1R2|E that form T 1R2|H , we can define an annulus Ã on T 1R2|H . It is straightforward
to check that Ã is a connecting annulus between a pair of parallel horizontal surgery curves

in B̃0, and that Ã is preserved by the stabilizer of (x0, y0) in G. Hence upon quotienting by

G+, Ã descends to an equivariant connecting annulus A of B0.

A is embedded in T 1S2(2, 3, 6) since its preimages, which are the Ã constructed for the
different orbits of (0, 0), are disjoint from one another. We demonstrate this disjointness by
drawing pink dotted lines on Figure 14 where the other preimages come through T 1R2|H ,
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Figure 15. Performing halved 1
−k

horizontal surgery on an annulus around
a cone point adds k half twists to the corresponding rational tangle.

and seeing that they lie away from the shaded region. Hence A is a (trivial) system of
equivariant connecting annuli, and one can read off from Figure 14 that, in the notation of
Proposition 4.16, n = 2,m = 2, q = 0, hence C = [0], d = [4].

Now for k > 0, we can apply concurrent halved 1
−k

horizontal surgery on this system to get
an almost veering branched surface Bk on 3-manifold Mk with involution ιk. We analyze
what 3-manifold Mk is by analyzing the operation at the level of T 1S2(2, 3, 6)/⟨ι⟩, using
Remark 4.13. In Figure 15, we draw half of our connecting annulus A in the picture of
Figure 6. Taking the quotient as in Figure 6, we see that A/⟨ι⟩ is a disc around the SE and
SW strands of the rational tangle 1

6
, with the boundary oriented clockwise when viewed

from above. Hence when we do 1
−k

surgery, we add k half twists to arrive at the Montesinos

link M(3
2
,−2

3
, 1
6+k

− 1). More precisely, we mean that Bk/⟨ιk⟩ sits inside S3 with the cores

of its complementary regions given by M(3
2
,−2

3
, 1
6+k

− 1). Taking the branched double

cover, we see that Mk = T 1S2(2, 3, 6 + k) and the cores of the complementary regions of
Bk are given by the full lift of the curve c on S2(2, 3, 6 + k).

An alternative way to reach this conclusion would be to first argue that Mk is the Seifert
fibered space S2((2, 3), (3,−2), (6 + k,−5− k)) by working out the effects of surgery along
∂A as a curve on T 1R2|H/G+, which is the boundary of a fibered neighborhood around the
singular orbit above the cone point of order 6. Then using Theorem 2.16 and Theorem 2.18,
one can work out the cores of the complementary regions of Bk by using the fact that an
orbit of the geodesic flow is uniquely determined by its image on the orbifold, and tracing
out the image of the cores on S2(2, 3, 6 + k) directly.

By Theorem 2.19, T 1S2(2, 3, 6 + k)\↔c is hyperbolic, hence Bk is veering by Proposition 3.7,
so Bk/⟨ιk⟩ on S3\M(3

2
,−2

3
, 1
6+k

− 1) is veering as well. Taking its dual ideal triangulation,
we have proven Theorem 5.1 in this case.

We can count the number of tetrahedra and the number of blue/red edges in these veering
triangulations: Take the orientation on T 1R2 to be that given by ( ∂

∂x
, ∂
∂y
, ∂
∂θ
). The triple

points on B̃0 are of the form in Figure 7 right, so the triple points in B0 must all be red,
and one can count that there are exactly 2 of them. By Proposition 4.16, concurrent halved
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Figure 16. Using the diagonal grid to construct an almost veering branched
surface on T 1S2(2, 4, 4).

1
−k

horizontal surgery on our system produces 4k blue triple points, so Bk has 4k blue
triple points and 2 red triple points, and Bk/⟨ιk⟩ has 2k blue triple points and 1 red triple
point. We conclude that the dual veering triangulation on S3\M(3

2
,−2

3
, 1
6+k

− 1) has 2k+ 1
tetrahedra, 2k blue edges and 1 red edge.

5.2. Case 2: n = 3, p1 = 2, (p2, p3) > (4, 4). The strategy here is the same as the last
case, so we will be more brief. First we will construct a branched surface on T 1R2 ∼=
R2

x,y × (R/2πZ)θ. This time, consider the diagonal grid on R2. This is given by taking the
union of the lines

{y = 2n}n∈Z ∪ {y = x+ 4n}n∈Z ∪ {x = 2n}n∈Z ∪ {y = −x+ 4n}n∈Z

See the black lines in Figure 16.

Similar to Section 5.1, we construct a branched surface B̃0 on T 1R2 by taking the horizontal
planes at the levels inbetween the slopes of the grid line and attaching infinite strips lying
over the midway lines (in yellow in Figure 16). We let the interested reader fill in precise

descriptions of the surfaces that make up B̃0 as in Section 5.1 for themselves.

As in Section 5.1, B̃0 can be quotiented down to an almost veering branched surface B0

on T 1S2(2, 4, 4) with the cores of its complementary regions given by
↔
c , and to an almost

veering branched surface B0/⟨ι⟩ on S3 with the cores of its complementary regions given by
the Montesinos link M(−1

2
, 1
4
, 1
4
).
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Figure 17. The intersection of T 1R2|E with B̃0. The pink region defines a

connecting annulus of B̃0. The black dots denote where the full lifts of the
grid lines intersect T 1R2|E. The pink vertical dotted lines denote where the
other connecting annuli intersect T 1R2|E.

Next we will locate a system of equivariant connecting annuli in B0. This is the point
where this case becomes more interesting than the last one, since this time the system has
2 annuli. For each vertex (x0, y0) in the orbit of (0, 0) under G, consider the square H in
R2 with vertices (x0 ± 3

2
, y0 ± 3

2
) and consider the torus that is T 1R2|H . The square H for

the point (0, 0) is drawn in dotted lines in the center of Figure 16.

Let E be the edge of H between (x0 − 3
2
, y0 +

3
2
) and (x0 +

3
2
, y0 +

3
2
), which is the red

segment in Figure 16. We draw T 1R2|E in Figure 17, where the black lines in the interior

denote its intersection with the branched surface B̃0. Similarly as in the last case, T 1R2|H
can be obtained by taking 4 copies of Figure 17, and gluing them up cyclically with a shift
of π

2
.

We can find an annulus Ã1 on T 1R2|H by taking the union of the pink regions in the 4

copies of Figure 17. It is straightforward to check that Ã1 is a connecting annulus between

a pair of parallel horizontal surgery curves in B̃0, and that Ã1 is preserved by the stabilizer

of (x0, y0) in G. Hence upon quotienting by G+, Ã1 descends to an equivariant connecting
annulus A1 of B0.

But now notice that everything done above can be repeated for a vertex (x0, y0) in the orbit
of (2, 2) under G instead. (In fact, there is an element of Isom(R2) sending (0, 0) to (2, 2)

which preserves the whole setup.) In particular, we obtain another connecting annulus Ã2

of B̃0 which descends to an equivariant connecting annulus A2 of B0.

Each Ai can be seen to be embedded in T 1S2(2, 4, 4), but A1 meets A2 transversely along
their boundaries. This can be deduced from looking at Figure 17, where we drew pink
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dotted lines where the preimages of A2 come through one of the T 1R2|E defining Ã1. It is
straightforward to check that these intersection points satisfy (4) of Definition 4.14, hence
A1, A2 is a system of equivariant connecting annuli, and one can read off from Figure 17 that,
in the notation of Proposition 4.16, n1 = n2 = 2,m1 = m2 = 2, q11 = q22 = 0, q12 = q21 = 1,

hence C =

[
0 1
1 0

]
, d =

[
4
4

]
.

Now for (k1, k2) > (0, 0), we can apply concurrent halved ( 1
−k1

, 1
−k2

) horizontal surgery
on this system to get an almost veering branched surface B(k1,k2) on a 3-manifold M(k1,k2)

with involution ι(k1,k2). As in Section 5.1, one can see that Ai/⟨ι⟩ are discs around the
base of the two rational tangles 1

4
, with the boundary oriented clockwise when viewed

from above. Hence when we do ( 1
−k1

, 1
−k2

) surgery, we add k1 half twists to one tangle

and k2 half twists to another, to arrive at the Montesinos link M(3
2
, 1
4+k1

− 1, 1
4+k2

− 1).

Taking the branched double cover, we see that M(k1,k2) = T 1S2(2, 4 + k1, 4 + k2) and the
cores of the complementary regions of B(k1,k2) are given by the full lift of the curve c on
S2(2, 4 + k1, 4 + k2).

By Theorem 2.19, T 1S2(2, 4+k1, 4+k2)\
↔
c is hyperbolic, henceB(k1,k2) and thusB(k1,k2)/⟨ι(k1,k2)⟩

are veering. Taking the dual ideal triangulation of the latter, this proves Theorem 5.1 in
this case.

Again, we count the number of tetrahedra and the number of blue/red edges in these veering
triangulations. We take the orientation on T 1R2 to be that given by ( ∂

∂x
, ∂
∂y
, ∂
∂θ
). One can

check that B0 has 4 red triple points. By Proposition 4.16, concurrent halved ( 1
−k1

, 1
−k2

)
horizontal surgery on our system produces 2k1k2 + 4k1 + 4k2 blue triple points, and so
B(k1,k2) has 2k1k2 + 4k1 + 4k2 blue triple points and 4 red triple points, and B(k1,k2)/ι(k1,k2)
has k1k2 + 2k1 + 2k2 blue triple points and 2 red triple points. Dual to this, the veering
triangulation on S3\M(3

2
, 1
4+k1

−1, 1
4+k2

−1) has k1k2+2k1+2k2+2 tetrahedra, k1k2+2k1+2k2
blue edges and 2 red edges.

5.3. Case 3: n = 3, (p1, p2, p3) > (3, 3, 3). The strategy here is again the same. This time
we use the hexagonal grid on R2. This is given by taking the union of the lines

{y = 2n}n∈Z ∪ {y =
√
3x+ 4n}n∈Z ∪ {y = −

√
3x+ 4n}n∈Z

See the black lines in Figure 18.

The same construction gives a branched surface B̃0 on T 1R2, which quotients down to an
almost veering branched surface B0 on T 1S2(3, 3, 3) and an almost veering branched surface
B0/⟨ι⟩ on S3.

Next we locate a system of equivariant connecting annuli in B0. For each vertex (x0, y0) in
the orbit of (0, 0) under G, consider the hexagon H in R2 with vertices (x0 ±

√
3, y0), (x0 ±√

3
2
, y0 ± 3

2
) and consider the torus T 1R2|H . The hexagon H for the point (0, 0) is drawn in

dotted lines in the center of Figure 18.
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Figure 18. Using the hexagonal grid to construct an almost veering
branched surface on T 1S2(3, 3, 3).

Figure 19. The intersection of T 1R2|E with B̃0. The pink region defines a

connecting annulus of B̃0. The black dots denote where the full lifts of the
grid lines intersect T 1R2|E. The pink vertical dotted lines denote where the
other connecting annuli intersect T 1R2|E.

Let E be the union of the edge of H between (x0 −
√
3, y0) and (x0 −

√
3
2
, y0 +

3
2
) and the

edge of H between (x0−
√
3
2
, y0+

3
2
) and (x0+

√
3
2
, y0+

3
2
), which we draw in red in Figure 18.

We draw T 1R2|E in Figure 19.

We can find an annulus Ã1 on T 1R2|H by taking a union of the pink regions in copies of

Figure 19. Ã1 is a connecting annulus between a pair of parallel horizontal surgery curves
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on B̃0. Upon quotienting by G+, Ã1 descends to an equivariant connecting annulus A1 of
B0.

We can repeat everything for a vertex in the orbit of ( 2√
3
, 2) or in the orbit of (− 2√

3
, 2)

under G instead. (In fact, there are elements of Isom(R2) sending (0, 0) to ( 2√
3
, 2) and to

(− 2√
3
, 2) which preserves the whole setup.) In particular, we obtain two more connecting

annuli Ã2, Ã3 of B̃0 which descend to equivariant connecting annuli A2, A3 of B0.

Each Ai is embedded in T 1S2(3, 3, 3), but meets each other transversely along their bound-
aries. This can be deduced from looking at Figure 19, where we drew pink dotted lines

where the preimages of A2, A3 come through one of the T 1R2|E defining Ã1. Each of these
intersection points satisfies (4) of Definition 4.14, hence A1, A2, A3 is a system of equivariant
connecting annulus, and one can read off from Figure 19 that ni = 2,mi = 2 for all i,

qij = 0 for i = j, qij = 1 for i ̸= j, hence C =

0 1 1
1 0 1
1 1 0

 , d =

44
4

, in the notation of

Proposition 4.16.

Now for (k1, k2, k3) > (0, 0, 0), apply concurrent halved ( 1
−k1

, 1
−k2

, 1
−k3

) horizontal surgery on

this system. This gives a veering branched surface B(k1,k2,k3) on T 1S2(3 + k1, 3 + k2, 3 + k3),
which, after drilling out the cores of the complementary regions, descends to a veering
branched surface on S3\M( 1

3+k1
+ 1, 1

3+k2
− 1, 1

3+k3
− 1). Taking its dual ideal triangulation,

this proves Theorem 5.1 in this case.

Taking the orientation on T 1R2 to be that given by ( ∂
∂x
, ∂
∂y
, ∂
∂θ
), B0 has 6 red triple points and

( 1
−k1

, 1
−k2

, 1
−k3

)-surgery on our system produces 2k1k2 +2k1k3 +2k2k3 +4k1 +4k2 +4k3 blue
triple points, and so B(k1,k2,k3) has 2k1k2 +2k1k3 +2k2k3 +4k1 +4k2 +4k3 blue triple points
and 6 red triple points. Hence the veering triangulation on S3\M( 1

3+k1
+1, 1

3+k2
−1, 1

3+k3
−1)

has k1k2 + k1k3 + k2k3 +2k1 +2k2 +2k3 +3 tetrahedra, k1k2 + k1k3 + k2k3 +2k1 +2k2 +2k3
blue edges and 3 red edges.

5.4. Case 4: n = 4, (p1, p2, p3, p4) > (2, 2, 2, 2), or n ≥ 5. The way we construct the initial
branched surface B0 will be different in this last case. Instead of prescribing surfaces that

comprise B̃0, we describe the branched surface using a movie of train tracks. In the same vein,
we will describe the system of equivariant connecting surgery using the trace of an interval
in the movie. We remark that the subcase when n = 4 and (p1, p2, p3, p4) > (2, 2, 2, 2) can
be tackled using the same strategy as in the first three cases via a rectangular grid on R2,
but for the benefit of Section 6 we choose to present the construction in the way that we
do.

Let Q be a disc with n corners. Choose some orientation on Q. Let d1, ..., dn be the vertices
along ∂Q, taken in some cyclic and counterclockwise order, and let ci be the side of Q going
from di to di+1. Choose some Riemannian metric on Q such that each ci is a geodesic and
each di is a right angle.
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Figure 20. Moves allowed in the movie of train tracks in order to satisfy
(iii) of Definition 3.1 (or Definition 3.5).

Let T be the solid torus that is T 1Q. One can construct a branched surface in T by starting
from the desired intersection of the branched surface with ∂T , then sweeping inwards to get
a movie of train tracks on tori, and finally ‘capping off’ by specifying what the branched
surface looks like near the core of T . We will be illustrating these movies as frames obtained
by looking from outside T as we sweep the torus inwards. In addition, we will want to
orient the components of the branch locus of this branched surface. This can be done by
consistently coorienting every switch of the train tracks in the movie into or out of the page.
If one wants the orientations to satisfy (iii) of Definition 3.1 (or Definition 3.5), only certain
moves are allowed in the movie. These moves are illustrated in Figure 20, where ⊗ means
that the orientation is into the page while ⊙ means that the orientation is out of the page.
The portion of the branched surface near the core of T , which we use to cap off the movie,
should be verified to satisfy (iii) as well.

Actually, for the rest of this paper, we will only need to use the two moves in the top row
in Figure 20. We will refer to this move as splitting branches b and d across c, with the
branches labelled as in Figure 20. We will also label the branches after the move as in
Figure 20, namely, we add a prime to the branch being split along and retain the labels of
the rest of the branches.

With this strategy in mind, we can construct a branched surface inside T using the movie in
Figure 21 (ignoring the pink cooriented intervals for now) and capping off by Figure 22.

To describe the movie precisely, suppose each ci is parametrized to go from t = 0 to t = 2.
Let Rθ : T

1S|c → T 1S|c be the map that rotates vectors by θ counterclockwise.

Construct a train track τ0 on ∂T by first taking the union of the 4n line segments
{Rk π

2
+π

4
c′i(t)}, where k = 1, ..., 4, i = 1, ..., n. Then add the n branches {Rθc

′
i(1) : −3π

4
≤

θ ≤ −π
4
}, with the top endpoint R−π

4
c′i(1) on R−π

4
c′i(t) combed in the direction of increasing

t, and the bottom endpoint R− 3π
4
c′i(1) on R− 3π

4
c′i(t) combed in the direction of decreasing

t. Name these branches ci,N respectively, and coorient the switches which these branches
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meet out of the page. Similarly, add the n branches {Rθc
′
i(1) :

π
4
≤ θ ≤ 3π

4
}, with the top

endpoint R 3π
4
c′i(1) on R 3π

4
c′i(t) combed in the direction of decreasing t, and the bottom

endpoint Rπ
4
c′i(1) on Rπ

4
c′i(t) combed in the direction of increasing t. Name these branches

ci,S respectively, and coorient the switches which these branches meet into the page. Notice
that the branches we add divide the horizontal lines

⋃
{Rk π

2
+π

4
c′i(t)} into 4n branches.

Name the branch which R− 3π
4
c′i(0) lies on di,N , the branch which R−π

4
c′i(0) lies on di,W ,

the branch which Rπ
4
c′i(0) lies on di,S, the branch which R 3π

4
c′i(0) lies on di,E. See the first

frame in Figure 21.

Now split di−2,W and di,E across di−1,N to get τ1. Note that this is the move illustrated in
Figure 20 top. See the second frame of Figure 21 for τ1. Upon simplification, one can see
that τ1 is the same as the train track illustrated in the third frame of Figure 21. Then split
di−3,W and di,E across ci−2,N to get τ2. See the fourth frame of Figure 21. τ2 can in turn
be simplified to look like the fifth frame of Figure 21. Inductively, to get from τ2s to τ2s+1,

split di−2s−2,W and di,E across d
(s)
i−s−1,N ; to get from τ2s+1 to τ2s+2, split di−2s−3,W and di,E

across c
(s)
i−s−2,N . Continue until we get to τn−4.

Intuitively, what we are doing is taking the closed curve
⋃
ci,N ∪ di,N and unwinding τ0

along it. One can consider this to be a variant of the horizontal surgery we described in
Section 4.1, where we spin sectors around a curve. Each step ‘adds a layer’ to the picture,
so after n− 4 steps, τn−4 has n layers with two branches lying within each layer. At this
point we do something different to wrap up the movie.

Namely, if n is even, split c
(n−4

2
)

i−1,N and c
(n−4

2
)

i,N across d
(n−4

2
)

i,N to get τn−3; if n is odd, split d
(n−3

2
)

i,N

and d
(n−3

2
)

i+1,N across c
(n−5

2
)

i,N to get τn−3. See the sixth frame of Figure 21. Upon simplification,
one can see that τn−3 is the same as the train track illustrated in the last frame of Figure 21,
which is the boundary of a branched surface of the form of that illustrated in Figure 22 and
with n layers. Hence we can cap off by placing that branched surface in the core of T .

More formally, if n is even, take arcs bi+1,W going from the switch between ci,S and di,S to

the switch between c
(n−4

2
)

i−n
2
,N and d

(n−2
2

)

i−n
2
,N , and arcs bi−1,E going from the switch between ci−1,S

and di,S to the switch between c
(n−4

2
)

i−n
2
−1,N and d

(n−2
2

)

i−n
2
,N which are parallel to τ1.

We observe that the closed curve di+1,W ∪ d
(n−2

2
)

i−n
2
,N ∪ di−1,E ∪ di,S is homotopically trivial in

T . This follows from the fact that if we rewind the movie, this curve has the same isotopy
class as di+1,W ∪

⋃i+n−3
j=i+2 dj,N ∪ cj,N ∪ di−2,N ∪ di−1,E ∪ di,S ⊂ ∂T , which defines a vector field

on ∂Q with index 1, hence extends to a vector field within Q.

Therefore we can complete the branched surface by adding disc sectors bounded by bi+1,W ∪
di+1,W , by bi−1,E ∪ di−1,E, by c

(n−4
2

)

i−n
2
,N ∪ bi+1,W ∪ ci,S ∪ bi,E, and by d

(n−2
2

)

i−n
2
,N ∪ bi+1,W ∪ di,S ∪

bi−1,E.
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di−1,N

ai,W

di,Edi−2,W

ai−1,E

di,E

di−2,W

d′i−1,N

d′i−1,N di,E

ci−1,N

ci−1,N di+1,Edi−2,W

d′i−1,N

c′i−1,N

di−2,W d′i,N

di+1,E

ai−2,W

ai−2,W

ai−3,W

ai−3,W

ai−3,W ai−4,W

ai−3,E

ci−1,N

di,S

di,W

di,N

Figure 21. The movie of train tracks we use to construct BQ ∩ T .

Similarly, if n is odd, take arcs bi+1,W going from the switch between ci,S and di,S to the

switch between c
(n−3

2
)

i−n+1
2

,N
and d

(n−3
2

)

i−n−1
2

,N
, and arcs bi−1,E going from the switch between ci−1,S

and di,S to the switch between c
(n−3

2
)

i−n+1
2

,N
and d

(n−3
2

)

i−n+1
2

,N
which are parallel to τ1. By observing

that the closed curve di+1,W ∪ c
(n−3

2
)

i−n+1
2

,N
∪ di−1,E ∪ di,S is homotopically trivial in T , we

can complete the branched surface by adding disc sectors bounded by bi+1,W ∪ di+1,W , by

bi−1,E ∪ di−1,E, by d
(n−3

2
)

i−n−1
2

,N
∪ bi+1,W ∪ ci,S ∪ bi,E and by c

(n−3
2

)

i−n+1
2

,N
∪ bi+1,W ∪ di,S ∪ bi−1,E.
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c′i−1,N

di−2,W d′i,N
c′i,N

c′i−1,N

c′i,N
d′′i,N

ai,W
ai−1,E

ai−4,W

ai−3,E

ai−4,W

ai−3,E

ai,W

ai+1,W

ai,E

ai,Eai,W

ai+1,W ai+1,E

Figure 21. The movie of train tracks we use to construct BQ ∩ T .
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Figure 22. The portion of the branched surface near the core of T , which
we use to cap off the movie in Figure 21.

In any case, we now have a branched surface in T with orientations defined on the components
of its branch locus. We call this branched surface BQ.

The orbifold S2(2, ..., 2) is the union of two copies of Q, and T 1S2(2, ..., 2) is the union
of two copies of T where each face ci × S1 is glued to its other copy by reflection across
{±c′i(t)}. The initial train track τ0 = BQ ∩ ∂T is preserved under this reflection, hence
we can glue together the two copies of BQ to get a branched surface B0 on T 1S2(2, ..., 2).
Interchanging the two copies of T defines an involution ι that preserves B0.

Next we have to describe a system of connecting annuli. Observe that one can construct a
path lying on BQ by tracing out points lying on the train tracks in the movie. Similarly,
a cooriented surface can be constructed by tracing out cooriented intervals in the movie.
If one wants the constructed surface to be part of a connecting annulus surgery along
which produces blue triple points, then the endpoints of the intervals can only perform
the moves illustrated in Figure 23, and the interior of the intervals must lie away form the
switches of the train tracks. Of course, there are symmetric moves if one wants to construct
a connecting annulus surgery along which produces red triple points, but we will let the
reader fill those out.

For a collection of such surfaces to form a system of connecting annuli, the interior of the
intervals must be disjoint from each other, and the endpoints of the intervals must only
move past each other in the moves illustrated in Figure 24.

We remark that for the rest of this paper, we will only need to use the moves in the top
rows of Figure 23 and Figure 24.

Using this idea, we build surfaces that lie in T using the pink cooriented intervals and
patches in Figure 21; the patches cap off traces of the vertical intervals to determine the
surfaces.

Again, we will describe this formally. On τ0, let ai,W = {Rθc
′
i(

3
2
) : −π

4
≤ θ ≤ π

4
}, cooriented

in the direction of increasing t along ci(t), and let ai,E = {Rθc
′
i−1(

1
2
) : 3π

4
≤ θ ≤ 5π

4
},

cooriented in the direction of decreasing t along ci−1(t).
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Figure 23. Moves allowed in the movie of train tracks in order for the
path traced out by the endpoint of the cooriented interval to be a horizontal
surgery curve, surgery on which produces blue triple points.

Figure 24. Moves allowed in the movie of train tracks in order for the
cooriented intervals to determine a system of connecting annuli, surgery on
which produces blue triple points.

On τ0, move the top endpoint of ai,E past the bottom endpoint of ai−2,W on di−1,N , then
from di−1,N to ci−2,N . Symmetrically, move the bottom endpoint of ai,W past the top
endpoint of ai+2,E on di+1,N , then from di+1,N to ci+1,N . Then do splitting moves to get τ1.
See the second frame of Figure 21. On τ1, move the top endpoint of ai,E past the bottom
endpoint of ai−3,W on ci−2,N , then from ci−2,N to d′i−2,N . Symmetrically, move the bottom
endpoint of ai,W past the top endpoint of ai+3,E on ci+1,N , then from ci+1,N to d′i+2,N . Then
do splitting moves to get τ2. See the fourth frame of Figure 21. Inductively, on τ2s, move the

top endpoint of ai,E past the bottom endpoint of ai−2s−2,W on d
(s)
i−s−1,N , then from d

(s)
i−s−1,N

to c
(s)
i−s−2,N , and symmetrically move the bottom endpoint of ai,W past the top endpoint
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of ai+2s+2,E on d
(s)
i+s+1,N , then from d

(s)
i+s+1,N to c

(s)
i+s+1,N , before splitting to get τ2s+1. On

τ2s+1, move the top endpoint of ai,E past the bottom endpoint of ai−2s−3,W on c
(s)
i−s−2,N ,

then from c
(s)
i−s−2,N to d

(s+1)
i−s−2,N , and symmetrically move the top endpoint of ai,W past the

top endpoint of ai+2s+3,E on c
(s)
i+s+1,N , then from c

(s)
i+s+1,N to d

(s+1)
i+s+2,N before splitting to get

τ2s+2.

When we get to τn−4, if n is even, move the top endpoint of ai,E past the bottom endpoint

of ai−n+2,W on d
(n−4

2
)

i−n−2
2

,N
, then from d

(n−4
2

)

i−n−2
2

,N
to c

(n−4
2

)

i−n
2
,N . Symmetrically, move the bottom

endpoint of ai,W past the top endpoint of ai+n−2,E on d
(n−4

2
)

i+n−2
2

,N
, then from d

(n−4
2

)

i+n−2
2

,N
to

c
(n−4

2
)

i+n−2
2

,N
, before splitting to get τn−3. If n is odd, move the top endpoint of ai,E past the

bottom endpoint of ai−n+2,W on c
(n−5

2
)

i−n−1
2

,N
, then from c

(n−5
2

)

i−n−1
2

,N
to d

(n−3
2

)

i−n−1
2

,N
. Symmetrically,

move the bottom endpoint of ai,W past the top endpoint of ai+n−2,E on c
(n−5

2
)

i+n−3
2

,N
, then from

c
(n−5

2
)

i+n−3
2

,N
to d

(n−3
2

)

i+n−1
2

,N
, before splitting to get τn−3. See the sixth frame in Figure 21.

Then, if n is even, move the top endpoint of ai,E past the bottom endpoint of ai−n+1,W

on c
(n−4

2
)

i−n
2
,N , then from c

(n−4
2

)

i−n
2
,N to di+1,W , and move the bottom endpoint of ai,E from di−1,E

to c
(n−4

2
)

i−n+2
2

,N
, pushing ai,E across d

(n−2
2

)

i−n
2
,N at the same time. Now ai,E, ai,W and subintervals

of c
(n−4

2
)

i−n+2
2

,N
and di+1,W bound a rectangle, whose interior is disjoint from τ1, and to which

the coorientations of ai,E, ai,W are pointing inwards. If n is odd, move the top endpoint of

ai,E past the bottom endpoint of ai−n+1,W on d
(n−3

2
)

i−n−1
2

,N
, then from d

(n−3
2

)

i−n−1
2

,N
to di+1,W , and

move the bottom endpoint of ai,E from di−1,E to d
(n−3

2
)

i−n+1
2

,N
, pushing ai,E across c

(n−3
2

)

i−n+1
2

,N
at

the same time. Now ai,E, ai,W and subintervals of d
(n−3

2
)

i−n+1
2

,N
and di+1,W bound a rectangle,

whose interior is disjoint from τ1, and to which the coorientations of ai,E, ai,W are pointing
inwards. See the second to last frame in Figure 21. The traces of ai,E and ai,W together
with this rectangle gives a rectangular surface Ai,Q in T .

For each i, the intervals Ai,Q ∩ ∂T are preserved under reflection across {±c′i(t)}, hence
in T 1S2(2, ..., 2) we can glue together the two copies of Ai,Q to get an annuli Ai for B0 on
T 1S2(2, ..., 2).

Claim 5.3. B0 is an almost veering branched surface and {Ai} is a system of equivariant
connecting annuli. If n ≥ 5 then B0 is veering. The cores of the complementary regions of

B0 are given by
↔
c .

Proof. Notice that we can give T a natural structure of a 3-manifold with cusps and corners
by declaring that the fibers above ci are smooth faces which meet along corner edges that
are the fibers above di. This induces corners on the components of TBQ, namely between
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Figure 25. Forgetting the corner structure of a 1-cusped triangle times
interval (left) results in a taco (right).

faces that lie on ∂T and between faces that lie on ∂T and faces that lie on BQ. Under
this corner structure, we claim that components of TBQ are 1-cusped triangles times an
interval.

To explain this, let us first disregard the corner structures. Call the 3-manifold that is a
1-cusped triangle times an interval but forgetting the corner structure a taco. See Figure 25.
Notice that throughout the movie of train tracks, the topology of the complementary
regions of the train tracks do not change. Hence inside T but outside of the core, the
complementary regions of BQ are cusped bigons times an interval. Now the complementary
regions of BQ inside the core are tacos, so adding in the products, the same is true for
complementary regions of BQ in T . Finally, to put the corners back into the picture, each
cusped bigon complementary region of τ0 on ∂T meets the corner edges in two intervals,
hence the topology of the complementary regions of BQ in T is as claimed.

One glues together faces of these complementary regions to form complementary regions of
B0, with four of these pieces coming together at each corner. The only possible result of
such gluings are 2-cusped solid tori. This proves Definition 3.5(ii).

Notice that we can obtained the cores of these solid tori by taking the union of the line
segments {±c′i(t)} above ci. This shows that the cores of the complementary regions of B0

are exactly given by
↔
c .

We now show Definition 3.5(i). Suppose there is a disc sector without corners. The boundary
of the sector cannot be cooriented outwards, otherwise one of the complementary regions
of B0 adjacent to the sector cannot be a 2-cusped solid torus. But if the boundary of
the sector is cooriented inwards, then the complementary region of B0 that contains the
component of the branch locus that is the boundary would be a 2-cusped solid torus whose

core is homotopically trivial in T 1S2(2, ..., 2). But we know that no component of
↔
c is

homotopically trivial, hence we reach a contradiction.

Definition 3.1(iii) is true by construction, since in the movie we only performed moves as
listed in Figure 20, and for the portion of the branched surface we used to cap off the movie,
there are no triple points. This proves that B0 is an almost veering branched surface.

For n ≥ 5, T 1S2(2, ..., 2)\↔c is hyperbolic by Theorem 2.19. Hence by Proposition 3.7, B0 is
veering in this case.
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Finally, that the Ai form a system of equivariant connecting annuli follows from the fact
that we only did the moves listed in Figure 23 and Figure 24, and the rectangles we added
during τn−3 lie away from the branch locus. □

Tracing through the movie, we see that we did n(n− 3) splitting moves (more specifically, n
moves for every frame advanced), hence there are n(n−3) triple points in BQ, and 2n(n−3)
triple points in B0 in total. Among these, 2n(n− 4) are blue and 2n triple points are red,
since the moves done during the first n− 4 frames give blue triple points while the moves
done in the last frame give red triple points.

Within the movie, the top boundary component of Ai,Q meets the branch locus of BQ for a
total of n− 3 times on the side away from Ai (once for each of the first n− 3 frames) and 1
time on the side of Ai (on the last frame). Similarly, the bottom component of Ai,Q meets
the branch locus of BQ for a total of n− 3 times on the side away from Ai and 1 time on
the side of Ai. Hence by symmetry, a boundary component of Ai meets the branch locus of
B0 a total of 2(n − 3) times on the side away from Ai and 2 times on the side of Ai. In
other words, in the notation of Section 4.3, ni = 2,mi = 2(n− 3) for all i.

Finally, the top boundary component of Ai meets the bottom boundary components of
Ai−2, ..., Ai−n+1 each once inside T . The bottom boundary component of Ai meets the
top boundary components of Ai+2, ..., Ai+n−1 each once inside T . Hence in the notation of
Section 4.3,

cij =


0, i = j

1, |i− j| = 1

2, |i− j| ≥ 2

and di = 4(n− 3) for all i.

Now for ki ≥ 0, perform concurrent halved 1
−ki

horizontal surgery on the system {Ai}, and
use the same reasoning as in cases (1)-(3) to see that we get a veering branched surface B(ki)

on T 1S2(2 + k1, ..., 2 + kn) with
∑

|i−j|=1 kikj + 2
∑

|i−j|≥2 kikj + 4(n− 3)
∑

ki + 2n(n− 4)

blue triple points and 2n red triple points (unless n = 4 and k1 = k2 = k3 = k4 = 0). This
descends to a veering branched surface on S3 with the cores of its complementary regions
given by M( 1

2+k1
+ 1, 1

2+k2
− 1, ..., 1

2+kn
− 1), having 1

2

∑
|i−j|=1 kikj +

∑
|i−j|≥2 kikj + 2(n−

3)
∑

ki + n(n− 4) blue triple points and n red triple points.

Taking the dual ideal triangulation, we get a veering triangulation on S3\M( 1
2+k1

+1, 1
2+k2

−
1, ..., 1

2+kn
− 1) with 1

2

∑
|i−j|=1 kikj +

∑
|i−j|≥2 kikj + 2(n− 3)

∑
ki + n(n− 3) tetrahedra,

1
2

∑
|i−j|=1 kikj +

∑
|i−j|≥2 kikj + 2(n− 3)

∑
ki + n(n− 4) blue edges, and n red edges. We

have finally completed the proof of Theorem 5.1.

6. Geodesic flows II: Higher genus surfaces

In this section, we explain Construction 1.2 and Construction 1.3. The key observation
is that the construction in Section 5.4 can be applied more generally. Namely, let c be a
filling collection of curves on a surface S which has no triple intersections and for which
the complementary regions Sc are (n ≥ 4)-gons. By fitting in the portions of branched
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surfaces we constructed in Section 5.4 into the unit tangent bundles over these n-gons, we
can construct almost veering branched surfaces on T 1S with the cores of the complementary
regions being the full lift of c. If c has no parallel elements, then by Theorem 2.19
and Proposition 3.7, the branched surface is in fact veering and hence dual to a veering
triangulation. Again, we record this last fact as a theorem.

Theorem 6.1. Let c be a filling collection of mutually nonparallel curves on a surface
S which has no triple intersections and for which the complementary regions Sc are

(n ≥ 4)-gons. Then T 1S\↔c admits a veering triangulation.

Like Theorem 5.1, this theorem by itself is not very interesting. It is already known that
these full lift complements admit veering triangulations just from the fact that they are
fibered with fully-punctured monodromy (by [CD20, Theorem D]) and hyperbolic (by
Theorem 2.19). In fact, the monodromies of some of the fibering on these manifolds has
been studied in [DL19] and [Mar20], and in the former paper, invariant (up to folding
moves) train tracks were found for certain cases where all complementary regions are
(n ≥ 5)-gons.

The more significant point behind the theorem is that we make explicit the description of
the veering branched surfaces and how they sit inside the manifolds. A consequence of this
is that since the Anosov flows corresponding to the dual veering triangulations as given
by Theorem 2.16 must be the geodesic flow on T 1S (by Theorem 2.18), the reduced flow
graphs of these veering branched surfaces, which we can explicitly describe, will encode
Markov partitions for geodesic flows.

We will explain the construction of the veering branched surfaces, as well as discuss some
generalizations of the construction, in Section 6.1 and explain the Markov partitions of
geodesic flows we get from these in Section 6.2.

6.1. Construction of the branched surfaces. As above, let c be a filling collection of
curves on S which has no triple intersections and for which the complementary regions Sc
are (n ≥ 4)-gons. We consider c as a 4-valent graph on S by taking the vertices to be the
set of intersections points among elements of c and the edges to be segments of elements of
c between intersection points.

For each complementary region Q of c in S, we place the branched surface BQ (along with
the choice of orientations on the components of its branch locus) constructed in Section 5.4
inside T 1S|Q. If Q1 and Q2 are two adjacent complementary regions, then the train tracks
BQ1 ∩ T 1S|∂Q1 and BQ2 ∩ T 1S|∂Q2 agree along T 1S|∂Q1∩∂Q2 . So the branched surfaces BQ

glues up into a branched surface B in T 1S.

Claim 6.2. B is an almost veering branched surface with the cores of its complementary

regions given by
↔
c .

Proof. This proof can be adapted from Claim 5.3 easily.
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Figure 26. One can cap off the movies of train tracks using these cores
instead, to produce foliar branched surfaces on other Seifert fibered manifolds.
This particular core has 2 levels and 3 corners.

For Definition 3.5(ii), recall that the complementary regions of BQ in T 1S|Q are 1-cusped
triangles times an interval. As in Claim 5.3, this implies that the complementary regions of
B are 2-cusped solid tori. This also shows that the cores of the complementary regions of

B is given by
↔
c .

Note that under our assumptions, c cannot contain any homotopically trivial elements,
otherwise the bounded disc in S will be divided by c into n-gons for n ≥ 4, but the index
of these are nonpositive thus cannot add up to the index of a disc, which is 1. This fact
together with Definition 3.5(ii) proved above implies Definition 3.5(i) as in Claim 5.3.

For Definition 3.5(iii), this follows from the moves that we did in the movie. □

If c does not contain any parallel elements, then by Theorem 2.19, T 1S\↔c is hyperbolic.
Hence by Proposition 3.7, B is in fact veering in this case, so taking the dual ideal
triangulation proves Theorem 6.1.

Remark 6.3. If, in the movie of train tracks we use to extend the branched surface into
T 1S|Q, we instead unwind along

⋃
ci,N ∪ di,N for k − 4 times, for k ≥ 4 dividing n, then, if

k is even, split c
( k−4

2
)

i−1,N and c
( k−4

2
)

i,N across d
( k−4

2
)

i,N , or if k is odd, split d
( k−3

2
)

i,N and d
( k−3

2
)

i+1,N across

c
( k−5

2
)

i,N , we will arrive at a train track on a torus which is the boundary of a branched surface
on a solid torus as in Figure 26, with k levels and n

k
corners on each level. Notice, however,

that if we cap off the train track using such a branched surface, the solid torus will be filled
along a slope different from the meridian which recovers T 1S. Nonetheless, we will still get
a branched surface on a Seifert fibered manifold, and indeed, many of these if we vary the
number of times we unwind above each complementary region.

Moreover, these branched surfaces still satisfy Definition 3.1(iii). They also satisfy a modified
version of Definition 3.1(ii): their complementary regions are surfaces with boundary L
times an interval I, with ∂L × I being the cusp circles. From these two properties, one
can check that these branched surfaces are foliar, i.e. they are laminar and have product
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complementary regions, hence carry foliations by [Li02]. It might be interesting to study
whether Definition 3.1(iii) implies any special properties of the foliations these branched
surfaces carry.

Remark 6.4. One can obtain veering branched surfaces on unit tangent bundles of orbifolds
via a generalization of the construction. Let c be a collection of curves on an orbifold S
that lie away from the cone points. Suppose c is filling, that is, components of Sc are
polygons with at most one cone point each, and suppose that each complementary region
has nonpositive index. (Here, the index of a disc with n corners and a cone point of order
p is defined to be 1

p
− n

4
.) Then one can define the portion of the branched surface above c

as before, and when extending into T 1S|Q, we can take a manifold cover Q̃ of the region

Q. We lift the train track on T 1Q|∂Q to T 1Q̃|∂Q̃, then extend it inside T 1Q̃ using the same

movie and same block to cap off the movie, and quotient it down to T 1Q by observing that

the movie is equivariant under deck transformations of T 1Q̃ → T 1Q̃, which are just lifts of
rotations of Q.

Remark 6.5. Here is yet another generalization of the construction. Let c be a filling
collection of curves on a surface S. We allow c to have multiple intersections now, and
consider c as a graph with even valence at each vertex. Consider each complementary region
of c as a disc with angle π

pi
at each 2pi-valent vertex of c.

If each complementary region of c has at least 4 sides, it is possible to construct a veering

branched surface on T 1S with the cores of the complementary regions given by
↔
c . This is

done by inserting, for each complementary region Q of c, half of the branched surface we
constructed in Section 5.4 for the genus 0 orbifold obtained by doubling Q, namely, the
half that lies over Q.

Similarly, if each complementary region of c has 3 sides and the valences of its vertices
are 2p1 = 4, 2p2 = 6, 2p3 > 12 (or 2p1 = 4, (2p2, 2p3) > (8, 8), or (2p1, 2p2, 2p3) > (6, 6, 6),
respectively), then we can insert halves of the branched surfaces in Section 5.1 (or Section 5.2,
or Section 5.3, respectively).

Taking the dual ideal triangulations of these veering branched surfaces, we get veering

triangulations on T 1S\↔c for a larger set of c than those considered in Theorem 6.1. However,
it seems that this still does not cover all the cases of a filling collection c, for which it is

possible to construct veering triangulations on T 1S\↔c , as predicted by Theorem A.2.

6.2. Markov partitions for geodesic flows. If one applies Theorem 2.16 to one of the
veering triangulations in Theorem 6.1, we get an Anosov flow on T 1S. By Theorem 2.18,
this flow must be orbit equivalent to the geodesic flow. Hence by Theorem 2.16(c), the
reduced flow graph encodes a Markov partition for the geodesic flow on T 1S. In this section,
we will explicitly work out these Markov partitions.

We will do this by computing the flow graph of BQ over each complementary region Q,
then piecing them together. This is simply a task of tracing through the construction in
Section 5.4.
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We use the notation as in Section 5.4. For convenience, we will refer to the sector of B
containing a branch of some train track τi, as well as the corresponding vertex of the flow
graph, by the same name as the branch. The drawback to this is that a sector (or its
corresponding vertex in the flow graph) may have a number of different names, but we will
point this out whenever it happens.

To capture the full information of the Markov partition, we will also specify the framing
of the edges and the planar orderings on the sets of incoming and outgoing edges at each
vertex. The framing of the edges is simply given by the fibers of T 1S, since the veering
branched surfaces are transverse to the fibers. Alternatively, this can also be deduced from
the fact that the unstable foliation of the geodesic flow is transverse to the fibers. We
will describe the planar orderings on the incoming and outgoing edges by thinking of the
anticlockwise direction on the fibers as the upwards direction, and refer to down, left, and
right correspondingly as one goes along the oriented edges of the flow graph.

Also, we will think of the vertex of the flow graph at di,N as an arrow pointing outwards
of Q at di, the vertex of the flow graph at ci,N as an arrow pointing outwards of Q at the
midpoint of ci, and similarly for sectors of the other compass directions.

We first consider each stage going from τ0 to τn−4. Going from τ2s to τ2s+1, we have to

add in n vertices d
(s+1)
i−s−1,N and add in edges going from di−2s−2,W , d

(s+1)
i−s−1,N , di,E to d

(s)
i−s−1,N .

These edges are ordered from top to bottom at d
(s)
i−s−1,N , while the edge from di−2s−2,W

exits from the left side of di−2s−2,W and the edge from di,E exits from the right side of di,E.

Going from τ2s+1 to τ2s+2, we have to add in n vertices c
(s+1)
i−s−2,N and add in edges going

from di−2s−3,W , c
(s+1)
i−s−2,N , di,E to c

(s)
i−s−2,N . These edges are ordered from top to bottom at

d
(s)
i−s,N , while the edge from di−2s−3,W exits from the left side of di−2s−2,W and the edge from

di,E exits from the right side of di,E.

Then we consider going from τn−4 to τn−3. If n is even, we have to add in n vertices d
(n−2

2
)

i,N

and add in edges going from c
(n−4

2
)

i−1,N , d
(n−2

2
)

i,N , c
(n−4

2
)

i,N to d
(n−4

2
)

i,N . These edges are ordered from

bottom to top at d
(n−4

2
)

i,N , while the edge from c
(n−4

2
)

i−1,N exits from the left side of c
(n−4

2
)

i−1,N and

the edge from c
(n−4

2
)

i,N exits from the right side of c
(n−4

2
)

i,N . If n is odd, we have to add in n

vertices c
(n−3

2
)

i,N and add in edges going from d
(n−3

2
)

i,N , c
(n−3

2
)

i,N , d
(n−3

2
)

i+1,N to c
(n−5

2
)

i,N . These edges are

ordered from bottom to top at c
(n−5

2
)

i,N , while the edge from d
(n−3

2
)

i,N exits from the left side of

d
(n−3

2
)

i,N and the edge from d
(n−3

2
)

i+1,N exits from the right side of d
(n−3

2
)

i+1,N .

Finally, the core doesn’t contain any triple points, hence doesn’t contribute any edges to the

flow graph, but it does connect up certain sectors. As a result, if n is even, c
(n−4

2
)

i−n
2
,N should be

identified with ci,S, and d
(n−2

2
)

i−n
2
,N should be identified with di,S. If n is odd, d

(n−3
2

)

i−n−1
2

,N
should

be identified with ci,S, and c
(n−3

2
)

i−n+1
2

,N
should be identified with di,S.
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Figure 27. Portions of the flow graphs of veering branched surfaces con-

structed on T 1S\↔c projected onto n-gon complementary regions of c, for
n = 6 (left) and n = 9 (right).

See Figure 27 top for an illustration of the complete graph projected onto Q for the cases
n = 6 and n− 9.

Notice that most vertices of the flow graph that lie along c have more than one outgoing
edge, except for the arrows at vertices for which the complementary regions to their left and
right are squares. Indeed, for arrows at a side, there are 3 edges branching out of it inside
the complementary region which the arrow is pointing inwards. For arrows at a vertex,
there are edges branching out of it inside the complementary region which the arrow is
pointing inwards, and also inside the complementary regions on its left or right, provided
that those complementary regions are not squares. This implies that the only infinitesimal
cycles of the flow graph consist of arrows at vertices for which the complementary regions
to their left and right are squares, and the diagonals of complementary regions connecting
them up. By removing all these cycles and the edges that enter them, we obtain the reduced
flow graph.

To obtain the number of flow boxes as promised in the introduction. One can take c to
be a collection of curves which divides the surface S into right-angle hexagons. (This can
be found, in turn, by taking a pants decomposition and dividing each pair of pants into
two hexagons.) Then performing the construction above, the corresponding flow graph
can be obtained by piecing up the graphs in each hexagon illustrated in Figure 27 left.
Since there are no squares, the flow graph is equal to the reduced flow graph. This gives
a Markov partition of the geodesic flow on T 1S which can be encoded by a graph with
−36χ(S) vertices and −108χ(S) edges.

Remark 6.6. We can also obtain Markov partitions for the geodesic flow on the unit
tangent bundle of a negatively curved orbifold S by taking a manifold covering Ŝ of S
and constructing the Markov partition on T 1Ŝ as above. Then as long as the curve c
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chosen on S, for which the Markov partition is constructed from, is invariant under deck
transformations of Ŝ → S, we can take the quotient to get a Markov partition on T 1S.

Remark 6.7. One can define geodesic flows for surfaces with a complete Riemannian
metric in general. In particular, one can consider hyperbolic surfaces with cusps. Geodesic
flows for these surfaces still have stable and unstable line bundles as in Definition 2.12,
but a crucial qualitative difference from the closed surface case is that some orbits will be
wandering, namely the geodesics that escape to infinity towards a cusp. Now, there is a
generalized notion of Anosov flows called Axiom A flows for which these flows belong to,
and there is still a notion of Markov partitions for Axiom A flows (see [Bow70] for details).
Using the techniques described here, we can obtain Markov partitions for these geodesic
flows on hyperbolic surfaces with cusps as well.

Let Σ be a hyperbolic surface with cusps. Let D = Σ∪−Σ be the closed surface obtained by
compactifying Σ along its cusps, then doubling across the resulting boundary components.
The key observation here is that for the geodesic flow on D, the hyperbolic set of orbits
staying within Σ is orbit equivalent to the hyperbolic set of nonwandering points on Σ by
Ω-stability, which in turn is implied by Axiom A and the no cycle property in this case (see
[Sma67]).

Thus let c ∈ D be a filling collection of curves which contains ∂Σ, and for which there are
no triple intersections and the complementary regions Dc are (n ≥ 4)-gons. Perform the
construction for this c ⊂ D to get the reduced flow graph which encodes a Markov partition
for the geodesic flow on T 1D.

Now notice that a cycle of the reduced flow graph is isotopic into T 1Σ or into T 1(−Σ) if

and only if it has intersection number zero with the annuli T 1D|∂Σ\
↔
∂Σ. Intersection with

these annuli can in turn be represented by a positive cocycle on the reduced flow graph
which is nonzero on all edges exiting a vertex on ∂Σ except for the edges that straddle
∂Σ, that is, in the notation of Section 5.4, the edges from di,W to di+1,N for a side ci of a
complementary region that lies on ∂Σ. If one follows these edges, one recovers the lifts of
∂Σ, which are not closed orbits of the geodesic flow on T 1Σ. The conclusion is that a cycle
of the reduced flow graph in T 1D is isotopic to a closed orbit of the geodesic flow on T 1Σ
or on T 1(−Σ) if and only if it does not pass through the vertices on ∂Σ. Hence we can
discard all vertices and edges of the reduced flow graph in T 1D that lie in −Σ and on its
boundary to get the desired Markov partition.

7. Discussion and further questions

We discuss some future directions coming out of this paper.

In Section 4.2, we conjectured that under Theorem 2.16, vertical surgery should correspond
to Goodman-Fried-Dehn surgery along a suitable closed orbit. However we do not have a
good guess for what horizontal surgery should correspond to. We remark that the horizontal
surgery curves that we considered in our constructions seem to correspond to curves of the
form {R±π

2
c′(t)}, where c is a small circle around a point. These curves are E-transverse in
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the terminology of [FH13]. This would suggest that the horizontal surgeries we performed
correspond to Foulon-Hasselblatt surgery under Theorem 2.16. But since Foulon-Hasselblatt
surgery only applies to contact Anosov flows, we are not sure about the general case for
horizontal surgeries.

It is known that the unit tangent bundle over the modular orbifold S2(2, 3,∞) is homeo-
morphic to the complement of the trefoil. Under this homeomorphism, a collection of closed
orbits of the geodesic flow on T 1S2(2, 3,∞) is called a Lorenz knot or link, see [Ghy07,
Section 3.5]. It turns out that Lorenz knots and links satisfy some special properties,
such as being fibered and prime (see [BW83] and [Wil84]). These results are proved by
analyzing what is called the Lorentz knotholder. In the language of this paper, the Lorentz

knotholder can be obtained from a suitable Markov partition {I(i)s × I
(i)
u × [0, 1]t} by taking

the rectangular strips I
(i)
u × [0, 1]t and gluing J

(ij,k)
u × {1} to I

(j)
u × {0} in accordance with

how the flow boxes meet along their top and bottom faces; or alternatively, thickening up
the graph encoding the Markov partition in the u direction.

Now, one can similarly obtain knotholders by thickening up the flow graphs of the veering
branched surfaces we constructed in Theorem 5.1. It might be interesting to ask if the
knots or links carried by these knotholders have any special properties. This would be
equivalent to studying the knottedness and linkedness of closed orbits of geodesic flows of
negatively curved genus zero orbifolds.

More generally, it would be interesting to study the veering branched surfaces themselves,
and in particular identify all the vertical and horizontal surgery curves on them. One
could then see if other families of knots or links admit veering triangulations on their
complements.

In Section 6, we constructed veering triangulations on T 1S\↔c for certain, but not all, filling
multicurves c. However, we will show in Appendix A that such veering triangulations should
exist for all filling multicurves c, and furthermore we will characterize when such veering

triangulations exist on T 1S\→c , for oriented multicurves c. This prompts the question of
how one can construct such veering triangulations, or their dual veering branched surfaces,
in a reasonably explicit way.

The following observation may serve as a starting point for the questions asked in the
last two paragraphs. In the veering triangulation census, one can find other Montesinos
knots complements which are not covered by our constructions. For example, K10n14 =
M(1

3
, 1
3
,−3

5
) admits the veering triangulation gLLMQaedfdffjxaxjkn 200211 and K12n121

= M(1
2
, 1
3
,− 9

11
) admits the veering triangulation hLAPzkbcbeefgghhwjsahr 2112212. We

remark that the double branched covers of these knots are fiberwise double covers of unit
tangent bundles, hence the Anosov flows on these double branched covers which one obtains
from Theorem 2.16 must be the lift of a geodesic flow by Theorem 2.18. By understanding
these triangulations or ways to construct them, one might gain insight on how to modify
the constructions in this paper.

We already mentioned that the veering triangulations we constructed in Theorem 5.1 and

Theorem 6.1 are necessarily layered. This is because the flow in T 1S\↔c admits Birkhoff
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sections (see [CD20, Theorem E and Theorem D]). A possibly interesting way of investigating
the monodromies of the Birkhoff sections is to take their intersections with the veering
branched surfaces we constructed, in order to obtain periodic folding sequences of train
tracks which then allows one to deduce the corresponding monodromies.

Appendix A. Characterization of no perfect fits

In this appendix, we will characterize the orbits relative to which the geodesic flow is
without perfect fits. This determines when it is possible to construct veering triangulations
on drilled unit tangent bundles which give the geodesic flow under Theorem 2.16. As
pointed out in Section 7, it would be interesting to be able to describe these constructions
explicitly.

Before we state the result, we set up some notation.

Definition A.1. Let Σ be an oriented hyperbolic surface. Let c, d be two oriented geodesics
intersecting at point x. We say that c intersects d positively at x if (c′, d′) is a positive basis
at x, otherwise we say c intersects d negatively at x. We also say that x is a positive or
negative intersection point of c with d, respectively.

More generally, we will call the signed angle from c′ to d′ at x the angle at the intersection.
Note that this quantity only makes sense mod 2π. Also note that c intersects d positively
or negatively at x when the angle at x is in (0, π) or (−π, 0) respectively.

For Σ = H2, complete geodesics have a forward and backward endpoint on ∂H2 = S1
∞. We

will orient S1
∞ anticlockwisely, and use notation such as (ξ1, ξ2), for ξ1, ξ2 ∈ S1

∞, to mean
the interval from ξ1 to ξ2 on S1

∞ under this orientation. Under this notation, a complete
geodesic c in H2 with forward endpoint ξ1 and backward endpoint ξ2 intersects another
complete geodesic d positively if and only if the forward endpoint of d lies in (ξ1, ξ2) and
the backward endpoint of d lies in (ξ2, ξ1).

We are now ready to state the theorem.

Theorem A.2. Let Σ be a closed oriented hyperbolic surface and c be a collection of
oriented closed geodesics. Then the geodesic flow on T 1Σ has no perfect fits relative to the

lift
→
c if and only if every oriented closed geodesic d on Σ has a positive intersection point

with some element of c.

In particular, if c is a collection of closed geodesics, then the geodesic flow on T 1Σ has no

perfect fits relative to the full lift
↔
c if and only if c is filling.

Proof. This relies on an interpretation of the orbit space of the universal cover of the

geodesic flow on T 1Σ in terms of the circle at infinity ∂Σ̃ = S1
∞. This viewpoint is well

known to experts, but we explain it here for completeness.

Orbits of T 1Σ which lie in the same stable leaf lift to lifts of oriented geodesics in Σ̃ = H2

which converge exponentially. Equivalently, these are the oriented geodesics which share a
forward endpoint on ∂H2 = S1

∞. Hence we can canonically parametrize the stable leaves in
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T 1H2 by S1
∞, where we send each stable leaf to the common forward endpoints of the orbits

in it. Lifting this to the universal cover T̃ 1Σ = T̃ 1H2, the stable leaf space in the universal

cover can be parametrized by the line S̃1
∞. Similarly, one can canonically parametrize the

unstable leaves in T 1H2 by S1
∞ by sending each unstable leaf to the common backward

endpoints of the orbits in it.

We can now define a map from the orbit space of the geodesic flow on T 1H2 to S1
∞×S1

∞. We
claim that this map is a homeomorphism onto (S1

∞ × S1
∞)\∆ where ∆ = {(ξ, ξ) : ξ ∈ S1

∞}
is the diagonal. This boils down to the fact that given ξ1, ξ2 ∈ S1

∞, if ξ1 ≠ ξ2, there is a
unique oriented geodesic in H2 with forward endpoint ξ1 and backward endpoint ξ2; and if
ξ1 = ξ2 there cannot be such a geodesic.

One can lift this to a map which embeds the orbit space of the geodesic flow on T̃ 1Σ = T̃ 1H2

into S̃1
∞ × S̃1

∞ as a diagonal strip. However, we will choose to operate on the level of T 1H2,
since it makes the language a bit simpler.

We return to proving the theorem. Let c be a collection of oriented closed geodesics. If
there is an oriented closed geodesic d in Σ which does not have positive intersection points

with any element of c, then lifting to H2, there is a geodesic d̃ which does not have positive
intersection points with any element in the set of lifts of elements of c, which we denote

as c̃. Let ξ1, ξ2 be the forward and backward endpoints of d̃ respectively. Consider the
region ([ξ1, ξ2]× [ξ2, ξ1])\∆ in S1

∞ × S1
∞, this is a rectangle with two opposite ideal vertices,

which is called a lozenge in [Fen99]. We claim that there are no lifts of elements in c̃ in the
interior of the lozenge. Otherwise there is an element of c̃ that has forward endpoint on

(ξ1, ξ2) and backward endpoint on (ξ2, ξ1). d̃ must intersect such a curve positively at some
point, thus on Σ there must be an element of c for which d intersects positively with. Now
by restricting to near an ideal vertex of the lozenge (and lifting to the universal cover), we
get a perfect fit rectangle which is disjoint from c̃.

Conversely, suppose that there is a perfect fit rectangle disjoint from c. We want to find an
oriented closed geodesic d that has no positive intersection points with any element of c.
We can assume that every element of c intersects some element of c positively and some
element of c negatively, since otherwise we can just pick d to be some element of c, or its
reverse.

With this assumption in place, without loss of generality, let the image of the perfect fit

rectangle in the orbit space of T 1H2 be ([ξ1, ξ0]× [ξ0, ξ2])\∆. Choose a geodesic ray d̃ in H2

that has forward endpoint at ξ0, and project it down to a geodesic ray d on Σ. Notice that
d may not be periodic.

Let Rθ : T 1Σ → T 1Σ be the map that rotates vectors by θ counterclockwise. We claim

that for every ε > 0,
→
d eventually stays a bounded distance away from {Rθc

′
i(t) : θ ∈

(−π + ε,−ε), ci is an element of c} in T 1Σ. For otherwise, lifting to H2, there are positive

intersection points of d̃ with elements of c̃ which limit to infinity along d̃ and have angles
at the intersections bounded away from 0 and π. The corresponding elements of c̃ must



VEERING BRANCHED SURFACES, SURGERIES, AND GEODESIC FLOWS 61

have forward and backward endpoints converging to ξ0 hence eventually fall into (ξ1, ξ0)
and (ξ0, ξ2) respectively and lie in the interior of the perfect fit rectangle.

We further claim that
→
d stays a definite distance away from

↔
c in T 1Σ. For otherwise there

must be arbitrarily long segments of d that fellow-travel with an element of c (possibly with
reversed orientation). But we have assumed that every element of c has both positive and
negative intersection points with some elements of c, and since c is a collection of closed
geodesics, these intersection points have angle bounded away from 0 and π. Hence near one
of these intersection points, the fellow-travel segment of d will intersect an element of c̃ at a
positive angle bounded away from 0 and π, contradicting our claim in the last paragraph.

The two claims together imply that
→
d eventually stays a definite distance away from

{Rθc
′
i(t) : θ ∈ [−π, 0], ci is an element of c}. Now we can apply the closing lemma for

Anosov flows ([Bow72, Theorem 2.4]) on d to get a closed geodesic d′ on Σ which only has
negative intersection points (if any) with elements of c, thus concluding the proof in the
reverse direction. □

We remark that Theorem A.2 can be applied to a non-orientable surface by lifting to its
orientable double cover.

Appendix B. Table of triangulations on Montesinos link complements in
the census

In this appendix, we compile the veering triangulations we constructed on Montesinos link
complements in Theorem 5.1 that appear in the veering triangulation census [GSS].

We remind the reader of our notation: M( 1
p1

+ 1, 1
p2

− 1, ..., 1
pn

− 1) is the Montesinos link

whose double branched cover is the unit tangent bundle of the orbifold S2(p1, ..., pn), and
we constructed veering branched surfaces on complements of these Montesinos links for
which e :=

∑
1
pi
− n+ 2 < 0. In the tables we present here, we consider a finite collection

of these knots and links. Each one of these is represented by a cell in the table, with the
data within being read as:

(p1, ..., pn)

Name of knot/link [Name of knot/link exterior]

IsoSig code of triangulation (if applicable)

The tables have been organized in an attempt to balance aesthetic and efficiency. As a
result, the values of (p1, ..., pn) in some cells are such that e :=

∑
1
pi
− n + 2 ≥ 0. The

Montesinos links for these values are not hyperbolic, hence their complements cannot admit
veering triangulations at all. For these cells we put ‘/’ for the IsoSig code.

We describe how we compiled this data. For each knot or link, we first obtained its PD code
using Kyle Miller’s KnotFolio [Mil]. Then we inputted this code into SnapPy [CDGW] and
asked it to identify both the name of the knot or link (among the census of all knots and
links with 14 crossings or less), and the name of the knot or link exterior (among the census
of cusped hyperbolic 3-manifolds that can be triangulated with 9 tetrahedra or less).
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For the IsoSig codes of the triangulations, we make use of the veering census. As described
in Section 5, we know the number of tetrahedra and the number of blue and red edges in
our triangulations. We also know that each end has exactly one ladderpole curve, since in

the double cover T 1S\↔c each end has two ladderpole curves, and the involution switches
the two. As remarked in Section 5, we know that these triangulations are layered. Finally,
in terms of the 3-manifold, we also know that the homology of these Montesinos link
complements are Zb for b = number of components in the knot or link. With these pieces of
information, we can reasonably filter out the possible candidates in the veering triangulation
census.

Then we inputted each candidate triangulation into SnapPy and asked it to try to identify
the 3-manifold, or at least compute its hyperbolic volume. (Most of the identification
work is already done in the census.) Meanwhile from before, we already have the data
of the actual knot and link complements in SnapPy, so we can eliminate those candidate
triangulations that have the wrong census name or wrong hyperbolic volume. In most cases
this directly identifies the triangulation we were looking for.

There were 2 cases which we had to do extra work. For these we inspected the remaining
candidate triangulations more carefully using Regina [BBP+21]. We describe the analysis
in both cases below.

For (p1, p2, p3) = (2, 6, 6), the above procedure leaves us undecided between

oLLvAwQMLQcbeehgiijjlnlmnnxxxavccaaaxcavc 21112002212120

and

ovvLALQLQQchgggkijmnllnmnmaaaaaggaaggaaaa 10000111111100.

We inputted these triangulations into Regina and checked their dual graph. Recall that the
dual graph of a veering triangulation is the same as the branch locus of its dual veering
branched surface. Hence from the descriptions in Section 5, one can work out the dual
graph of the actual triangulation we are looking for. We can then eliminate

oLLvAwQMLQcbeehgiijjlnlmnnxxxavccaaaxcavc 21112002212120

since its dual graph has a pair of vertices with two edges between them, whereas the dual
graph of the actual triangulation does not.

For (p1, p2, p3, p4) = (2, 2, 4, 4), the above procedure leaves us undecided between

qvLAMAwPLzQkdcegfghiklmonppopbbbahabhbhabbhhga 2011022001120201

and

qvvLLMLzQQQkfgfjiloknoplmnoppaaaavvavaaavvaaav 1020212211211200.

As in the last case, we worked out the dual graph of the actual triangulation and compared
it with that of the two candidates. In this case, we can eliminate

qvLAMAwPLzQkdcegfghiklmonppopbbbahabhbhabbhhga 2011022001120201

because its dual graph has triangles (i.e. 3 vertices which have edges between each of them),
whereas the dual graph of the actual triangulation does not.
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We emphasize that we were able to identify all the veering triangulations we constructed on
the Montesinos link complements which appear in the census, albeit using this somewhat
backwards methodology. With some expertise in using software such as Snappy or Regina,
one can probably directly construct the triangulations then extract their IsoSig codes and
identify them in the census more directly.

There are some obvious patterns exhibited by the compiled data that we would be remiss
not to point out. Firstly, the minimal crossing number of all the listed knots and links equal
to

∑
pi. By observing that M( 1

p1
+1, 1

p2
−1, ..., 1

pn
−1) = M(−1+ 1

p1
, ...,−1+ 1

pn−2
, 1
pn−1

, 1
pn
),

and using the diagram for the latter with continued fraction expansions 1
pi

= 0+ 1
pi
,−1+ 1

pi
=

0 + 1
1+ 1

pi−1

, as explained in Section 2.4, we see that the minimal crossing number is indeed

at most
∑

pi. We conjecture that this upper bound is realized for all Montesinos links of
the form M( 1

p1
+ 1, 1

p2
− 1, ..., 1

pn
− 1).

Secondly, all the listed triangulations have a unique veering structure (up to reversing
the transverse data). In fact, this is the reason why we have just listed the IsoSig codes
without the data of the taut angle structure, which is what the census does, since in general
there are triangulations with multiple veering structures. It would be interesting if this
uniqueness holds in general, or even for the triangulations constructed in Section 6.

Lastly, we note that all the listed triangulations are reported to be geometric by SnapPy.
Now, this might not be very indicative, since the vast majority of veering triangulations
listed in the census are geometric (but their proportion is conjectured to tend to zero, and
this is proven for layered veering triangulations in [FTW20]). Nevertheless, it would be very
interesting if all the veering triangulations we have constructed in this paper are geometric.
Among other things, this would imply lower bounds for volumes of hyperbolic 3-manifolds

of the form T 1S\↔c , using the results of [FG13]. We remark that lower bounds for volumes
of such 3-manifolds have been recently obtained in [CKMGP21] and [CMY20]. We also
remark that Nimershiem has constructed geometric triangulations of S3\M(3

2
,−2

3
, 1
6+k

− 1)
in [Nim21]. It is not clear to us at this point whether Nimershiem’s triangulations are the
ones dual to the veering branched surfaces we constructed.



(2,3,5) (2,4,5) (2,5,5)
K10n21 L11n133 [m203] K12n725 [v2642]

/ eLMkbcddddedde hLLzQkcdefggfghspadgsg

(2,3,6) (2,4,6) (2,5,6) (2,6,6)
L11n204 L12n1951 [s776] L13n4431 [v3507] L14n58433 [t12485]

/ gvLQQcdeffeffffaafa kvLLLQQkcdhijhijijhvvttaggvvvv ovvLALQLQQchgggkijmnllnmnmaaaaaggaaggaaaa

(2,3,7) (2,4,7) (2,5,7)
K12n242 [m016] L13n2658 [v2731] K14n21324 [o9 30499]

dLQacccjsnk ivvPQQcfghghfhgfaddddaaaa nvvLALMQQkhfihklilkjmlmmaamaajgjjcacuu

(2,3,8) (2,4,8) (2,5,8)
L13n5885 [m125] L14n56929 [v3227] [t12542]

fLLQcbeddeehhbghh kvvLPQQkfghffijjijiaaaaaaabbbb qvvLALwAQPQkhfihkinjmloponoppaamaagacacmammgoo

(2,3,9) (2,4,9)
K14n6022 [m223] [t09018]
hLvMQkbefgfeggxddaddvv mvvLPQwQQfghffijklkllkaaaaaaaaadddd

(2,3,10) (2,4,10)
[m292] [t09754]

jLvvQQQbhigghiihghaaagbbbbg ovvLPQwAPQcfghffijklnmmnmnaaaaaaaaaaabbbb

(2,3,11) (2,4,11)
[s384] [o9 24511]

lLvvQAPQccgfehijkjkjkhaaaggaapppp qvvLPQwAPLQkfghffijklnmopopopaaaaaaaaaaaaallll

(2,3,12)
[s441]

nLvvQAPLQkcgfehijklmlmmlhaaaggaaaabbbb

(2,3,13)
[v0959]

pLvvQAPLwQQcgfehijklmonnonohaaaggaaaaaaeeee

(3,3,4) (3,4,4)
K10n27 [m389] L11n222 [t12487]

fLLQcbcdeeelonlel ivLLQQccfhfeghghwadiwadrv

(3,3,5) (3,4,5) (3,5,5)
L11n254 [v3376] K12n472 L13n6579
hvLPQkcdegffggbbgaaahg lvvLAQAQcfhiggjijkjkkttmtalmrufut pvvLLLLQQQQfgjnijmljkomnonoaaacvvvcvvavvxva

(3,3,6) (3,4,6)
K12n574 [t12247] L13n5937

jvLLQMQegffghhiiiguuuuaaggb ovvLAAzMQQcgfhiikjlnmlknmnmmattwokamkkdxk

(3,3,7)
L13n6566 [o9 38566]

lvLPwAPQcegfdihkjjkkjcaavaaaaxxxx

(3,3,8)
K14n18079

nvLPwAPLQkegfdihkjmlmllmcaavaaaaaawwww



(4,4,4)
L12n2007

mvLvAQMMQcifhgjhiklkllntitiaggaaaan

(4,4,5)
L13n4856

qvvLALAQzAQkghifkijmlnlopoppohhmlagnavhktmnssn

(2,2,2,3) (2,2,3,3) (2,2,4,3) (2,2,5,3)
L9n21 [s776] L10n37 [o9 44217] L11n303 L12n578
gvLQQcdeffeffffaafa jvLLAQQdgfhhgfiiijaamtatrcr mvvLAMMQQhfigghkljlkklmmmaaacmoagom pvvLALwQQMQhfihkmlkjmnlonooaamaamjjcaacatrr

(2,2,2,4) (2,2,3,4) (2,2,4,4)
L10n97 [t12047] L11n303 L12n2084

ivvPQQcfhghgfghfaaaaaaaaa mvvLAMMQQhfigghkljlkklmmmaaacmoagom qvvLLMLzQQQkfgfjiloknoplmnoppaaaavvavaaavvaaav

(2,2,2,5) (2,2,3,5)
L11n269 [o9 42753] L12n578
kvvLPQQkfghffjiijijaaaaaaavvvv pvvLALwQQMQhfihkmlkjmnlonooaamaamjjcaacatrr

(2,2,2,6)
L12n2026 [o9 44206]

lLLvzAQQcbehfjihjkikkhhagbgbbaghh

(2,2,2,7)
L13n6753

ovvLPQwAPQcfghffjiklmnmnmnaaaaaaaaaaavvvv

(2,2,2,8)
L14n59350

qvvLPQwAPLQkfghffjiklmnoppopoaaaaaaaaaaaaaaaaa

(2,3,2,3) (2,3,3,3)
L10n60 K11n77

kLvvQAQkbhighgghjjjxxaxccvvaax ovLvLPAQMQceihkklhmjlmnknngatigggagkhukdg

(2,3,2,4)
L11n413

ovLLvPwQQQccdjklmhkllknmnnvvavvavvvvvaaav

(2,2,2,2,2)
L10n113

kvvLQQMkghifhifgjjjmtmiutlpmta

(2,2,2,2,3)
L11n440

ovvLLMPMQQcgihjlimmljnknmnmeuaggnovjpjavp
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[Mar20] Théo Marty. First-return maps of birkhoff sections of the geodesic flow, 2020.
[Mil] Kyle Miller. Knotfolio. https://kmill.github.io/knotfolio/ 2022/01/01.
[Mir16] Maryam Mirzakhani. Counting mapping class group orbits on hyperbolic surfaces, 2016.
[MM99] Howard A. Masur and Yair N. Minsky. Geometry of the complex of curves. I. Hyperbolicity.

Invent. Math., 138(1):103–149, 1999.
[Mos96] Lee Mosher. Laminations and flows transverse to finite depth foliations. Preprint, 1996.
[Nim21] Barbara Nimershiem. Geometric triangulations of a family of hyperbolic 3-braids, 2021.
[Pin14] Tali Pinsky. Templates for geodesic flows. Ergodic Theory Dynam. Systems, 34(1):211–235,

2014.
[Rob74] Clark Robinson. Structural stability of vector fields. Ann. of Math. (2), 99:154–175, 1974.
[Ser81] Caroline Series. Symbolic dynamics for geodesic flows. Acta Math., 146(1-2):103–128, 1981.
[Ser86] Caroline Series. Geometrical Markov coding of geodesics on surfaces of constant negative

curvature. Ergodic Theory Dynam. Systems, 6(4):601–625, 1986.
[Sha21] Mario Shannon. Hyperbolic models for transitive topological anosov flows in dimension three,

2021.
[Sma67] S. Smale. Differentiable dynamical systems. Bull. Amer. Math. Soc., 73:747–817, 1967.
[SSa] Saul Schleimer and Henry Segerman. From veering triangulations to pseudo-anosov flows and

back again. In preparation.
[SSb] Saul Schleimer and Henry Segerman. Veering Dehn surgery. In preparation.
[SS19] Saul Schleimer and Henry Segerman. From veering triangulations to link spaces and back

again, 2019.
[SS20] Saul Schleimer and Henry Segerman. Essential loops in taut ideal triangulations. Algebr.

Geom. Topol., 20(1):487–501, 2020.
[SS21] Saul Schleimer and Henry Segerman. From loom spaces to veering triangulations, 2021.
[SS23] Saul Schleimer and Henry Segerman. From veering triangulations to dynamic pairs, 2023.
[Tom75] Per Tomter. On the classification of Anosov flows. Topology, 14:179–189, 1975.
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