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Abstract: This work focuses on the problem of non-contact measurement for vegetables in agricultural
automation. The application of computer vision in assisted agricultural production significantly
improves work efficiency due to the rapid development of information technology and artificial
intelligence. Based on object detection and stereo cameras, this paper proposes an intelligent method
for vegetable recognition and size estimation. The method obtains colorful images and depth maps
with a binocular stereo camera. Then detection networks classify four kinds of common vegetables
(cucumber, eggplant, tomato and pepper) and locate six points for each object. Finally, the size
of vegetables is calculated using the pixel position and depth of keypoints. Experimental results
show that the proposed method can classify four kinds of common vegetables within 60 cm and
accurately estimate their diameter and length. The work provides an innovative idea for solving the
vegetable’s non-contact measurement problems and can promote the application of computer vision
in agricultural automation.

Keywords: vegetable size measurement; computer vision; stereo camera; keypoints detection

1. Introduction

Agricultural automation significantly improves the efficiency of agricultural produc-
tion through IntelliSense and automation technology. In recent years, computer vision (CV)
and deep learning have been widely applied in agricultural production processes (e.g.,
plant disease recognition, weed detection, yield prediction and non-contact size estima-
tion). Producers can obtain many parameters and information about the crops through
images with the help of CV. Compared with manual measurement, automatic measure-
ment is a method with unified standards, high efficiency, and good real-time performance.
Therefore, non-contact crop measurement based on CV and deep learning is an important
research direction.

Early vision-based detection methods mainly utilized surface features such as color
and lines to simply describe the crops’ quality [1,2]. They had not fully exploited the
deeper-level information hidden in the images. It has become easier to learn the image
structural features due to the development of deep learning. Researchers gradually tend
to detect the crops’ quality using learning-based method. Dang [3] proposed a fruit size
detection method based on image processing, which can estimate the diameter of circular
fruit using natural images. Vivek [4] proposed a method to estimate the volume and mass of
axi-symmetric fruits based on image processing. Sa [5] established a fruit detection system
named DeepFruits, which combines the detection results of color and near-infrared images
to achieve good results. In [6], Rabby proposed a fruit classification and measurement
method based on edge detection, which can briefly describe the color and size of fruits. A
mango size estimation method using Red-Green-Blue (RGB) image and depth camera was
proposed in [7], which used the bounding box to measure the size of mangoes. Phate [8]
developed a computer vision method to measure the sweet lime using dimensional analysis
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and normal regression. Sobol [9] used CIE L*a*b* method to evaluate the color coefficients
of fried potato products. In [10], Ashtiani used multi-linear regression and neural networks
to measure the size of almonds.

Existing vegetable and fruit size measurement methods are mainly based on simple
image processing, such as edge detection [3,6] and bounding box [7]. Though these methods
work sufficiently on regularly shaped fruits, working on complex shapes is not easy. In
addition, these methods usually require the distance between the camera and the fruit
as a priori information. They are only suitable for the fruits classification after picking.
Some works introduce the depth value to complete the size measurement of the fruit on
the tree [7]. However, these methods only work on a single type of fruit [7,8,10].

Keypoints detection was originally proposed for human pose estimation [11]. Some
recent work has proved that it has a good effect in agricultural automation. Rong [12]
proposed a tomato peduncle detection method for autonomous harvesting based on an
improved you only look once (YOLO) method and RGB-D camera. Sun [13] proposed a
multi-level feature fusion method for citrus bearing branch keypoint detection. In [14],
Weyler proposed a leaf keypoint detection method to estimate the count of sugar beet
leaves. Gan [15] developed a method to detect social behaviors among preweaning piglets
using keypoint-based spatial and temporal features. Suo [16] proposed a stereo keypoint
detection method to estimate the fish posture and length.

Keypoint detection is usually used to locate the stalk in automatic picking [12,13],
guiding the robot to harvest fruits automatically. However, post-processing is still necessary
to estimate the fruits’ size. Similar to human pose estimation, keypoint detection is usually
used to recognize the animals’ postures and behaviors automatically in aquaculture [15,16].
In [16], Suo combined deep neural networks and binocular cameras to locate 3D coordinates
of fishes’ keypoints, and finally estimated their length successfully. However, vegetable
size estimation is another problem. Due to self-occlusion problems, binocular cameras
will lose the depth of the object’s edge when measuring vegetables, and it worsens as the
distance decreases. Therefore, it is difficult to locate the 3D position of keypoints on the
edge of vegetables. We avoid the problem of depth loss by projecting the pixel distance of
keypoints on RGB images into 3D space.

In summary, this paper proposes a size measurement method for gourd and solana-
ceous vegetables based on stereo camera and keypoints detection. This method combines
the binocular stereo camera and the keypoints detection method to solve the non-contact
vegetable size measurement problem without distance prior. In this work, we labeled a
standard common objects in context (COCO) data set with 1600 images to train keypoints
detection networks. To estimate the vegetable’s size, the method firstly obtains the RGB
image and depth map of the object using a RealSense depth camera. Then, the pre-trained
keypoint region-based convolutional neural networks (RCNN) classifies vegetables and
locates keypoints at multiple scales. According to the keypoints’ location in the RGB image
and the values in the depth map, we can calculate the distance between keypoints using
the fusion method proposed in this paper. Finally, the method estimates of vegetables’ size
according to the distance between keypoints. The method is suitable for automatic picking
and classification for the advantages of simple deployment, high accuracy and low cost.
We believe that this work will promote the application of machine vision and deep learning
in agricultural automation. The main contributions of this paper are as follows:

• This paper proposed a non-contact vegetable size measurement method based on
keypoint detection and a stereo camera. The method adopts a stereo camera to obtain
RGB images and depth maps, then locates six keypoints using the object detection
platform named Detectron2. To estimate the vegetables’ size, we propose a method to
calculate the diameter and length of objects by fusing the pixel coordinates and depth
values of keypoints.

• This paper proposes a vegetable keypoints location method based on depth cameras
and object detection. To improve the performance of object detection and keypoint
location, we designed a multi-scale strategy named zoom-in. The proposed methods
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can accurately classify the vegetables and locate six keypoints. The method can
not only be applied to the vegetable size estimation but also be used to guide the
manipulator to pick and classify vegetables automatically.

• This paper labeled and published a vegetable keypoints data set in standard COCO
format with 1600 pictures, including four common vegetables: cucumber, eggplant,
tomato, and pepper. Each target contains a region of interest (ROI) and six keypoints.
This data set can be widely applied, ranging from classification, 3D position, size
detection, manipulator picking, and many other fields.

This study is organized as follows. In Section 1, the background of the vegetable
size measurement is briefed, the significance, contributions and the fundamental idea of
the proposed method are summarized. Section 2 elaborates the structure and procedure
of the vegetable size detection method and introduces the keypoints detection data set
of vegetables labeled in this work. Section 3 gives results of the vegetable size detection
experiments. Section 4 discusses the effectiveness of our method based on the results.
Section 5 summarizes the article and puts forward the prospects for subsequent works.

2. Materials and Methods

Aiming to provide a method of non-contact measurement for vegetables in agricultural
automation, this paper proposes a novel method for vegetable size measurement at adap-
tive distance. Based on the RealSense depth camera and the Detectron2 object detection
platform, this method can complete the process of image acquisition, recognition and size
measurement without the prior of distance between the target and the camera. Figure 1
shows the overall structure of the method proposed in this paper. RealSense camera takes
and aligns the target’s RGB image and depth map. In the RGB image processing process,
the Detectron2 platform is used to identify the vegetable’s type and locate six key points(i.e.,
Peduncle, Top, Left, Bottom, Right and Center). Meanwhile, the original depth map with
holes is filled by multiple filters in the depth map processing. Then, we obtain the depth
value of key points by querying corresponding points in the depth map. Finally, we can get
the object’s size by fusing the pixel coordinates and depth of the keypoints. The method
can be divided into four modules: color image and depth map acquisition, multi-scale
target detection, keypoints detection and size estimation.

Figure 1. The overall structure of vegetable size measurement method.

2.1. Color Image and Depth Map Acquisition

We use RealSense D415 camera to sense the RGB image and depth map of the target
vegetable. The size of the RealSense D415 camera is 99 mm × 20 mm × 23 mm, weighing
about 75 g, using active IR stereo depth technology. The view field angle of the depth
camera is 65◦ × 40◦. The frame rate can reach 90 fps at the maximum resolution resolution
of 1280× 720. The view field angle of RGB camera is 69◦ × 42◦. The frame rate can reach
30 fps at the maximum resolution resolution of 1280× 720. The focal length of RGB camera
is 1.88 mm, and the size of image sensor is 2.73 mm × 1.55 mm. RealSense D415 can
effectively measure the depth of the target in the range of 0.3 m–10 m.
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Figure 2 shows the process of acquiring and processing RGB image and depth map.
First, we set the resolution of color image and depth map to 640× 480. We do not use the
maximum resolution supported by RealSense D415 because a low resolution provides a
lower depth detection limit. The minimum depth is 310 mm when the resolution is set to
640× 480.

Figure 2. The process of acquiring RGB image and depth map.

We acquired the RGB frame and depth frame after setting the resolution. However,
the depth map and RGB image used different reference systems because of the different
positions of cameras. That leads to the inconsistency of the detection target’s position in the
depth map and the color image. We have to align them before further processing. The basic
principle is converting the 2D points in depth maps to 3D space first and then projecting
the points in 3D space to the plane of RGB cameras. Finally, we can query the depth value
of each point in the RGB image at the corresponding position in the depth map.

The depth camera used the left camera as the matching reference to calculate the depth.
Therefore, it lost the depth of points contained in the left camera but not in the right camera.
It returned 0 when we query the depth of keypoints on the vegetable’s left edge. Thus,
we used two filters in the pyrealsense2 toolkit, spatial_ f ilter and hole_ f illing, to repair the
depth map.

Finally, the image acquisition module will output the vegetable’s RGB image and
depth map for subsequent modules.

2.2. Keypoint Detection Networks

We recognized the vegetable and locate the keypoints using the keypoint RCNN
provided by Detectron2. Figure 3 shows the structure of keypoint detection networks. It
extracted the feature maps of the input image at different scales using feature pyramid
networks (FPN). Firstly, the backbone network used a ResNet named Stem to preliminarily
extract the features of three-channel RGB images and output 64 channel feature maps. Then,
it used four ResNets (i.e., res2, res3, res4, and res5) to extract features at different scales in
turn. The features output, finally, using FPN, were P2 (1/4 scale), P3 (1/8 scale), P4 (1/16
scale), P5 (1/32 scale) and p6 (1/64 scale). All feature maps contain 256 channels.

With the feature maps at five different scales as input, the regional proposal network
(RPN) detected the object regions and calculated their objectness and anchor box. The
objectness is the probability that a region contains an object, and the anchor box indicates
the region’s position on the original image. RPN finally provides 1000 proposal boxes with
the highest objectness at the ROI heads.
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Figure 3. The structure of keypoint detection networks.

ROI heads used in this paper include keypoint head and box head. With the feature
maps and proposal boxes as input, the keypoint head used ROIAlign (the purple trapezoid
in Figure 3) to obtain a fixed feature map with a size of 14× 14 first. Then the keypoint
heat map was calculated using a multi-layer convolution and one-layer deconvolution.
Finally, it outputs the coordinates of the keypoints according to the key point heat map.
Box head, firstly, obtained a fixed feature map with a size of 7 × 7 using ROIAlign. Then it
expanded the feature map to a one-dimensional vector, and finally outputted the position
and classification of each box through multiple fully connected layers.

It will discard all proposal boxes with classification scores less than 0.6 in this paper
and output the boxes and keypoints of all vegetables contained in the image.

2.3. Multi-Scale Object Detection

Theoretically, the keypoint detection network can detect small objects in the image
because it extracts image features at multiple scales. However, in experiments, we found
that if the image contains an extensive range of background areas, it is usually difficult
to predict the small objects’ classification and keypoints accurately. It cannot get a high
classification value generally for small objects when the training set is not large enough
because the detection networks only use low-level feature maps.

To solve this problem, this paper proposes a multi-scale detection module named
zoom-in. Figure 4 shows the implementation details of the module.

1. Input the image to be tested and zoom-in parameter α.
2. Set the magnification to M = 1 and the maximum score to MS = 0.
3. Execute the detection loop. Magnify the original image to M times using the zoom-in

function and obtain a new image named Img. The execution detail of zoom-in is to
magnify the original image to M times with Bilinear Interpolation, then cut a new
image with the same size as the original image in the center of the magnified image.

4. Calculate the score of Img using the pre-trained key point detection networks. Fur-
thermore, detect the box and keypoints contained in the image.

5. Sum the scores of all proposal boxes. If the total score is greater than MS, update the
maximum score MS and record the best magnification bestM as M. Otherwise, go to
the next step.

6. Update magnification to M = M× α. If M > 5, the module will jump out of the loop.
Otherwise, it will return to 3.

7. Map the boxes and keypoints on Img back to the original image with Revert according
to the magnification and output FinBoxes and FinPoints. The execution detail of the
Revert is to calculate the center point of the image according to the size of the original
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image, then shorten the distance between the predicted points and the center point by
BestM times.

Figure 4. The flow chart of multi-scale scale object detection.

2.4. Vegetable Size Estimation

Keypoint detection networks output the pixel coordinates (x, y) of the keypoints
on the RGB image. The depth map provides the distance d between the keypoint and
the camera. There are two ways to calculate the distance in 3D space according to the
mentioned information:

• Calculate the 3D space coordinates of keypoints by projecting them to the 3D space.
Then, use the 3D coordinates to calculate the distance between the two points directly.

• Calculate the pixel distance d between two points in the RGB image, then map the
pixel distance to the 3D space. Meanwhile, correct the distance error caused by the
depth difference between different key points with mathematical methods.

Theoretically, the first method gives a more accurate distance. However, in practical
applications, we found that binocular depth cameras usually lose the depth of keypoints at
the edge of the object. On the contrary, it is easy to obtain the object’s center point’s depth.
Meanwhile, the diameter and length of the target vegetable are much less than the depth.
Thus, the second method calculates the distance between keypoints more accurately.

In Figure 5, A(xA, yA) and B(xB, yB) are two keypoints in RGB image. The pixel
distance between the two points is:

lp =
√
(xA − xB)2 + (yA − yB)2. (1)

The corresponding size of the image with a resolution of 640× 480 on the actual image
sensor is 2.07× 1.55 mm. Therefore, the actual distance between two points on the image
sensor is:

ls =
1.55lp

480
mm. (2)
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Figure 5. Pixel distance between two points in image.

Figure 6 shows the principle of calculating the actual distance between two points in
3D space according to the length on the image sensor. O is the optical center of the RGB
camera. As, Bs is the projection of two keypoints on the image sensor. f is the focal length
of the RGB camera, and d is the object’s depth. According to the similarity of4OArBr and
4OAsBs, the actual distance is:

lr =
lsd
f

. (3)

Figure 6. the principle of calculating distance between two keypoints.

Vegetables are 3D objects with thickness. Generally, the edge of the object has a greater
depth than the center. Therefore, we have to correct depth error while estimating the
diameter and length of vegetables. Fortunately, the cross-section of gourd and solanaceous
vegetables is usually circular. Thus, the depth difference between the central and edge
points is equal to the radius. In this paper, we take the distance between left and right
keypoints as the diameter D of the vegetable. It is assumed that the distance between the
projection of the left and right key points on the image sensor is Ds, and d is the depth of
the center point. We have:

D
Ds

=
d + D/2

f
. (4)

Thus,

D =
dDs

f − Ds/2
. (5)

We take the distance between the top and bottom key points as the length L of
vegetables, and the distance between top and bottom keypoints projected on the image
sensor is Ls. We have:

L
Ls

=
d + D/2

f
. (6)
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Thus,

L =
dLs

f − Ds/2
. (7)

2.5. Datasets

To train the keypoint detection networks, we collected and labeled the vegetable
keypoint data set. The data set contained 1600 images, including four common vegetables:
cucumber, eggplant, tomato and pepper. Each category contains 400 pictures, of which 320
are training sets and 80 are test sets. Interested readers can obtain this data set from the
following link: https://github.com/BourneZ130/VegetableDetection/tree/main/Dataset,
accessed on 15 February 2022. Figure 7 shows some samples. The main object in each
image includes a ROI box and six keypoints: Peduncle, Top, Left, Bottom, Right and Center.
Peduncle is a point on the vegetable’s handle. Top is the point closest to the peduncle on the
vegetable. Bottom is the point farthest from the peduncle. Left and Right are the left and
right endpoints of the widest segment perpendicular to the central axis on the vegetable.
Center is the vegetable’s visual center point. We label the ROI box and keypoints using a
software tool named Labelme, then convert the data set annotation file to standard COCO
format. COCO is a data set provided by the Microsoft team for image detectrion. Labelme
is obtained from the following link: https://github.com/wkentaro/labelme, accessed on 7
January 2022.

Figure 7. Some samples of the data set.

This work adopted six keypoints to estimate the vegetable’s size, because fewer
keypoints are helpful to simplify the size estimation model and make it easier to label
the image sets, which makes the method easier to apply. In addition, the results in [16]
prove that estimating the object’s size with the distance between two keypoints offers better
accuracy than measuring the curve fitted by more keypoints. Adopting six keypoints is
appropriate for the four types of vegetables in our work. The Left and Right keypoints
are used to estimate the diameter of vegetables, the Top and Bottom keypoints are used
to measure the length, and the Center keypoint is used to determine the object’s depth.
Peduncle keypoint is the picking point reserved for automatic harvesting.

3. Results
3.1. Experimental Settings

We evaluated the size measurement effect of the proposed method with some model
vegetables. Figure 8 shows some models we used in the experimental scenario. Three
different models were used for each vegetable. Table 1 shows the standard parameters of
each model. The experimental scene was a simulated farmland environment with green
leaves as background built in the laboratory. The lighting condition is uniform natural
sunlight, and the illumination intensity is about 3000lx.

https://github.com/BourneZ130/VegetableDetection/tree/main/Dataset
https://github.com/wkentaro/labelme
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Figure 8. Vegetable models used to evaluate the methods.

Table 1. The standard sizes of vegetable models.

Object Diameter/mm Length/mm Object Diameter/mm Length/mm

Cucumber1 34.53 263.54 Tomato1 84.36 65.17
Cucumber2 29.03 236.96 Tomato2 78.10 54.28
Cucumber3 27.36 245.13 Tomato3 83.79 65.81

Eggplant1 50.28 179.22 Pepper1 76.41 80.34
Eggplant2 77.37 140.64 Pepper2 75.84 79.49
Eggplant3 41.31 229.05 Pepper3 75.55 80.17

All the experiments are implemented on a workstation with Intel(R) Xeon(R) W-2145
@3.70 GHz CPU, 64.0GB DDR4 memory, and NVIDIA Quadro RTX4000 GPU. The keypoint
detection networks are trained with a learning rate of 0.0025, maximum iteration of 30,000 and
a batch size of 16. The implementation code of our size estimation method can be accessed on
https://github.com/BourneZ130/VegetableDetection, accessed on 15 February 2022.

This paper used the correct rate to evaluate the classification performance. It is
calculated using Equation (8).

CR =
Tr

Tn
× 100%, (8)

where Tn is the total experimental number, and Tr is the number of successful recognitions.
This paper use the mean absolute percentage error (MAPE) to evaluate the size mea-

surement performance. MAPED denotes the results of diameter and MAPEL is the results
of length. The MAPE is calculated with Equation (9).

MAPE =
1

Tn

Tn

∑
i=1

∣∣Xpi − Xai
∣∣

Xai
× 100%, (9)

where Xpi is the predicted distance and Xai is the actual value in ith test.

3.2. Results of Vegetables Classification

This section evaluates the method’s accuracy in classifying four types of vegetables at
different depths. In the experiments, we used the RealSense D415 to obtain RGB images of
vegetables at different distances. The resolution of the image is set to 640× 480. We employed
the zoom-in strategy described in Section 2.3. The details show the image’s center view field
is zoomed in 1.2× in each iteration. The test depth is 40–160 cm with an interval of 20 cm. We
used three samples for each vegetable, and performed 100 measurements at different angles
for each sample at the same depth. In the experiments, we marked a successful detection if
the predicted class was the same as the ground truth. If the predicted class was different from
the ground truth, or no vegetable was detected, was classed as a failed detection.

Figure 9 shows the correct rate of classification for four types of vegetables at different
depths. It is shown that when the depth is less than 80 cm, the correct rate for the four vegetables
is very high, close to 100%. When the depth is greater than 80 cm, the success rate decreases
gradually with the depth increase. That of cucumber and eggplant decreased faster. When the
distance reach 160 cm, the correct rate was almost 0. That of tomato and pepper decreased
slower, and the correct rates were almost 100% when the depth was 100 cm. Therefore, the
method’s correct rate for round vegetables is higher than in long strip vegetables.

https://github.com/BourneZ130/VegetableDetection
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Figure 9. The correct rate of classification at different depths.

3.3. Results of Size Estimation

This section evaluates the method’s performance of size estimation for four types of
vegetables at different depths. In experiments, we used RealSense D415 to obtain RGB
images and depth maps of vegetables at different depths. The resolution of the image is set
to 640× 480. The zoom-in strategy with α = 1.2 was applied. The test depths are 40 cm,
60 cm, 80 cm and 100 cm, respectively. Three samples were used for each vegetable, and
each sample was measured 100 times at different angles at the same depth.

Table 2 shows the MAPE of diameter and length estimation for 12 vegetable samples
at different depths. It is shown that the MAPE for different samples of the same vegetable
was similar. For example, when the depth was 40 cm, the maximum MAPE of tomato
diameter estimation was 2.02%, the minimum was 1.95%, and the difference was only
0.07%. The MAPE of tomato’s diameter was the smallest, which is only 2% at a depth of
40 cm, and still less than 8% when the depth reached 100 cm. The MAPE of cucumber’s
diameter was the largest, which is greater than 6% at a depth of 40 cm. The MAPE of the
eggplant’s length is the smallest, which is only 2% at a depth of 40 cm, and still less than
8% when the depth reaches 100 cm. The MAPE of the pepper’s length is the largest, which
was about 7% at a depth of 40 cm.

Table 2. The MAPE of diameter and length estimation for 12 vegetables at different depths.

Object
40 cm 60 cm 80 cm 100 cm

MAPED MAPEL MAPED MAPEL MAPED MAPEL MAPED MAPEL

Cucumber1 6.13% 3.21% 6.49% 3.64% 10.89% 7.23% 18.39% 13.90%
Cucumber2 7.24% 4.19% 7.93% 4.91% 11.23% 8.98% 19.77% 14.13%
Cucumber3 5.94% 3.28% 6.42% 3.96% 9.48% 7.69% 17.17% 14.47%
Average 6.44% 3.56% 6.95% 4.17% 10.53% 7.97% 18.44% 14.17%

Eggplant1 5.96% 1.96% 6.59% 2.18% 8.91% 4.03% 12.56% 7.17%
Eggplant2 5.27% 2.07% 5.89% 2.29% 9.58% 4.27% 13.09% 7.22%
Eggplant3 6.68% 2.43% 7.23% 2.89% 10.89% 4.94% 14.84% 7.89%
Average 5.97% 2.15% 6.57% 2.45% 9.79% 4.41% 13.50% 7.43%

Tomato1 1.99% 3.56% 2.15% 4.43% 4.25% 6.95% 7.37% 11.56%
Tomato2 2.02% 4.25% 2.28% 4.65% 4.68% 7.19% 7.99% 12.43%
Tomato3 1.95% 3.89% 2.24% 4.46% 4.33% 6.88% 7.22% 10.89%
Average 1.99% 3.90% 2.22% 4.51% 4.42% 7.01% 7.53% 11.63%

Pepper1 2.86% 6.56% 3.48% 7.98% 7.49% 11.64% 10.58% 14.56%
Pepper2 2.91% 7.25% 3.67% 7.86% 8.01% 11.48% 11.84% 14.83%
Pepper3 2.75% 6.89% 3.33% 8.13% 7.28% 11.99% 10.02% 14.21%
Average 2.84% 6.90% 3.49% 7.99% 7.59% 11.70% 10.81% 14.53%
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Figure 10 shows the predicted size of vegetable samples at a depth of 60 cm. It is
shown that in 100 experiments, the average predicted size was very close to the actual
size of vegetables, and the standard deviation is sufficiently small. The average predicted
lengths of all vegetables were slightly smaller than the actual values. The average predicted
diameters of cucumbers and eggplants were slightly greater than the actual values.

Figure 10. The actual and predicted size of vegetable samples at the depth of 60 cm. The error bars
denote the standard deviation of 100 tests at different angles.

Figure 11 shows the distribution of predicted pepper size at a depth of 60 cm. It is
shown that in 100 experiments, the frequency of prediction diameters at (73 cm, 75 cm] is
the highest, followed by (71 cm, 73 cm] and (75 cm, 77 cm]. The predicted diameters are
generally normally distributed, and the mean value approached the actual value 75.55 cm.
The frequency of prediction lengths at (76 cm, 80 cm] is the highest, followed by (72 cm,
76 cm]. They are also normally distributed, and the mean value is slightly smaller than the
actual value 80, 17 cm. The distribution of the predicted size for the other three vegetables
is similar to that of pepper.

Figure 11. The distribution of predicted pepper size at the depth of 60 cm. Left is the result of diameter,
and the actual value is 75.55 mm. Right is the length result, and the actual value is 80.17 mm.

3.4. Multiple Object Detection

This section evaluates the method’s performance for multiple object detection. In
the experiments, the proposed method classified three objects of the same kind in the
camera’s view and estimated their size at the same time. Table 3 shows the correct rate of
classification and the MAPE of size estimation at different depths. The MAPE was slightly
higher than that of a single object in Table 2, but the gap was minimal. Similar to the
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results in Figure 9, the proposed method can recognize four types of vegetables with a high
probability at the 40 cm and 80 cm depths.

Table 3. The results of multiple object detection at different depths.

Objects
40 cm 80 cm

MAPED MAPEL CR MAPED MAPEL CR

Cucumber 6.89% 3.87% 100% 11.25% 8.53% 97.67%
Eggplant 6.34% 2.21% 100% 10.77% 5.03% 98.33%
Tomato 2.02% 3.96% 100% 4.93% 7.58% 99.33%
Pepper 2.95% 7.16% 100% 8.47% 12.69% 99.00%

3.5. Comparison with State-of-Art Methods

This section compares the proposed method with size estimation methods based on
edge detection and bounding box. The implementation details of edge-detection-based
method refer to [3]. The implementation details of the bounding-box-based method refer
to [7]. The resolution of the image is set to 640× 480. The test depths were 40 cm, 60 cm,
80 cm and 100 cm, respectively. Three samples were used for each vegetable, and each
sample was measured 100 times at different angles at the same depth.

Table 4 shows the MAPE of diameter and length estimation for three comparison
methods at different depths. It is demonstrated that our approach performs better than
two comparison methods at any depth. As these two comparison methods are mainly ap-
plicable to ellipsoidal vegetables, their performance on irregular vegetables (e.g., cucumber,
eggplant and pepper) is terrible. The MAPE of tomato size estimation of our approach is
also better than comparison methods. Additionally, the gap between the methods grad-
ually increases as the depth increases. Therefore, the approach proposed in this paper is
more effective. At the same time, compared to other methods, this paper proposes a more
universal approach that can be applied to irregular vegetables.

Table 4. The vegetable size estimation results of three comparison methods at different depths.

Objects Methods
40 cm 60 cm 80 cm 100 cm

MAPED MAPEL MAPED MAPEL MAPED MAPEL MAPED MAPEL

Cucumber
Edge Detection 28.73% 6.18% 30.74% 7.89% 33.96% 12.24% 38.19% 19.18%
Bounding Box 48.19% 24.84% 49.56% 26.87% 54.12% 29.10% 60.42% 34.93%
Ours 6.44% 3.56% 6.95% 4.17% 10.53% 7.97% 18.44% 14.17%

Eggplant
Edge Detection 11.58% 4.12% 13.17% 4.87% 18.93% 7.98% 25.76% 12.89%
Bounding Box 27.81% 10.65% 31.76% 14.98% 38.71% 18.12% 48.52% 20.70%
Ours 5.97% 2.15% 6.57% 2.45% 9.79% 4.41% 13.50% 7.43%

Tomato
Edge Detection 2.21% 5.03% 3.31% 6.98% 7.11% 10.94% 13.25% 18.61%
Bounding Box 2.54% 5.86% 4.17% 7.81% 7.29% 11.18% 14.13% 16.37%
Ours 1.99% 3.90% 2.22% 4.51% 4.42% 7.01% 7.53% 11.63%

Pepper
Edge Detection 14.91% 13.37% 16.16% 15.52% 19.96% 19.48% 24.35% 25.67%
Bounding Box 9.33% 8.52% 10.84% 10.03% 15.06% 14.23% 19.72% 18.63%
Ours 2.84% 6.90% 3.49% 7.99% 7.59% 11.70% 10.81% 14.53%

4. Discussion

This work applies the keypoint detection model and depth camera on vegetable size
estimation in an innovative way. Our experiments show that this method achieves good
results. This section discusses the effectiveness of the proposed method based on results in
Section 3.



Sensors 2022, 22, 1617 13 of 16

4.1. Effectiveness of the Proposed Method

The non-contact vegetable size estimation method uses the keypoint RCNN in the
Detctron2 platform to classify vegetables and locate six keypoints for each object. Then,
the pixel coordinates of keypoints in the RGB image and the depth values in the depth
map are fused to estimate the diameter and length of vegetables. Many works [17–20]
indicate that small-object detection is a challenge for RCNN-based methods. Compared
with regular-sized objects, small objects have less information as its proportion in the
image is very small. Additionally, labeling the training data of small objects is difficult and
requires high labor costs [21]. Thus, the accuracy of classification and keypoint location is
greatly affected by proportion of vegetables in the image. Therefore, our method adopted a
zoom-in module to solve the problem. This module works by increasing the proportion of
objects in the view field.

Section 3.2 evaluates the classification performance at different depths. Figure 9 shows
that when the depth is less than 80 cm, the classified correct rates for four types of vegetables
are almost 100%, and they are still more than 80% when the depth reaches 100 cm. Although
it is difficult to compare two methods on different data sets, when the depth is less than
80 cm, our method still performed better than methods in reviews [22,23]. Therefore, we
believe that the proposed method can effectively classify four vegetables within 80 cm.

Section 3.3 evaluates the size estimation performance at different depths. Considering
that the classification ability of this method decreases rapidly when the depth is greater than
100 cm, we evaluated the size estimation performance within 100 cm. As shown in Figure 10
and Table 2, our method has excellent accuracy in tomato size estimation. We also note that
the size estimated error for tomato is slightly smaller than other three irregular vegetables.
Bargoti’s [24] and Wan’s [25] studies also report similar results, namely, that RCNN-based
methods perform better on regular objects (e.g., apple and orange) than irregular objects
(e.g., mango and almond). How to improve the performance of RCNN-based methods
on irregular objects is still an open question. Table 4 shows that our method performs
better than compared methods based on edge detection and bounding box. Additionally,
when the distance was less than 60 cm, the method controlled the MAPE for four types of
vegetables within 8%. It is adaptable enough for vegetable size classification.

The results in Figure 9 and Table 2 show that the performance of the proposed method
decreases with the increase in depth. The main reason is that RCNN-based methods are not
very effective when used to detect small objects [18,19]. The object was not clear enough,
even though the zoom-in strategy was used. The results in [26,27] indicate that the clarity
and resolution of images influences the performance of RCNN-based methods. We may
solve this problem by using a high-definition (HD) camera. At the same time, we note
that a lot of work regarding image super-resolution technology has been published [28],
which can expand image resolution while maintaining clarity. These technologies may
help the zoom-in strategy to become more effective. In addition, deep neural networks are
data-driven methods, and the quality of data sets significantly impacts keypoint detection.
We can improve the method’s performance by providing larger training sets or adopting
better annotation strategies.

In a real scenario, the proposed method usually needs to process multiple objects in
the field of view simultaneously. Section 3.4 proves that the method also works for multiple
objects detection. Another question is whether the vegetable we want to measure may
be occluded by other vegetables. Point-cloud-based methods usually complete the whole
object shape by deep learning models like PointNet [29] or dynamic graph convolutional
neural networks (DGCNN) [30]. We plan to use invisible keypoint detection technology to
solve this problem. Fortunately, the annotation of invisible keypoints in the occluded part
is supported by the standard COCO format [31]. When estimating the size of vegetables,
the diameter and length can be obtained by fusing the pixel distance of keypoints in
the RGB image and the depth of visible keypoints. However, we have not completed
this work because of the limitation of the current image set. In future work, we will
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collect and label more sufficient data sets to improve the performance of the vegetable size
estimation method.

4.2. Effectiveness of Zoom-In Module

This paper proposes the zoom-in module to solve the problem of object detection when
the distance increases. Before the classification and keypoint detection, the module first
enlarges the central area of the view field by bilinear interpolation to obtain more accurate
prediction results. After the prediction, the ROI boxes and keypoints are mapped back to the
original images to estimate vegetables’ size. Figure 12 compares the method’s performance
of classification and diameter estimation with zoom-in module or not. Figure 12 (left) shows
the classification performance, and the correct rate is calculated by Equation (9). When the
zoom-in module is used, the method can accurately classify the tomatoes within 100 cm. If
the zoom-in module is not used, the classification performance decreases rapidly as the
depth increases. The correct rate of classification is less than 50% when the depth is 100 cm.
Figure 12 (right) shows the MAPE of tomato diameter estimation at different depths. It can
be seen that the method’s performance with the zoom-in module is better than not at any
depth. When the depth is small, the gap between them is not obvious. However, when the
distance is 100 cm, the MAPE of the method without the zoom-in module is more than 20%,
while that with the zoom-in module is only 7.5%. Therefore, the proposed zoom-in module
can effectively improve the method’s performance of classification and size estimation.

Figure 12. The method’s performance of classification and diameter estimation when the zoom-in
module is used or not.

5. Conclusions

This paper proposes a intelligent method for vegetable classification and size esti-
mation based on object detection and depth camera. This method provides a feasible
solution to the problem of non-contact vegetable measurement in the field of agricultural
automation. In this work, we labeled a data set with 1600 images, containing four types
of common vegetables. The method obtains the RGB image and depth map of the object
using a RealSense D415 camera. Then, pre-trained keypoint detection networks process
the RGB image to classify the vegetable and locate keypoints. Finally, we can estimate the
vegetable’s size by fusing the keypoints’ pixel coordinates and depth. This method has
broad application prospects in the field of automatic vegetable picking. It can promote the
development and application of machine vision in the field of intelligent agriculture.

In future work, we will further improve the size estimation model for other vegetables.
At the same time, we will try to use an HD camera and super-resolution reconstruction
technology to improve the method’s performance at long distances. We can also combine a
variety of depth cameras to improve the accuracy of keypoint location further.
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