
Vega-Lite: A Grammar of Interactive Graphics
Arvind Satyanarayan, Dominik Moritz, Kanit Wongsuphasawat, and Jeffrey Heer

Fig. 1. Example visualizations authored with Vega-Lite. From left-to-right: layered line chart combining raw and average values,
dual-axis layered bar and line chart, brushing and linking in a scatterplot matrix, layered cross-filtering, and an interactive index chart.

Abstract—We present Vega-Lite, a high-level grammar that enables rapid specification of interactive data visualizations. Vega-Lite
combines a traditional grammar of graphics, providing visual encoding rules and a composition algebra for layered and multi-view
displays, with a novel grammar of interaction. Users specify interactive semantics by composing selections. In Vega-Lite, a selection
is an abstraction that defines input event processing, points of interest, and a predicate function for inclusion testing. Selections
parameterize visual encodings by serving as input data, defining scale extents, or by driving conditional logic. The Vega-Lite compiler
automatically synthesizes requisite data flow and event handling logic, which users can override for further customization. In contrast
to existing reactive specifications, Vega-Lite selections decompose an interaction design into concise, enumerable semantic units.
We evaluate Vega-Lite through a range of examples, demonstrating succinct specification of both customized interaction methods
and common techniques such as panning, zooming, and linked selection.

Index Terms—Information visualization, interaction, systems, toolkits, declarative specification

1 INTRODUCTION

Grammars of graphics span a gamut of expressivity. Low-level gram-
mars such as Protovis [3], D3 [4], and Vega [22] are useful for ex-
planatory data visualization or as a basis for customized analysis
tools, as their primitives offer fine-grained control. However, for ex-
ploratory visualization, higher-level grammars such as ggplot2 [27],
and grammar-based systems such as Tableau (née Polaris [24]), are
typically preferred as they favor conciseness over expressiveness. An-
alysts rapidly author partial specifications of visualizations; the gram-
mar applies default values to resolve ambiguities, and synthesizes low-
level details to produce visualizations.

High-level languages can also enable search and inference over the
space of visualizations. For example, Wongsuphasawat et al. [30] in-
troduced Vega-Lite to power the Voyager visualization browser. By
providing a smaller surface area than the lower-level Vega language,
Vega-Lite makes systematic enumeration and ranking of data transfor-
mations and visual encodings more tractable.

However, existing high-level languages provide limited support for
interactivity. An analyst can, at most, enable a predefined set of com-
mon techniques (linked selections, panning & zooming, etc.) or pa-
rameterize their visualization with dynamic query widgets [21]. For
custom, direct-manipulation interaction they must instead turn to im-
perative event handling callbacks. Recognizing that callbacks can be
error-prone to author, and require complex static analysis to reason
about, Satyanarayan et al. [23] recently formulated declarative interac-
tion primitives for Vega. While these additions facilitate programmatic
generation and retargeting of interactive visualizations, they remain

• Arvind Satyanarayan is with Stanford University. E-mail:

arvindsatya@cs.stanford.edu.

• Dominik Moritz, Kanit Wongsuphasawat, and Jeffrey Heer are with the

University of Washington. E-mails: {domoritz, kanitw, jheer}@uw.edu.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of

Publication xx xxx. 201x; date of current version xx xxx. 201x.

For information on obtaining reprints of this article, please send

e-mail to: reprints@ieee.org.

Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx/

low-level. Verbose specification impedes rapid authoring and hinders
systematic exploration of alternative designs.

In this paper we extend Vega-Lite to enable concise, high-level
specification of interactive data visualizations. To support expressive
interaction methods, we first contribute an algebra to compose single-
view Vega-Lite specifications into multi-view displays using layer,
concatenate, facet and repeat operators. Vega-Lite’s compiler infers
how input data should be reused across constituent views, and whether
scale domains should be unioned or remain independent.

Second, we contribute a high-level interaction grammar. With
Vega-Lite, an interaction design is composed of selections: visual el-
ements or data points that are chosen when input events occur. Selec-
tions parameterize visual encodings by serving as input data, defining
scale extents, and providing predicate functions for testing or filtering
items. For example, a rectangular “brush” is a common interaction
technique for data visualization. In Vega-Lite, a brush is defined as a
selection that holds two data points that correspond to its extents (e.g.,
captured when the mouse button is pressed and as it is dragged, re-
spectively). Its predicate can be used to highlight visual elements that
fall within the brushed region, and to materialize a dataset as input to
other encodings. The selection can also serve as the scale domain for a
secondary view, thereby constructing an overview + detail interaction.

For added expressivity, Vega-Lite provides a series of operators to
transform a selection. Transforms can be triggered by input events as
well, and manipulate selection points or predicate functions. For ex-
ample, a toggle transform adds or removes a point from the selection,
while a project transform modifies the predicate to define inclusion
over specified data fields.

The Vega-Lite compiler synthesizes a low-level Vega specifica-
tion [22] with the requisite data flow, and default event handling logic
that a user can override. Through a range of examples, we demon-
strate that Vega-Lite brings the advantages of high-level specification
to interactive visualization. Common methods, including linked selec-
tion, panning, and zooming, as well as custom techniques (drawn from
an established taxonomy [31]) can be concisely described. Moreover,
selections, transformations, and their application to visual encodings
decompose interaction into a parametric design space. We show how

each of these parameters can be systematically varied to generate al-
ternate interaction techniques for a given set of visual encodings. Such
enumeration can be useful to explore alternative designs, and can aid
higher-level reasoning about interaction — for example, recommend-
ing suitable interaction techniques as part of a design tool.

2 RELATED WORK

Vega-Lite builds on prior work on grammars of graphics, visualization
systems, and techniques for interactive selection and querying.

2.1 Grammar-Based Visual Encoding

Since the initial publication of Wilkinson’s The Grammar of Graph-
ics [29] in 1999, formal grammars for statistical graphics have grown
increasingly popular as a way to succinctly specify visualizations.
Wilkinson’s work was quickly followed by the Stanford Polaris sys-
tem [24], later commercialized as Tableau. Hadley Wickham’s popular
ggplot2 [27] and ggvis [20] packages implement variants of Wilkin-
son’s model in the R statistical language. These tools eschew chart
templates, which offer limited means of customization, in favor of
combinatorial building blocks. Abstracting data models, graphical
marks, visual encoding channels, scales and guides (i.e., axes and leg-
ends) yields a more expressive design space, and allows analysts to
rapidly construct graphics for exploratory analysis [13]. Concise spec-
ification is achieved in part through ambiguity: users may omit details
such as scale transforms (e.g., linear or log) or color palettes, which
are then filled in using a rule-based system of smart defaults. More
expressive lower-level (and thus more verbose) grammars, including
those of Protovis [3], D3 [4], and Vega [22], have been widely used
for creating explanatory and highly-customized graphics.

The design of Vega-Lite is heavily influenced by these works.
Drawing from Wilkinson’s grammar and Polaris/Tableau, Vega-Lite
similarly represents basic plots using a set of encoding definitions that
map data attributes to visual channels such as position, color, shape,
and size, and may include common data transformations such as bin-
ning, aggregation, sorting, and filtering. Drawing from Vega, Vega-
Lite uses a portable JSON (JavaScript Object Notation) syntax that
permits generation from a variety of programming languages. Vega-
Lite specifications are compiled to full Vega specifications, hence the
expressive gamut of Vega-Lite is a strict subset of that of Vega. As we
will later demonstrate, Vega-Lite sacrifices some expressiveness for
dramatic gains in the conciseness and clarity of specification.

In terms of visual encoding, Vega-Lite differs most from other high-
level grammars in its approach to multiple view displays. Each of
these grammars supports faceting (or nesting) to construct trellis plots
in which each cell similarly visualizes a different partition of the data.
Both Wilkinson’s grammar and Polaris/Tableau achieve this through a
table algebra over data fields, which in turn determines spatial sub-
divisions. Tableau additionally supports the construction of multi-
view dashboards via a different mechanism, with each view backed
by a separate specification. In contrast, we contribute a view alge-
bra: starting with unit specifications that define a single plot, Vega-
Lite expresses composite views using operators for layering, horizon-
tal or vertical concatenation, faceting, and parameterized repetition.
When applicable, these operators will merge scale domains and prop-
erly align constituent views. Disparate views can also be combined
into arbitrary dashboards, all within a unified algebraic model.

2.2 Specifying Interactions in Visualization Systems

Despite the central role of interaction in effective data visualization
[13, 19], little work has been done to develop a grammar for specify-
ing interaction techniques. Wilkinson’s grammar includes no notion
of interaction. Tableau supports common interaction techniques, but
relies on mechanisms external to the visual encoding grammar. Early
systems like GGobi [25] support common techniques as well, and pro-
vide imperative APIs for custom methods. However, such APIs make
easy tasks needlessly complex, burdening developers with learning
low-level execution details. More recent systems, including Protovis,
D3, and VisDock [7], offer a typology of common techniques that can
be applied to a visualization. Such top-down approaches, however,

limit customization and composition. For example, D3’s interactors
encapsulate event processing, making it difficult to combine them if
their events conflict (e.g., if dragging triggers brushing and panning).

The prior work perhaps most closely related to Vega-Lite is the Re-
active Vega language [23]. Reactive Vega draws on Functional Reac-
tive Programming techniques to formulate composable, declarative in-
teraction primitives for data visualization. Reactive Vega models input
events as continuous data streams. To succinctly define event streams
of interest, Vega employs an event selector syntax, which Vega-Lite
also uses for customized event logic. Event streams, in turn, drive
dynamic variables called signals. Signals parameterize the remainder
of the visualization specification, endowing it with reactive semantics.
When a new event fires, it propagates to dependent signals; visual en-
codings that use them are automatically re-evaluated and re-rendered.
This reactive approach is not only capable of expressing a diverse set
of interactions [23], it is performant as well [22], with interactive per-
formance at least twice as fast as the equivalent D3 program.

However, the resulting reactive specifications are low-level and ver-
bose. Specifying common techniques can be time-consuming, requir-
ing tens of lines of JSON, and it is difficult to know how to adapt
techniques in pursuit of alternative designs. In contrast, Vega-Lite is
a higher-level specification language, with primitives that decompose
interaction design into a parametric space. Common methods require
typically 1-2 lines of code, and design variations can be explored by
systematically enumerating defined properties. Nevertheless, Reac-
tive Vega provides a performant runtime and an “assembly language”
to which Vega-Lite specifications are compiled.

2.3 Interactive Selection and Querying

Selection, often in the form of users clicking or lassoing visual items
of interest, is a fundamental operation in user interfaces and has
been well-studied in the context of data visualization. For example,
in Snap-Together Visualization [17], multiple views are coordinated
via “primary-” and “foreign-key actions,” which propagate selected
data tuples from one view to the others. Wilhelm [28] describes the
need for such “indirect object manipulation” methods as an axiom
of interactive data displays. Chen’s compound brushing [6] provides
a visual dataflow language for specifying a rich space of transfor-
mations of brush selections. More recently, Brunel [5] provides a
special #selection data field that is dynamically populated with
the elements a user interacts with, and can be used to link multi-
ple views or filter input data. Similarly, RStudio’s Shiny [21], an
imperative web application layer, provides brushedPoints and
nearestPoints functions which can be used throughout an R
script to operate on selected elements.

Other systems have studied formally representing selections as data
queries [28]. For example, brushing interactions in VQE [9] generate
extensional queries that enumerate all items of interest; a form-based
interface enables specification of intensional (declarative) queries. In-
dividual point and brush selections in DEVise [15], known as visual
queries, map to a declarative structure and are used to link together
multiple views. With VIQING [18], rectangular “rubber band” selec-
tions are modeled as range extents, and views can be dropped on top
of each other to join their underlying datasets. Heer et al. [12] demon-
strate that by modeling a selection as a declarative query, interactive
“query relaxation” can successively capture more items of interest.

Vega-Lite builds on this work by richly integrating an interactive
selection abstraction with the primitives of visual encoding grammars.
Vega-Lite selections are populated with one or more points of interest,
in response to user interaction. Extensible predicate functions map se-
lections to declarative queries, and allow a minimal set of “backing”
points to represent the full space of selected points. Additional op-
erators can transform a selection’s predicate or backing points (e.g.,
offseting them to translate a brush selection or perform panning). Se-
lections then parameterize visual encodings by serving as input data,
defining scale extents, or using predicates to test or filter items. The
end result is an enumerable, combinatorial design space of interac-
tive statistical graphics, with concise specification of not only linking
interactions, but panning, zooming, and custom techniques as well.

(b) Correlation between wind and temperature
{
 "data": {
 "url": "data/weather.csv",
 "formatType": "csv" },
 "mark": "line",
 "encoding": {
 "x": {
 "field": "date",
 "type": "temporal",
 "timeUnit": "month" },
 "y": {
 "field": "temp_max",
 "type": "quantitative",
 "aggregate": "mean" },
 "color": {
 "field": "location",
 "type": "nominal" }
 }
}

{
 "data": {
 "url": "data/weather.csv",
 "formatType": "csv" },
 "mark": "point",
 "encoding": {
 "x": {
 "field": "temp_max",
 "type": "quantitative",
 "bin": true },
 "y": {
 "field": "wind",
 "type": "quantitative",
 "bin": true },
 "size": {
 "field": "*",
 "aggregate": "count" },
 "color": {
 "field": "location",
 "type": "nominal" }
 } }

{
 "data": {
 "url": "data/weather.csv",
 "formatType": "csv" },
 "mark": "bar",
 "encoding": {
 "x": {
 "field": "location",
 "type": "nominal"
 },
 "y": {
 "field": "*",
 "type": "quantitative",
 "aggregate": "count"
 },
 "color": {
 "field": "weather",
 "type": "nominal"
 }
 }
}

(a) Line chart with aggregation (c) Stacked bar chart of weather types

Fig. 2. Vega-Lite unit specifications visualizing weather data. These examples demonstrate varied mark types and data transformations.

3 THE VEGA-LITE GRAMMAR OF GRAPHICS

Vega-Lite combines a grammar of graphics with a novel grammar of
interaction. In this section, we describe Vega-Lite’s basic visual en-
coding constructs and an algebra for view composition. In prior work,
Wongsuphasawat et al. [30] introduced the simplest Vega-Lite speci-
fication — here referred to as a unit specification — that defines a sin-
gle Cartesian plot with a specific mark type to encode data (e.g., bars,
lines, plotting symbols). Given multiple unit plots, we introduce layer,
concat, facet, and repeat operators to provide an algebra for construct-
ing composite views. This algebra can express layered plots, trellis
plots, and arbitrary multiple view displays. Each operator is responsi-
ble for combining or aligning underlying scales and axes as needed.

3.1 Unit Specification

A unit specification describes a single Cartesian plot, with a backing
data set, a given mark-type, and a set of one or more encoding def-
initions for visual channels such as position (x, y), color, size, etc.
Formally, a unit view consists of a four-tuple:

unit := (data, transforms, mark-type, encodings)

The data definition identifies a data source, a relational table con-
sisting of records (rows) with named attributes (columns). This data ta-
ble can be subject to a set of transforms, including filtering and adding
derived fields via formulas. The mark-type specifies the geometric ob-
ject used to visually encode the data records. Legal values include bar,
line, area, text, rule for reference lines, and plotting symbols (point &
tick). The encodings determine how data attributes map to the proper-
ties of visual marks. Formally, an encoding is a seven-tuple:

encoding := (channel, field, data-type, value, functions, scale, guide)

Available visual encoding channels include spatial position (x, y),
color, shape, size, and text. An order channel controls sorting of
stacked elements (e.g., for stacked bar charts and the layering order of
line charts). A path order channel determines the sequence in which
points of a line or area mark are connected to each other. A detail
channel includes additional group-by fields in aggregate plots.

The field string denotes a data attribute to visualize, along with a
given data-type (one of nominal, ordinal, quantitative or temporal).
Alternatively, one can specify a constant literal value to serve as the
data field. The data field can additionally be transformed using func-
tions such as binning, aggregation (sum, average, etc.), and sorting.

An encoding may also specify properties of a scale that maps from
the data domain to a visual range, and a guide (axis or legend) for
visualizing the scale. If not specified, Vega-Lite will automatically
populate default properties based on the channel and data-type. For x
and y channels, either a linear scale (for quantitative data) or an ordinal
scale (for ordinal and nominal data) is instantiated, along with an axis.
For color, size, and shape channels, suitable palettes and legends are
generated. For example, quantitative color encodings use a single-
hue luminance ramp, while nominal color encodings use a categorical
palette with varied hues. Our default assignments largely follow the
model of prior systems [24, 30].

Unit specifications are capable of expressing a variety of com-
mon, useful plots of both raw and aggregated data. Examples include
bar charts, histograms, dot plots, scatter plots, line graphs, and area
graphs. Our formal definitions are instantiated in a JSON (JavaScript
Object Notation) syntax, as shown in Fig. 2.

3.2 View Composition Algebra

Given multiple unit specifications, composite views can be created us-
ing a set of composition operators. Here we describe the set of sup-
ported operators. We use the term view to refer to any Vega-Lite spec-
ification, whether it is a unit or composite specification.

3.2.1 Layer

The layer operator accepts multiple unit specifications to produce a
view in which subsequent charts are plotted on top of each other. For
example, a layered view could consist of one layer showing a his-
togram of a full data set, and another overlaying a histogram of a fil-
tered subset (Fig. 11). The signature of the operator is:

layer([unit1, unit2, ...], resolve)

To create a layered view, we produce shared scales (if their types
match) and merge guides by default. For example, we compute the
union of the data domains for the x or y channel, for which we then
generate a single scale. We believe this is a useful default for pro-
ducing coherent and comparable layers. However, Vega-Lite can not
enforce that a unioned domain is semantically meaningful. To prohibit
layering of composite views with incongruent internal structures, the
layer operator restricts its operands to be unit views.

To override the default behavior, users can specify strategies to re-
solve scales and guides using tuples of the form (channel, scale|guide,

{
 "layers": [
 {
 "data": {"url": "data/weather.csv","formatType": "csv"},
 "transform": {"filter": "datum.location === 'Seattle'"},
 "mark": "bar",
 "encoding": {
 "x": {
 "field": "date", "type": "temporal",
 "timeUnit": "month" },
 "y": {
 "field": "precipitation", "type": "quantitative",
 "aggregate": "mean", "axis": {"grid": false} },
 "color": {"value": "#77b2c7"} }
 }, {
 "data": {"url": "data/weather.csv","formatType": "csv"},
 "transform": {"filter": "datum.location === 'Seattle'"},
 "mark": "line",
 "encoding": {
 "x": {
 "field": "date", "type": "temporal",
 "timeUnit": "month" },
 "y": {
 "field": "temp_max", "type": "quantitative",
 "aggregate": "mean", "axis": {"grid": false} },
 "color": {"value": "#ce323c"} }
 }],
 "resolve": {
 "y": {"scale": "independent"}
 } }

(a) Dual axis layered chart
{
 "vconcat": [
 { ... },
 {
 "data": {
 "url": "data/weather.csv",
 "formatType": "csv"
 },
 "transform": {
 "filter": "datum.precipitation > 0"
 },
 "mark": "point",
 "encoding": {
 "y": {"field": "location","type": "nominal"},
 "x": {
 "field": "*",
 "type": "quantitative",
 "aggregate": "count"
 },
 "color": {
 "field": "date",
 "type": "temporal",
 "timeUnit": "year"
 }
 }
 }
]
}

(b) Vertical concatenation of two charts

Fig. 3. (a) A dual axis chart that layers lines for temperature on top of bars for precipitation; each layer uses an independent y-scale. (b) The
temperature line chart from Fig. 2(a) concatenated with rainy day counts in New York and Seattle; scales and guides for each plot are independent.

(a) Faceted charts (b) Repeated charts
{
 "data": {
 "url": "data/weather.csv",
 "formatType": "csv"
 },
 "facet": {
 "column": {
 "field": "location",
 "type": "nominal"
 }
 },
 "spec": {
 "mark": "line",
 "encoding": {
 "x": { ... },
 "y": { ... },
 "color": { ... }
 }
 }
}

{
 "repeat": {
 "column": ["temp_max","precipitation"]
 },
 "spec": {
 "data": {
 "url": "data/weather.csv",
 "formatType": "csv"
 },
 "mark": "line",
 "encoding": {
 "x": { ... }
 "y": {
 "field": {"repeat": "column"},
 "type": "quantitative",
 "aggregate": "mean"
 },
 "color": { ... }
 }
} }

Fig. 4. (a) Weather data faceted by location; the y-axis is shared, and the underlying scale domains unioned, to enable easier comparison.
(b) Repetition of different measures across columns; the y channel references the column template parameter to vary the encoding.

resolution), where resolution is one of independent or union. Inde-
pendent scales and guides for each layer produce a dual-axis view, as
shown in the layered plots in Fig. 3(a).

3.2.2 Concatenation

To place views side-by-side, Vega-Lite provides operators for horizon-
tal and vertical concatenation. The signatures for these operators are:

hconcat([view1, view2, ...], resolve)
vconcat([view1, view2, ...], resolve)

If aligned spatial channels have matching data fields (e.g., the y
channels in an hconcat use the same field), a shared scale and axis
are used. Axis composition facilitates comparison across views and
optimizes the underlying implementation. Fig. 3(b) concatenates the
line chart from Fig. 2(a) with a dot plot, using independent scales.

3.2.3 Facet

While concatenation allows composition of arbitrary views, one often
wants to set up multiple views in a parameterized fashion. The facet
operator produces a trellis plot [1] by subsetting the data by the distinct
values of a field. The signature of the facet operator is:

facet(channel, data, field, view, scale, axis, resolve)

The channel indicates if sub-plots should be laid out vertically (row)
or horizontally (column). The given data source is partitioned using
distinct values of the field. The view specification provides a template
for the sub-plots, inheriting the backing data for each partition from
the operator. The scale and axis parameters specify how sub-plots are
positioned and labeled. Fig. 4(a) demonstrates faceting into columns.

To facilitate comparison, scales and guides for quantitative fields
are shared by default. This ensures that each facet visualizes the same
data domain. However, for ordinal scales we generate independent
scales by default to avoid unnecessary inclusion of empty categories,
akin to Polaris’ nest operator. When faceting by fiscal quarter and
visualizing per-month data in each cell, one likely wishes to see three
months per quarter, not twelve months of which nine are empty. Users
can override the default behavior via the resolve component.

3.2.4 Repeat

The repeat operator generates multiple plots, but unlike facet allows
full replication of a data set in each cell. For example, repeat can be
used to create a scatterplot matrix (SPLOM), where each cell shows a
different 2D projection of the same data table. The signature is:

repeat(channel, values, scale, axis, view, resolve)

Similar to facet, the channel parameter indicates if plots should di-
vide by row or column. Rather than partition data according to a field,
this operator generates one plot for each entry in a list of values. En-
codings within the repeated view specification can refer to this pro-
vided value to parameterize the plot1. By default, scales and axes are
independent, but legends are shared when data fields coincide. Like

1As the repeat operator requires parameterization of the inner view, it is

not strictly algebraic. It is possible to achieve algebraic “purity” via explicit re-

peated concatenation or by reformulating the repeat operator (e.g., by including

rewrite rules that apply to the inner view specification). However, we believe

the current syntax to be more usable and concise than these alternatives.

facet, the scale and axis components allow users to override defaults
for how sub-plots are positioned and labeled, while resolve controls
resolution of scales and guides within the plots themselves.

3.3 Nested Views

Composition operators can be combined to create more complex
nested views or dashboards, with the output of one operator serving as
input to a subsequent operator. For instance, a layer of two unit views
might be repeated, and then concatenated with a different unit view.
The one exception is the layer operator, which, as previously noted,
only accepts unit views to ensure consistent plots. For concision, two
dimensional faceted or repeated layouts can be achieved by applying
the operators to the row and column channels simultaneously. When
faceting a composite view, only the dataset targeted by the operator is
partitioned; any other datasets specified in sub-views are replicated.

4 THE VEGA-LITE GRAMMAR OF INTERACTION

To support specification of interaction techniques, Vega-Lite extends
the definition of unit specifications to also include a set of selections.
Selections identify the set of points a user is interested in manipulat-
ing. In this section, we define the components of a selection, describe
a series of transforms for modifying selections, and detail how selec-
tions can parameterize visual encodings to make them interactive.

4.1 Selection Components

We formally define a selection as an eight-tuple:

selection := (name, type, predicate, domain|range,
event, init, transforms, resolve)

When an input event occurs, the selection is populated with backing
points of interest. These points are the minimal set needed to identify
all selected points. The selection type determines how many backing
values are stored, and how the predicate function uses them to deter-
mine the set of selected points. Supported types include a single point,
a list of points, or an interval of points.

A point selection is backed by a single datum, and its predicate tests
for an exact match against properties of this datum. It can also function
like a dynamic variable (or signal in Vega [23]), and can be invoked
as such. For example, it can be referenced by name within a filter ex-
pression, or its values used directly for particular encoding channels.
List selections, on the other hand, are backed by datasets into which
points are inserted, modified or removed as events fire. Lists express
discrete selections, as their predicates test for an exact match with at
least one value in the backing dataset. The order of points in a list
selection can be semantically meaningful, for example when a list se-
lection serves as an ordinal scale domain. Fig. 5 illustrates how points
are highlighted in a scatterplot using point and list selections.

Intervals are similar to list selections. They are backed by datasets,
but their predicates determine whether an argument falls within the
minimum and maximum extent defined by the backing points. Thus,
they express continuous selections. The compiler automatically adds
a rectangle mark, as shown in Fig. 6(a), to depict the selected inter-
val. Users can customize the appearance of this mark via the brush
keyword, or disable it altogether when defining the selection.

Predicate functions enable a minimal set of backing points to rep-
resent the full space of selected points. For example, with predicates,

{
 "data": {"url": "data/cars.json"},
 "mark": "circle",
 "select": {
 "id": {"type": "point"}
 },
 "encoding": {
 "x": {"field": "Horsepower", "type": "Q"},
 "y": {"field": "MPG", "type": "Q"},
 "color": [
 {"if": "id", "field": "Origin", "type": "N"},
 {"value": "grey"}
],
 "size": {"value": 100}
 }

(a) Highlight a single point on click

"id": {"type": "point", "project": {"fields": ["Origin"]}}

(d) Highlight a single Origin

"id": {"type": "list", "toggle": true}

(b) Highlight a list of individual points

"select": {
 "id": {"type": "list", "toggle": true, "project": {"fields": ["Origin"]}}
}, ...

(e) Highlight a list of Origins
(c) "Paintbrush": highlight multiple points on hover
"id": {"type": "list", "on": "mouseover", "toggle": true}

Fig. 5. (a) Adding a single point selection to parameterize the fill color of a scatterplot’s circle mark. (b) Switching to a list selection, with the toggle

transform automatically added (true enables default shift-click event handling). (c) Specifying a custom event trigger: the first point is selected on
mouseover and subsequent points when the shift key is pressed (customizable via the toggle transform). (d) Using the project transform with a
single-point selection to highlight all points with a matching Origin, and (e) combining it with a list selection to select multiple Origins.

an interval selection need only be backed by two points: the minimum
and maximum values of the interval. While selection types provide
default definitions, predicates can be customized to concisely specify
an expressive space of selections. For example, a single point selec-
tion with a custom predicate of the form datum.binned price

== selection.binned price is sufficient for selecting all data
points that fall within a given bin.

By default, backing points lie in the data domain. For example,
if the user clicks a mark instance, the underlying data tuple is added
to the selection. If no tuple is available, event properties are passed
through inverse scale transforms. For example, as the user moves
their mouse within the data rectangle, the mouse position is inverted
through the x and y scales and stored in the selection. Defining selec-
tions over data values, rather than visual properties, facilitates reuse
across distinct views; each view may have different encodings spec-
ified, but are likely to share the same data domain. However, some
interactions are inherently about manipulating visual properties — for
example, interactively selecting the colors of a heatmap. For such
cases, users can define selections over the visual range instead. When
input events occur, visual elements or event properties are then stored.

The particular events that update a selection are determined by
the platform a Vega-Lite specification is compiled on, and the input
modalities it supports. By default we use mouse events on desktops,
and touch events on mobile and tablet devices. A user can specify
alternate events using Vega’s event selector syntax [23]. For exam-
ple, Fig. 5(c) demonstrates how mouseover events are used to pop-
ulate a list selection. With the event selector syntax, multiple events
are specified using a comma (e.g., mousedown, mouseup adds
items to the selection when either event occurs). A sequence of events
is denoted with the right-combinator. For example, [mousedown,
mouseup] > mousemove selects all mousemove events that oc-
cur between a mousedown and a mouseup (otherwise known as
“drag” events). Events can also be filtered using square brackets (e.g.,
mousemove [event.pageY > 5] for events at the top of the
page) and throttled using braces (e.g., mousemove{100ms} popu-
lates a selection at most every 100 milliseconds).

Finally, selections can be initialized with specific backing points
(we defer discussion of transforms and resolve to subsequent sections).
Vega-Lite provides a built-in mechanism to initialize list and interval
selections using the scales of the unit specification they are defined
in. Doing so populates the selection with the given scales’ domain or
range, as appropriate for the selection, and parameterizes the scales to
use the selection instead. By default, this occurs for the scales of the x
and y channels, but alternate scales can be specified by the user. This
step allows scale extents to be interactively manipulated, yet remain
automatically initialized by the input data.

4.2 Selection Transforms

Analogous to data transforms, selection transforms manipulate the
components of the selection they are applied to. For example, they
may perform operations on the backing points, alter a selection’s pred-
icate function, or modify the input events that update the selection.
We identify the following transforms as a minimal set to support both
common and custom interaction techniques:

project(fields, channels): Alters a selection’s predicate function to
determine inclusion by matching only the given fields. Some fields,
however, may be difficult for users to address directly (e.g., new fields
introduced due to inline binning or aggregation transformations). For
such cases, a list of channels may also be specified (e.g., color,
size). Fig. 5(d, e) demonstrate how project can be used to select
all points with matching Origin fields, for example. This transform
is also used to restrict interval selections to a particular dimension
(Fig. 6(c)) or to determine which scales initialize a selection.

toggle(event): This transform is automatically instantiated for
uninitialized list selections. When the event occurs, the corresponding
point is added or removed from a list selection’s backing dataset. By
default, the toggle event corresponds to the selection’s event but with
the shift key pressed. For example, in Fig. 5(b), additional points are
added to the list selection on shift-click (where click is the default
event for list selections). The selection in Fig. 5(c), however, speci-
fies a custom mouseover event. Thus, additional points are inserted
when the shift key is pressed and the mouse cursor hovers over a point.

translate(events, by): Offsets the spatial properties (or correspond-
ing data fields) of backing points by an amount determined by the
coordinates of the sequenced events. For example, on the desk-
top, drag events ([mousedown, mouseup] > mousemove) are
used and the offset corresponds to the difference between where the
mousedown and subsequent mousemove events occur. If no coor-
dinates are available (e.g., as with keyboard events), an optional by
argument should be specified. This transform respects the project
transform as well, restricting movement to the specified dimensions.
This transform is automatically instantiated for interval transforms,
enabling movement of brushed regions (Fig. 6(b)) or panning of the
visualization when scale extents initialize the selection (Fig. 7).

zoom(event, factor): Applies a scale factor, determined by the event,
to the spatial properties (or corresponding data fields) of backing
points. An optional factor should be specified, if it cannot be deter-
mined from the events (e.g., when the arrow keys are pressed).

nearest(): Computes a Voronoi decomposition, and augments the
selection’s event processing, such that the data value or visual element

"region": {"type": "interval",
 "project": {"channels": ["x"]}}

"region": {"type": "interval",
 "project": {"channels": ["y"]}}

(c) Single-dimension brush
"region": {"type": "interval", "translate": true}

(b) Moving the brush

"select": {
 "region": {"type": "interval"}
},
...
 "color": [
 {"if": "region", ...}
]
...

(a) Rectangular brush

Fig. 6. (a) Adding a rectangular brush, as an interval selection, which can be (b) moved with the translate transform (automatically instantiated by
the compiler) or (c) restricted to a single dimension with the project transform.

nearest the selection’s triggering event is selected (approximating a
Bubble Cursor [11]). Currently, the centroid of each mark instance is
used to calculate the Voronoi diagram but we plan to extend this oper-
ator to account for boundary points as well (e.g., rectangle vertices).

Transforms can be composed. For example, the toggle and nearest
transforms can be applied to a list selection to toggle the membership
of a point nearest the user’s mouse. Specifying a transform order is not
necessary as the compilation step ensures commutativity. All trans-
forms are first parsed, setting properties on an internal representation
of a selection, before they are compiled to produce event handling and
interaction logic. Moreover, additional transforms can be defined and
registered with the system, and then invoked within the specification.
In this way, the Vega-Lite language remains concise while ensuring
extensibility for custom interactive behaviors.

4.3 Selection-Driven Visual Encodings

Once selections are defined, they parameterize visual encodings to
make them interactive — visual encodings are automatically reeval-
uated as selections change. First, selections can be used to drive an
if-then-else chain of logic within an encoding channel defini-
tion. Each data tuple participating in the encoding is evaluated against
selection predicates in turn, and visual properties are set correspond-
ing to the first branch that evaluates to true. For example, as shown
in Fig. 5, the fill color of the scatterplot circles is determined by a data
field if they fall within the id selection, or set to grey otherwise.

Next, selected points can be explicitly materialized and used as in-
put data for other encodings within the specification. By default, this
applies a selection’s predicate against the data tuples (or visual ele-
ments) of the unit specification it is defined in. However, selections
can also be materialized against arbitrary datasets; a map transform
supports rewriting the predicate function in case of differing schemas.
Using selections in this way enables linked interactions, including dis-
playing tooltips or labels, and cross-filtering.

Besides serving as input data, a materialized selection can also de-
fine scale extents. Initializing a selection with scale extents offers a
concise way of specifying this behavior within the same unit specifica-
tion. For multi-view displays, selection names can be specified as the
domain or range of a particular channel’s scale. Doing so constructs

"select": {
 "region": {
 "type": "interval",
 "on": "[mousedown[event.shiftKey], mouseup] > mousemove"
 },
 "grid": {
 "type": "interval", "init": {"scales": true}, "zoom": true
 "translate": "[mousedown[!event.shiftKey], mouseup] > mousemove"
 }
}, ...
...

Fig. 7. Panning and zooming the scatterplot is achieved by first initial-
izing a list selection with the x and y scale domain, and then applying
translate and zoom. Alternate events are specified to prevent collision
with the brushing interaction, previously defined in Fig. 6.

interactions that manipulate viewports, including panning & zooming
(Fig. 7) and overview + detail (Fig. 9(a)).

In all three cases, selections can be composed using logical OR,
AND, and NOT operators. As previously discussed, single-point se-
lections offer an additional mechanism for parameterizing encodings.
Properties of the backing point can be directly referenced within the
specification, for example as part of a filter or compute expression,
or to determine a visual encoding channel without the overhead of an
if-then-else chain. For example, the position of the red rule in
Fig. 9(b) is set to the date value of the indexPt selection.

4.4 Disambiguating Composite Selections

Selections are defined within unit specifications, providing a default
context. For example, a selection’s events are registered on the unit’s
mark instances, and materializing a selection applies its predicate
against the unit’s input data by default. When units are composed,
however, selection definitions and applications become ambiguous.

Consider Fig. 8(a), which illustrates how a scatterplot matrix
(SPLOM) is constructed by repeating a unit specification. To brush,
we define an interval selection (region) within the unit, and use it to
perform a linking operation by parameterizing the color of the circle
marks. However, there are several ambiguities within this setup. Is
there one region for the overall visualization, or one per cell? If the
latter, which cell’s region should be used? This ambiguity recurs
when selections serve as input data or scale extents, and when selec-
tions share the same name across a layered or concatenated views.

Several strategies exist for resolving this ambiguity. By default, a
single selection is created across all views. With our SPLOM example,
this setting causes a single brush to be populated and shared across all
cells. When the user brushes in a cell, points that fall within it are
highlighted, and previous brushes are removed.

Users can specify an alternate ambiguity resolution when defining
a selection. These schemes all construct one instance of the selection
per view, and define which instances are used in determining inclusion.
For example, setting a selection to resolve to independent creates one
instance per view, and each unit uses only its own selection to deter-
mine inclusion. With our SPLOM example, this would produce the
interaction shown in Fig. 8(b). Each cell would display its own brush,
which would determine how only its points would be highlighted.

Selections can also be resolved to union or intersect. In these
cases, all instances of a selection are considered in concert: a point
falls within the overall selection if it is included in, respectively, at
least one of the constituents or all of them. More concretely, with the
SPLOM example, these settings would continue to produce one brush
per cell, and points would highlight when they lie within at least one
brush (union) or if they are within every brush (intersect) as shown in
Fig. 8(c, d). We also support union others and intersect others reso-
lutions, which function like their full counterparts except that a unit’s
own selection is not part of the inclusion determination. These lat-
ter methods support cross-filtering interactions, as in Figs. 10 & 11,
where interactions within a view should not filter itself.

5 THE VEGA-LITE COMPILER

The Vega-Lite compiler ingests a JSON specification and outputs a
lower-level Reactive Vega specification (also expressed as JSON).
There are two main challenges when compiling Vega-Lite to Vega.
First, there is no one-to-one correspondence between components of

{
 "region": {...,
 "resolve": "union"
 },

(c) Unioned Brushes

{
 "region": {...,
 "resolve": "independent"
 },

(b) Independent Brushes

{
 "repeat": {
 "row": ["Displacement", "Miles_per_Gallon"],
 "column": ["Horsepower", "Miles_per_Gallon"]
 },
 "spec": {
 "data": {"url": "data/cars.json"},
 "mark": "circle",
 "select": {
 "region": {
 "type": "interval", "translate": true, "zoom": true,
 "on": "[mousedown[event.shiftKey], mouseup] > mousemove",
 "resolve": "single"
 },
 "grid": {
 "type": "interval", "init": {"scales": true}, "zoom": true
 "translate": "[mousedown[!event.shiftKey], mouseup] > mousemove",
 "resolve": "single"
 }
 },
 "encoding": {
 "x": {
 "field": {"repeat": "column"}, "type": "quantitative"
 },
 "y": {
 "field": {"repeat": "row"}, "type": "quantitative"
 },
 "color": [
 {"if": "region", "field": "Origin", "type": "nominal"},
 {"value": "grey"}
],
 "size": {"value": 100}
 }
 }
}

(a) A Single Brush, and Panning & Zooming in a Scatterplot Matrix

{
 "region": {...,
 "resolve": "intersect"
 },

(d) Intersected Brushes

Fig. 8. (a) By adding a repeat operator, we compose the encoding and interactions from Fig. 7 into a scatterplot matrix. Users can brush, pan, and
zoom within each cell, and the others update in response. By default, composite selections are resolved to a single global selection: brushing in a
cell replaces previous brushes. However, the resolution scheme can be set to (b) independent, such that each cell uses its own brush; (c) union,
such that points highlight if they fall in any brush; and (d) intersect, such that points highlight only when they are within all brushes.

the Vega-Lite and Vega specifications. For instance, the compiler has
to synthesize a single Vega data source, with transforms for binning
and aggregation, from multiple Vega-Lite encoding definitions. Con-
versely, for a single definition of a Vega-Lite selection, the compiler
might generate multiple Vega signals, data sources, and even parame-
terize scale extents. Second, to facilitate rapid authoring of visualiza-
tions, Vega-Lite specifications omit lower-level details including scale
types and the properties of the visual elements such as the font size.
The compiler must resolve the resulting ambiguities.

To overcome these challenges, the compiler generates the output
Vega specification in four phases: parse ingests and disambiguates
the Vega-Lite specification; build creates the necessary internal rep-
resentations to map between Vega-Lite and Vega primitives; merge
optimizes this representation to remove redundancies; and finally, as-
semble compiles this representation into a Vega specification.

In the first step, the compiler parses a Vega-Lite specification to dis-
ambiguate it. It does so primarily by applying rules crafted to produce
perceptually effective visualizations. For example, if the color channel
is mapped to an nominal field, and the user has not specified a scale
domain, a categorical color palette is inferred. If the color is mapped
to a quantitative field, a sequential color palette is chosen instead.

Next, the compiler builds an internal representation of this unam-
biguous specification, consisting of a tree of models. Each model rep-
resents a unit or composite view produced by the algebraic operators
described in §3, and stores a series of components. Components are
data structures that loosely correspond to Vega primitives (such as data
sources, scales, and marks) and provide a mapping to Vega-Lite prim-
itives. Thus, they allow the compiler to bridge the gulf between the
two levels of abstraction. For example, the DataComponent de-
tails how the dataset should be loaded (e.g., is it embedded directly
in the specification, or should it be loaded from a URL, and in what
format), which fields should be aggregated or binned, and what filters
and derivation calculations should be performed.

In this step, compile-time selection transforms (those not parame-
terized by events) are applied to the requisite components. For exam-
ple, the project transform overrides the SelectionComponent’s
predicate function, while the nearest transform augments the
MarkComponent with a Voronoi diagram. This phase also con-
structs a special LayoutComponent to calculate suitable spatial di-
mensions for views. This component emits Vega data sources and
transforms to calculate a bottom-up layout at runtime.

Once the necessary components have been built, the compiler per-
forms a bottom-up traversal of the model tree to merge redundant com-
ponents. This step is critical for ensuring that the resultant Vega spec-
ification does not perform unnecessary computation that might hinder
interactive performance. To determine whether components can be
merged, the compiler serializes them using a hash code and compares

components of the same type. For example, when a scatterplot matrix
is specified using the repeat operator, merging ensures that we only
produce one scale for each row and column rather than two scales
per cell (2N versus 2N2 scales). Merging may introduce additional
components if doing so results in a more optimal representation. For
example, if multiple units within a composite specification load data
from the same URL, a new DataComponent is created to load the
data and the units are updated to inherit from it instead. This step also
unions scale domains and resolves SelectionComponents.

The final phase assembles the requisite Vega specification.
SelectionComponents, in particular, produce signals to capture
events and the necessary backing points, and list and intervals con-
struct data sources as well to hold multiple points. Each run-time se-
lection transform (i.e., those that are triggered by an event) generates
signals as well, and may augment the selection’s data source with data
transformations. For example, the translate transform adds a signal to
capture an “anchor” position, to determine where panning begins, and
another to calculate a “delta” from the anchor. These two signals then
feed transforms that offset the backing points stored in the selection’s
data source, thereby moving the brush or panning the scales.

6 EXAMPLE INTERACTIVE VISUALIZATIONS

Vega-Lite’s design is motivated by two goals: to enable rapid yet ex-
pressive specification of interactive visualizations, and to do so with
concise primitives that facilitate systematic enumeration and explo-
ration of design variations. In this section, we demonstrate how these
goals are addressed using a range of example interactive visualiza-
tions. To evaluate expressivity, we choose examples that cover Yi et
al.’s [31] taxonomy of interaction methods. The taxonomy identifies
seven categories of techniques: select, to mark items of interest; ex-
plore to examine subsets of the data; connect to highlight related items
within and across views; abstract/elaborate to vary the level of detail;
reconfigure to show different arrangements of the data; filter to show
elements conditionally; and, encode, to change the visual representa-
tions used. To assess authoring speed, we compare our specifications
against canonical Reactive Vega examples [22, 23, 26]. Where appli-
cable, we also show how construction of our examples can be system-
atically varied to explore alternate points in the design space.

Select. Fig. 5(a) provides the full Vega-Lite specification for a scat-
terplot where users can mark individual points of interest. It includes
the simplest definition of a selection — a name and type — and illus-
trates how the mark color is parameterized by if-then-else logic.

Modifying a single property, type, as in Fig. 5(b), allows users to
mark multiple points (toggle is automatically instantiated by the com-
piler, but we explicitly specify it in the figure for clarity). We can
instead add project (Fig. 5(d)) such that marking a single point of in-
terest highlights all other points that share particular data values — a

{
 "data": {"url": "data/stocks.csv"},
 "layers": [{
 "transform": {
 "lookup": {
 "index": {"selection": "indexPt", "keys": ["symbol"]}
 },
 "calculate": [{
 "field": "indexed_price",
 "expr": "(datum.price - datum.index.price)/datum.index.price"
 }]
 },
 "select": {
 "indexPt": {
 "type": "point", "on": "mousemove",
 "project": {"fields": ["date"]},
 "nearest": true
 }
 },
 "mark": "line",
 "encoding": {
 "x": {"field": "date", "type": "temporal", ...},
 "y": {"field": "indexed_price", "type": "quantitative", ...},
 "color": {"field": "symbol", "type": "nominal"}
 }
 }, {
 "mark": "rule",
 "encoding": {
 "x": {"selection": "indexPt.date", "type": "temporal"},
 "color": {"value": "red"}
 }
 }]
}

{
 "vconcat": [
 {
 "data": {"url": "data/sp500.csv","formatType": "csv"},
 "mark": "area",
 "select": {
 "region": {
 "type": "interval",
 "project": {"channels": ["x"]}
 }
 },
 "encoding": {
 "x": {"field": "date", "type": "temporal", ...},
 "y": {"field": "price", "type": "quantitative", ...}
 }
 },
 {
 "data": {"url": "data/sp500.csv","formatType": "csv"},
 "mark": "area",
 "encoding": {
 "x": {
 "field": "date", "type": "temporal", ...,
 "scale": {"domain": {"selection": "region"}}
 },
 "y": {"field": "price","type": "quantitative"}
 }
 }
]
}

(a) Overview+Detail (b) Index Chart

Fig. 9. (a) An overview+detail visualization is constructed by concatenating two unit specifications, with a selection in the first one parameterizing
the x scale domain in the second. (b) An index chart uses a point selection to renormalize data based on the index point nearest the mouse cursor.

connect-type interaction. Such changes to the specification are not
mutually exclusive, and can be composed as shown in Fig. 5(e).

By using the interval type, users can mark items of interest within a
continuous region. As shown in Fig. 6(a), the compiler automatically
adds a rectangle mark to depict the selection, and instantiates trans-
late to allow it to be repositioned (Fig. 6(b)). In this context, project
restricts the interval to a single dimension (Fig. 6(c)).

These specifications are an order of magnitude more concise than
their Vega counterparts. With Vega-Lite, users need only specify the
semantics of their interaction and the compiler fills in appropriate de-
fault values. For example, by default, individual points are selected on
click and multiple points on shift-click. Users can override these de-
faults, sometimes producing a qualitatively different user experience.
For example, one can instead update selections on mouseover to
produce a “paint brush” interaction, as in Fig. 5(c). In contrast, with
Vega, users need to manually author all the components of an interac-
tion technique, including determining whether event properties need
to be passed through scale inversions, creating necessary backing data
structures, and adding marks to represent a brush component.

Explore & Encode. Vega-Lite’s selections also enable accretive
design of interactions. Consider our previous example of brushing a
scatterplot. We can define an additional interval selection and initialize
it using scales (Fig. 7). The compiler populates the selection with the x
and y scale domains, parameterizes them to use it, and instantiates the
translate and zoom transforms. Users can now brush, pan and zoom
the scatterplot. However, the default definitions of the two interval
selections collide: dragging produces a brush and pans the plot. This
example illustrates that concise methods for overriding defaults can
not only be useful (as in Fig. 5(c)) but also necessary. We override
the default events that trigger the two interactions using Vega’s event
selector syntax [23]. As Fig. 7 shows, we specify that brushing only
occurs when the user drags with the shift key pressed.

The Vega-Lite specification for panning and zooming is, once again,
more succinct than the corresponding Vega example. However, it is
more interesting to compare the latter against the output specification
produced by the Vega-Lite compiler. The Vega example requires users

{
 "repeat": {"column": ["hour", "delay", "distance"]},
 "spec": {
 "select": {
 "region": {
 "type": "interval",
 "project": {"channels": ["x"]},
 "resolve": "intersect_others"
 }
 },
 "data": {"url": "data/flights-2k.json"},
 "transform": {
 "filterWith": "region",
 ...
 },
 "mark": "bar",
 "encoding": {
 "x": {"field": {"repeat": "column"}, "bin": true, ...},
 "y": {"aggregate": "count", "field": "*", ...},
 "color": {"value": "steelblue"}
 }
 }
}

Fig. 10. An interval selection, resolved to intersect others, drives a cross
filtering interaction. Brushing in one histogram filters and reaggregates
the data in the others.

to manually specify their initial scale extents when defining the inter-
action. On the other hand, to enable data-driven initialization of in-
terval selections, the Vega-Lite output calculates scale extents as part
of a derived dataset in the output specification, with additional trans-
formations to offset these calculations for the interaction. Such a con-
struction is not idiomatic Vega, and would be unintuitive for users to
construct manually. Thus, Vega-Lite’s higher-level approach not only
offers more rapid specification, but it can also enable interactions that
a user may not realize are expressible with lower-level representations.

Moreover, by enabling this interaction through composable prim-
itives (rather than a single, specific “pan and zoom” operator [4]),
Vega-Lite also facilitates exploring related interactions in the design
space. For example, using the project transform, we can author a sep-
arate selection for the x and y scales each, and selectively enable the
translate and zoom transforms. While such a combination may not be
desirable — panning only one scale while zooming the other — Vega-
Lite’s selections nevertheless allow us to systematically identify it as
a possible design. Similarly, we could project over the color or size
channels, thereby allowing users to interactively vary the mappings
specified by these scales. For example, “panning” a heatmap’s color
legend to shift the data values considered high and low density. If
the selections were defined over the visual range, users could instead
shift the colors used in a sequential color scale. However, while such
encode-type techniques are expressible in Vega-Lite, they do not cur-
rently produce valid Vega specifications as Vega does not yet support
interactive legends. Thus, events do not fire over them.

Connect. We can wrap our previous example, from Fig. 7, in a
repeat operator to construct a scatterplot matrix (SPLOM) as shown
in Fig. 8. With no further modifications, all our previous interactions
now work within each cell of the SPLOM and are synchronized across
the others. For example, dragging pans not only the particular cell
the user is in, but related cells along shared axes. Similarly, dragging
with the shift key pressed produces a brush in the current cell, and
highlights points across all cells that fall within it.

As its name suggests, the repeat operator creates one instance of the
child specification for the given parameters. By default, to provide a
consistent experience when moving from a unit to a composite spec-
ification, Vega-Lite creates a single instance of the selection that is
populated and shared between all repeated instances (Fig. 8(a)). With
the resolve property, users can specify alternate disambiguation meth-
ods including creating an independent brush for each cell, unioning
the brushes, or intersecting them (Fig. 8(b, c, d) respectively). If se-
lections are initialized by scales or parameterize them, only a single
selection is supported for consistency with the composition algebra.

With this example, it is more instructive to compare the amount of
effort required, with Vega-Lite and Vega, to move from a single inter-
active scatterplot to an interactive SPLOM. While the Vega specifica-
tions for the two are broadly similar, the latter requires an extra level
of indirection to identify the specific cell a user is interacting in, and
to ensure that the correct data values are used to determine inclusion

{
 "repeat": {"column": ["hour", "delay", "distance"]},
 "spec": {
 "layers": [{
 "data": {"url": "data/flights-2k.json"},
 "transform": {
 "calculate": [{"field": "hour", "expr": "hours(datum.date)"}]
 },
 "select": {
 "selectedBins": {
 "type": "point", "on": "mousemove",
 "project": {"channels": ["x"]}
 }
 },
 "mark": "bar",
 "encoding": {
 "x": {"field": {"repeat": "column"}, "type": "Q", "bin": true},
 "y": {"aggregate": "count", "field": "*", "type": "Q"},
 "color": {"value": "steelblue"}
 }
 }, {
 "data": {"url": "data/flights-2k.json"},
 "transform": {
 "calculate": [{"field": "hour", "expr": "hours(datum.date)"}],
 "filterWith": "selectedBins"
 },
 "mark": "bar",
 "encoding": {
 "x": {"field": {"repeat": "column"}, "type": "Q", "bin": true},
 "y": {"aggregate": "count", "field": "*", "type": "Q"},
 "color": {"value": "goldenrod"}
 }
 }]
 }
}

(a) Single-Point Layered Cross Filtering
{...,
 "select": {
 "selectedBins": {
 "type": "set",
 "on": "click", ...
 }
 },...
}

(b) Multi-Point Layered Cross Filtering

{...,
 "select": {
 "selectedBins": {
 "type": "interval",
 "translate": true,
 ...
 }
 },...
} (c) Continuous Layered Cross Filtering

Fig. 11. Layered cross filtering interaction of binned histograms by (a) repeating a unit specification with a point selection that is materialized to
serve as the input data for the second layer. When a user hovers over a bar in one histogram, bars in the others highlight to depict the distributions
of the selected bin. By varying the selection type, users can (b) select multiple bins on shift-click or (c) brush a continuous interval.

within the brush. In Vega-Lite, this complexity is succinctly encapsu-
lated by the resolve keyword which, as discussed, can be systemati-
cally varied to explore alternatives. Mimicing Vega-Lite’s union and
intersect behaviors is not trivial, and requires unidiomatic Vega once
more. Users cannot simply duplicate the interaction logic for each cell
manually, as the dimensions of the SPLOM are determined by data.

Abstract/Elaborate. Thus far, selections have parameterized scale
extents through the initialization step. Previous examples have demon-
strated how visualized data can be abstracted/elaborated via zooming.
In Fig. 9(a), we show how a selection defined in one unit specification
can be explicitly given as the scale domain of another in a concatenated
display. Doing so creates an overview + detail interaction: brushing in
the top (overview) chart displays only the brushed items at a higher
resolution in the larger (detail) chart at the bottom.

Reconfigure. Fig. 9(b), uses a point selection to interactively nor-
malize stock price time series data as the user moves their mouse
across the chart. We apply the nearest transform, which calculates
a Voronoi tessellation to accelerate the selection. By projecting the
date field, the point selection represents both a single data value as
well a set of values that share the selected date. Thus, we can refer-
ence the point selection directly, to position the red vertical rule, and
also materialize it as part of the lookup data transform.

Filter. As selections provide a predicate function, it is trivial to use
them to filter a dataset. Fig. 10, for example, presents a concise spec-
ification to enable filtering across three distinct binned histograms. It
uses a repeat operator with a single-dimensional interval selection over
the bins set to intersect others. The filterWith data transform applies
the selection against the backing datasets such that only data values
that fall within the selection are displayed. Thus, as the user brushes in
one histogram, the datasets that drive each of the other two are filtered,
the data values are re-aggregated, and the bars rise and fall. As with
other interval selections, the Vega-Lite compiler automatically instan-
tiates the translate transform, allowing users to drag brushes around
rather than having to reselect them from scratch.

The filterWith data transform can also be used to materialize the
selection as an input dataset for secondary views. For instance, one
drawback of cross-filtering as in Fig. 10 is that users only see the se-
lected values, and lose the context of the overall dataset. Instead of
applying the selection back onto the input dataset, we can instead ma-
terialize it as an overlay (Fig. 11). Now, as the user brushes in one
histogram, bars highlight to visualize the proportion of the overall dis-
tribution that falls within the brushed region(s). With this setup, it is
necessary to change the selection’s resolution to simply intersect, such
that bars in the brushed plot also highlight during the interaction.

7 DISCUSSION

The examples demonstrate that Vega-Lite specifications are more con-
cise than those of the lower-level Vega language, and yet are suf-

ficiently expressive to cover an interactive visualization taxonomy.
Moreover, we have shown how primitives can be systematically enu-
merated to facilitate exploration of alternative designs. Nevertheless,
we identify two classes of limitations that currently exist.

First, there are limitations that are a result of how our formal model
has been reified in the current Vega-Lite implementation. In particu-
lar, components that are determined at compile-time cannot be inter-
actively manipulated. For example, a selection cannot specify alter-
nate fields to bin or aggregate over. Similarly, more complex selec-
tion types (e.g., lasso selections) cannot be expressed as the Vega-Lite
system does not support arbitrary path marks. Such limitations can
be addressed with future versions of Vega-Lite, or alternate systems
that instantiate its grammar. For example, rather than a compiler, in-
teractions could parameterize the entirety of a specification within a
Vega-Lite interpreter.

The second class of limitations are inherent to the model itself. As a
higher-level grammar, our model favors conciseness over expressivity.
The available primitives ensure that common methods can be rapidly
specified, with sufficient composition to enable more custom behav-
iors as well. However, highly specialized techniques, such as query-
ing time-series data via relaxed selections [14], cannot be expressed
by default. Fortunately, our formulation of selections, which decouple
backing points from selected points via a predicate function, provide
a useful abstraction for extending our base semantics with new, cus-
tom transforms. For example, the aforementioned technique could be
encapsulated in a relax transform applicable to list selections.

While our selection abstraction supports interactive linking of
marks, our view algebra does not yet provide means of visually link-
ing marks across views (e.g., as in the Domino system [10]). Our view
algebra might be extended with support for connecting corresponding
marks. For example, points in repeated dot plots could be visually
linked using line segments to produce a parallel coordinates display.

An early version of Vega-Lite is used to automatically recommend
static plots as part of the Voyager browser [30]. Voyager leverages
perceptual effectiveness criteria [2, 8, 16] to rank candidate visual en-
codings. One promising avenue for future work is to develop models
and techniques to analogously recommend suitable interaction meth-
ods for given visualizations and underlying data types.

Vega-Lite is an open source system available at http://vega.
github.io/vega-lite/. By offering a multi-view grammar of
graphics tightly integrated with a grammar of interaction, Vega-Lite
facilitates rapid exploration of design variations. Ultimately, we hope
that it enables analysts to produce and modify interactive graphics with
the same ease with which they currently construct static plots.

ACKNOWLEDGMENTS

This work was supported by an SAP Stanford Graduate Fellowship,
the Intel Big Data ISTC, the Moore Foundation, and DARPA XDATA.

http://vega.github.io/vega-lite/
http://vega.github.io/vega-lite/

REFERENCES

[1] R. A. Becker, W. S. Cleveland, and M.-J. Shyu. The visual design and

control of trellis display. Journal of computational and Graphical Statis-

tics, 5(2):123–155, 1996.

[2] J. Bertin. Semiology of graphics: diagrams, networks, maps. University

of Wisconsin press, 1983.

[3] M. Bostock and J. Heer. Protovis: A graphical toolkit for visualization.

IEEE Trans. Visualization & Comp. Graphics, 15(6):1121–1128, 2009.

[4] M. Bostock, V. Ogievetsky, and J. Heer. D3: Data-Driven Documents.

IEEE Trans. Visualization & Comp. Graphics, 17(12):2301–2309, 2011.

[5] Brunel Visualization. https://developer.ibm.com/open/

brunel-visualization/, June 2016.

[6] H. Chen. Compound brushing [dynamic data visualization]. In Infor-

mation Visualization, 2003. INFOVIS 2003. IEEE Symposium on, pages

181–188. IEEE, 2003.

[7] J. Choi, D. G. Park, Y. L. Wong, E. Fisher, and N. Elmqvist. Visdock:

A toolkit for cross-cutting interactions in visualization. Visualization and

Computer Graphics, IEEE Transactions on, 21(9):1087–1100, 2015.

[8] W. S. Cleveland and R. McGill. Graphical perception: Theory, exper-

imentation, and application to the development of graphical methods.

Journal of the American Statistical Association, 79(387):531–554, 1984.

[9] M. Derthick, J. Kolojejchick, and S. F. Roth. An interactive visual query

environment for exploring data. In Proceedings of the 10th annual ACM

symposium on User interface software and technology, pages 189–198.

ACM, 1997.

[10] S. Gratzl, N. Gehlenborg, A. Lex, H. Pfister, and M. Streit. Domino:

Extracting, comparing, and manipulating subsets across multiple tabular

datasets. IEEE Transactions on Visualization and Computer Graphics,

20(12):2023–2032, 2014.

[11] T. Grossman and R. Balakrishnan. The bubble cursor: Enhancing tar-

get acquisition by dynamic resizing of the cursor’s activation area. In

Proceedings of the SIGCHI Conference on Human Factors in Computing

Systems, pages 281–290. ACM, 2005.

[12] J. Heer, M. Agrawala, and W. Willett. Generalized selection via inter-

active query relaxation. In Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems, pages 959–968. ACM, 2008.

[13] J. Heer and B. Shneiderman. Interactive dynamics for visual analysis.

Communications of the ACM, 55(4):45–54, 2012.

[14] C. Holz and S. Feiner. Relaxed selection techniques for querying time-

series graphs. In Proceedings of the 22nd annual ACM symposium on

User interface software and technology, pages 213–222. ACM, 2009.

[15] M. Livny, R. Ramakrishnan, K. Beyer, G. Chen, D. Donjerkovic,

S. Lawande, J. Myllymaki, and K. Wenger. Devise: integrated query-

ing and visual exploration of large datasets. ACM SIGMOD Record,

26(2):301–312, 1997.

[16] J. Mackinlay. Automating the design of graphical presentations of rela-

tional information. Acm Transactions On Graphics (Tog), 5(2):110–141,

1986.

[17] C. North and B. Shneiderman. Snap-together visualization: a user in-

terface for coordinating visualizations via relational schemata. In Pro-

ceedings of the working conference on Advanced visual interfaces, pages

128–135. ACM, 2000.

[18] C. Olsten, M. Stonebraker, A. Aiken, and J. M. Hellerstein. Viqing: Vi-

sual interactive querying. In Visual Languages, 1998. Proceedings. 1998

IEEE Symposium on, pages 162–169. IEEE, 1998.

[19] W. A. Pike, J. Stasko, R. Chang, and T. A. O’Connell. The science of

interaction. Information Visualization, 8(4):263–274, 2009.

[20] ggvis 0.4 overview. http://ggvis.rstudio.com, June 2016.

[21] Shiny by RStudio. http://shiny.rstudio.com, June 2016.

[22] A. Satyanarayan, R. Russell, J. Hoffswell, and J. Heer. Reactive Vega: A

streaming dataflow architecture for declarative interactive visualization.

IEEE Trans. Visualization & Comp. Graphics (Proc. InfoVis), 2016.

[23] A. Satyanarayan, K. Wongsuphasawat, and J. Heer. Declarative inter-

action design for data visualization. In Proceedings of the 27th annual

ACM symposium on User interface software and technology, pages 669–

678. ACM, 2014.

[24] C. Stolte, D. Tang, and P. Hanrahan. Polaris: A system for query, analysis,

and visualization of multidimensional relational databases. IEEE Trans.

Visualization & Comp. Graphics, 8(1):52–65, 2002.

[25] D. F. Swayne, D. T. Lang, A. Buja, and D. Cook. Ggobi: evolving

from xgobi into an extensible framework for interactive data visualiza-

tion. Computational Statistics & Data Analysis, 43(4):423–444, 2003.

[26] Online Vega Editor. http://vega.github.io/vega-editor/,

June 2016.

[27] H. Wickham. A layered grammar of graphics. Journal of Computational

and Graphical Statistics, 19(1):3–28, 2010.

[28] A. Wilhelm. User interaction at various levels of data displays. Compu-

tational statistics & data analysis, 43(4):471–494, 2003.

[29] L. Wilkinson. The Grammar of Graphics. Springer, 2 edition, 2005.

[30] K. Wongsuphasawat, D. Moritz, A. Anand, J. Mackinlay, B. Howe, and

J. Heer. Voyager: Exploratory Analysis via Faceted Browsing of Visual-

ization Recommendations. IEEE Trans. Visualization & Comp. Graphics,

2015.

[31] J. S. Yi, Y. ah Kang, J. T. Stasko, and J. A. Jacko. Toward a deeper un-

derstanding of the role of interaction in information visualization. IEEE

Transactions on Visualization and Computer Graphics, 13(6):1224–

1231, 2007.

https://developer.ibm.com/open/brunel-visualization/
https://developer.ibm.com/open/brunel-visualization/
http://ggvis.rstudio.com
http://shiny.rstudio.com
http://vega.github.io/vega-editor/

	Introduction
	Related Work
	Grammar-Based Visual Encoding
	Specifying Interactions in Visualization Systems
	Interactive Selection and Querying

	The Vega-Lite Grammar of Graphics
	Unit Specification
	View Composition Algebra
	Layer
	Concatenation
	Facet
	Repeat

	Nested Views

	The Vega-Lite Grammar of Interaction
	Selection Components
	Selection Transforms
	Selection-Driven Visual Encodings
	Disambiguating Composite Selections

	The Vega-Lite Compiler
	Example Interactive Visualizations
	Discussion

