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 Vegard’s law has been used extensively in mineralogy, metallurgy and 

materials science for the past six decades. According to the law, unit cell parameters 

should vary linearly with composition for a continuous substitutional solid solution in 

which atoms or ions that substitute for each other are randomly distributed. Although 

the law was postulated on empirical evidence, several cases of both positive and 

negative deviations from this law have been documented. Its theoretical foundations 

have not been critically explored. Presented in this communication is an analysis of 

the law within the framework of solution thermodynamics. It is shown that the 

deviation from Vegard’s law is expected even for thermodynamically ideal solutions 

when there is a significant difference in lattice parameters of the pure components. 

The law should be reclassified as an approximation valid for specific conditions. The 

approximation is valid for ideal solutions when the lattice parameters of the pure 

components differ by less than 5 %. For solid solutions with positive deviations from 

ideality, there will always be positive deviations from Vegard’s law. For solid 

solutions with moderately negative deviations from ideality, positive deviation from 

linearity of lattice parameters caused by size mismatch can be compensated for by the 

attractive interaction between the components, resulting in compliance with Vegard’s 

law. 
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1. Introduction 

As part of a critical review of fundamental concepts in geochemistry, 

metallurgy and materials science and systematic revision of the undergraduate 

curriculum, the significance of Vegard’s law [1−3] is examined. The law [4−5] states 

that the crystallographic parameters of a continuous substitutional solid solution vary 

linearly with concentration at constant temperature when the nature of the bonding is 

similar in the constituent phases. It is understood in context that the substituting atoms 

are statistically distributed. The lattice parameter is controlled by the relative size of 

the atoms or species exchanged.  The law is claimed to be valid for ionic salts and 

compounds. This law has been used widely for density calculations for solid solutions 

and to estimate composition of solid solutions from diffraction data [6]. The simplest 

mathematical expression for Vegard’s law for a binary solid solution A-B is: 

a  =  (1−X) +   (X)       (1) oaA
oaB

where X = XB  is the mole fraction of component B and   and  are the lattice 

parameters of pure components A and B respectively.   

oaA
oaB

  

2. Thermodynamic ideal solutions 
 The simplest method to test the fundamental nature of Vegard’s law is to 

consider an ideal substitutional solid solution A-B with cubic structure. In an ideal 

solution, atoms are randomly distributed and the thermodynamic excess properties of 

mixing, such as   ΔVM and ΔHM are zero. The molar volume and the unit cell volume 

are therefore linear functions of mole fraction. Since the lattice parameter (a) is 

related to cell volume (V) by the relation, V = a3 for a cubic structure, linear variation 

of cell volume should imply nonlinear variation of lattice parameter, even for an ideal 

solution.  
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To explore the nature of the deviation, we consider pure component A with 

lattice parameter = 8.0 Å and cell volume = 512.0 ÅoaA
oVA

3. Five cases are 

considered, where the lattice parameter of B is increased in steps of 5 %; the 

maximum difference being 20 %. 

In case (1) lattice parameter of pure B  (1) = 8.0 Å and  (1) = 512.000 ÅoaB
oVB

3

In case (2) lattice parameter of pure B  (2) = 8.4 Å and  (2) = 592.704 ÅoaB
oVB

3

In case (3) lattice parameter of pure B  (3) = 8.8 Å and  (3) = 681.472 ÅoaB
oVB

3

In case (4) lattice parameter of pure B  (4) = 9.2 Å and  (4) = 778.688 ÅoaB
oVB

3

In case (5) lattice parameter of pure B  (5) = 9.6 Å and  (5) = 884.736 ÅoaB
oVB

3

 

Assuming an ideal solution of A-B, in which unit cell volume is a linear 

function of mole fraction, the lattice parameter is calculated as a function of 

composition for the five cases. Linear variation of cell volume with mole fraction is 

sometime referred to as Retger’s law. The results are displayed in Fig. 1. It is seen 

that even for an ideal solution positive deviations from Vegard’s law exist; deviations 

increasing with difference in lattice parameters of A and B. Mathematically both 

Retger’s law and Vegard’s law can not be satisfied simultaneously. Hence, Vegard’s 

law does not have general validity. It is an approximation applicable to ideal solutions 

only when the difference in atomic radii or lattice parameters of the two components 

forming a solid solution is small (less than 5 %). As a corollary it is seen that small 

positive deviation from Vegard’s law is not necessarily indicative of non-ideal 

behavior of the solution. 

To further analyze the nature of deviation from Vegard’s law, the deviation Δa 

from Vegard’s law is plotted as a function of composition in Fig. 2. With increasing 
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difference in lattice parameters of the end members, the deviations not only increase, 

but also become asymmetric function of composition. The composition corresponding 

to maximum deviation shifts towards the component with the lower lattice parameter. 

It has been suggested in the literature that deviations from Vegard’s law can 

be represented by a quadratic expression [7]:  

a  =  (1−X) +   (X) + X (1−X)δ      (2) oaA
oaB

where the first two terms on the right-hand side represent Vegard’s law and the third 

term represents deviation from the law. The parameter δ is to be considered as a 

constant characteristic of a system at constant temperature and pressure. The deviation 

term is similar to the expression for enthalpy or excess Gibbs energy of mixing for a 

regular solution. Eq. (2) suggests symmetric deviation from Vegard’s law. For 

relatively large difference in the end-member lattice parameters, Fig. 2 shows 

asymmetric deviation. Hence, even the quadratic expression does not accurately 

represent the variation of lattice parameter with composition for an ideal solution with 

linear variation of molar or cell volume with mole fraction. Hence composition 

dependence of the parameter δ has to be considered. 

For the analysis of the asymmetry, the variation of the parameter        

δ  = Δa /X (1−X) with composition is shown Fig. 3. For small difference (up to 10 %, 

case 2) in the lattice parameters of pure components, δ can be considered as 

independent of composition within the accuracy of measurement (0.05 %). For larger 

differences, composition dependence of δ must be considered. A linear dependence of 

δ on composition appears to be adequate: δ  =  δ '(1−X) +δ “(X). This results in a cubic 

expression for the variation of lattice parameter with composition for an ideal 

solution: 

a  =  (1−X) +   (X) + δ oaA
oaB

' X (1−X)2 + δ " (1−X) X 2     (3) 
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Although for the cases considered here values of both δ 'and δ " have the same sign, in 

principle they can have different sign resulting in different type of deviation from 

Vegard’s law in the two terminal regions of the solid solution. Such cases will be 

discussed further with reference to non-ideal solutions. Accuracy of lattice parameter 

determination rarely warrants an expression of higher order than cubic for 

representation of data. 

 

3. Non-ideal solutions 
When the solid solution exhibits deviations from ideality (i.e. non-linear 

variation of molar or cell volume with composition), additional contributions come 

into play, which may either diminish or accentuate the deviation from Vegard’s law. 

Negative deviation from ideality, ΔVM < 0, can partly compensate for the positive 

deviation from Vegard’s law caused by size mismatch. Enhanced positive deviation 

from Vegard’s law will result when ΔVM > 0. In such cases, the energy of interaction 

between A and B atoms is generally greater than the mean value of A-A and B-B 

interactions.  

Consider case (5) with 20 % difference in lattice parameters of components A 

and B and let the solution be non-ideal with cell volume given by: 

V =  (1−X) +  (X) + X (1−X) Ω       (4) oVA
oVB

The parameter Ω is a regular solution type constant for the system characterizing 

ΔVcell.  The lattice parameter of the cubic unit cell can be obtained from cell volume;  

a  = V1/3. The results obtained for different values of Ω are shown in Fig. 4. When Ω is 

positive, the positive deviation from Vegard’s law increases. When Ω = −67, the 

positive deviation from Vegard’s law caused by size mismatch is fully compensated 

for by the non-ideality of the solution (attractive interaction between A and B). With 
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increasing negative values of Ω, negative deviations from Vegard’s law are 

encountered. Conformity to Vegard’s law is not an indication of ideal solution 

behavior. For non-ideal solutions, Vegard’s law is valid only when negative values of 

ΔVcell compensate for positive deviation caused by lattice parameter difference. The 

value of Ω for a non-ideal solution that will produce exact correspondence to 

Vegard’s law is given by: 

Ω = − ( 3 oaA (1−X) + 3 oaB (X)) − ( 3 oaA + 3oaB ) + 3  (  (1−X) +  (X)) (5) oaA
oaB

oaA
oaB

In some systems with a miscibility gap it is difficult to determine 

experimentally the variation of lattice parameter with composition across the full 

range at room temperature. Vegard’s law is often invoked to determine the binodal 

(phase boundary) composition from XRD data. Since systems exhibiting a miscibility 

gap are usually associated with positive deviations from ideality from thermodynamic 

point of view, they are expected to show significant positive deviation from Vegard’s 

law. Hence the estimate of phase boundary composition from XRD data using 

Vegard’s law is likely to be inaccurate.                                                                                                         

 Equation (4) with regular solution type expression for ΔVcell can give either 

positive or negative deviations from Vegard’s law. When both positive and negative 

deviations occur simultaneously in the same system, producing S-shaped variation of 

lattice parameter with composition, Eq. (4) must be replaced by; 

V =  (1−X) +  (X) + ΩoVA
oVB

 ' X (1−X)2 + Ω " (1−X) X 2    (6) 

When Ω ' and Ω "have different signs, cell volume and consequently the lattice 

parameter will exhibit different types of deviation from linearity near the two terminal 

compositions. This is illustrated in Fig. 5.  Such behavior is encountered in 

pseudobinary semiconductor alloys such as A1-xBBxC (cation alloy) or AC1-xDx (anion 

alloy) [8]. Presence of short range order in the solid solution in certain composition 

 6



range, change in the nature of bonding with composition and distortion in bond angles 

can give rise to such complex behavior, with different sign for the excess 

thermodynamic mixing properties in the two terminal regions. 

For non cubic crystal systems there is no unique method for converting the 

cell volume into lattice parameters. Often individual parameters vary nonlinearly with 

composition in such a way as to give nearly linear variation of cell volume with 

composition. 

  

4. Conclusions 
Lack of a sound theoretical basis and experimentally observed deviations in 

several systems suggests that Vegard’s law should be downgraded to an 

approximation. It is not a rule or generalization which describes the variation of lattice 

parameters within the limits of experimental uncertainty even for ideal substitutional 

solid solutions with statistical distribution of atoms. Vegard’s law is neither universal 

as the laws of thermodynamics nor applicable in an idealized context as Raoult’s law. 

The analysis of Vegard’s law presented in this article provides a holistic integration of 

concepts in crystallography and thermodynamics. 
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Fig. 1 Demonstration of deviation from Vegard’s law for an ideal binary solid 

solution A-B with cubic structure. The cell volume varies linearly with composition in 

all cases. 
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Fig. 2 Deviations from Vegard’s law (Δa) as a function of composition for an ideal 

solid solution A-B for different cases.  
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Fig. 3 Variation of the deviation parameter  δ = Δa /X (1-X) for an ideal solution with 

composition for different cases.  
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Fig. 4 Variation of the lattice parameter of a non-ideal solution with composition for 

various values of Ω =ΔV / X (1-X) at constant temperature and pressure. 
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Fig. 5 Demonstration of positive and negative deviations at the two ends of the 

composition scale when Ω ' and Ω” have different signs. 
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