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Abstract— A key challenge for autonomous navigation in
cluttered outdoor environments is the reliable discrimination
between obstacles that must be avoided at all costs, and
lesser obstacles which the robot can drive over if necessary.
Chlorophyll-rich vegetation in particular is often not an obstacle
to a capable off-road vehicle, and it has long been recognized
in the satellite imaging community that a simple comparison
of the red and near-infrared (NIR) reflectance of a material
provides a reliable technique for measuring chlorophyll content
in natural scenes. This paper evaluates the effectiveness of using
this chlorophyll-detection technique to improve autonomous
navigation in natural, off-road environments. We demonstrate
through extensive experiments that this feature has properties
complementary to the color and shape descriptors traditionally
used for point cloud analysis, and show significant improvement
in classification performance for tasks relevant to outdoor
navigation. Results are shown from field testing onboard a robot
operating in off-road terrain.

I. INTRODUCTION

Current autonomous navigation techniques work well for

environments such as hallways and on roads, where obstacles

are static and usually rigid. In these cases, size and shape are

sufficient for determining which obstacles can be driven over

and which need to be avoided. In off-road driving, however,

the assumption that every obstacle is rigid and would be

lethal to the robot quickly presents problems. In situations

such as a field of tall grass, there may be dense geometric

obstacles on all sides of the robot. In order to plan safe,

efficient paths the robot must be able to reliably discriminate

between vegetation that it can drive through if necessary, and

rigid obstacles such as tree trunks and rocks that can cause

damage (Figure 1). For safe high-speed operation performing

this discrimination at range becomes increasingly important.

Methods have been developed to detect vegetation from

3-D point clouds [1], [2], but there is still significant room for

improvement, particularly at longer ranges where the limited

viewpoint of onboard sensors, reflection of the laser pulses

away from the scanner, laser beam divergence, and partial

occlusion by other objects make it difficult to obtain point

clouds of sufficient quality and density.

Fortunately there are well-established techniques for mea-

suring chlorophyll content using a multi-spectral camera [3],

[4], [5], [6], [7], [8], [9], [10] that have been developed for

satellite-based remote sensing. A simple pixel-by-pixel com-

parison between red and Near-InfraRed (NIR) reflectance,
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Fig. 1. Autonomous mobile robot used for this evaluation. The addition
of NIR data helps in discrimination between the rock on the left and the
bush on the right.

normally referred to as a vegetation index or a band-ratio,

provides a powerful and robust way to detect vegetation.

Further, most CCDs have significant spectral response all

the way out to wavelengths of around 1000nm, meaning that

a standard monochrome CCD can be converted into a NIR

camera simply by covering it with a longpass filter. Although

the viewpoint of a satellite is drastically different from that of

a mobile robot, we show that the technique is still effective

despite additional complications such as views of the sky,

or shadowed areas that are lit by both light reflected off of

other surfaces and light reflected from the sky.

In the mobile robotics community, suprisingly little atten-

tion has been given to the use of multi-spectral information

for ground-based terrain classification for navigation. An

early attempt, [11], used data from a filter wheel camera

to label pixels as chlorophyll-rich vegetation or soil based

on thresholding the ratio of the NIR and red values. Later

work in [12] mentioned the usefulness of NIR in detecting

photosynthetic vegetation, but described the use of a Gaus-

sian mixture model-based classifier with only RGB features.

Aside from the overall speed of the classifier, no quantitative

performance analysis was given, and the role played by the

features in the larger system was largely presented as anec-

dotal. This work is an extension of [13], which provides an

extensive qualitative evaluation of several vegetation indices

across different environments and geographic locations, but

did not incorporate a ladar or stereo system and so could not

evaluate the utility of combining vegetation indices with 3-D

data.

To bridge this gap in understanding, we choose a broad

suite of classification tasks relevant to off-road navigation

using combinations of popularly used shape, density and



color features and show the effect of augmenting these

features with NIR and NDVI information. In particular for

each task we analyze the reliability of different feature sets

with respect to sensing range. We demonstrate through a

set of experiments that this feature has properties comple-

mentary to the color and shape descriptors traditionally used

for point cloud analysis, and show significant improvement

in classification performance for tasks relevant to outdoor

navigation.

The paper is organized as follows. Section II gives an

overview of existing approaches to vegetation detection using

spectral and geometric information, and its application to

navigation. Section III describes the overall system im-

plementation on our robot platform including the sensing

modalities available and the design choices made for internal

representation and path planning. Section IV describes the

datasets used and presents results on voxel classification

experiments. Section V describes how improved voxel clas-

sification translates into system level performance gains.

Finally we conclude in Section VI and discuss future work.

II. APPROACHES TO VEGETATION DETECTION

This paper combines two complementary approaches to

vegetation detection, vegetation indices (also referred to as

band-ratio techniques) that have long been used in the remote

sensing community, and more recent 3-D structure based

techniques from the mobile robotics community.

A. Vegetation Indices

The spectral properties of chlorophyll-rich vegetation are

primarily determined by the absorption spectra of water and

chlorophyll, and the refraction of light at cell walls [14].

The water present in cells absorbs light with wavelengths

longer than 1400 nm. Chlorophyll strongly absorbs visible

light, especially red and blue wavelengths [3]. The remaining

light is efficiently scattered by the critical internal reflection

caused by the change in refractive index from water to air

at the cell wall. As a result, those wavelengths between 700

nm and 1400 nm that escape both water and chlorophyll are

strongly reflected in all directions.

The sharp difference between the reflectance of vegetation

at 645nm (red) and at 780nm (NIR) has long been exploited

in the field of satellite remote sensing. Kauth and Thomas [7]

noticed that plotting NIR reflectance against Red reflectance

for satellite images produced a scatter diagram with a line of

points formed by pixels containing bare soil, and a cluster

of points from pixels completely covered with vegetation.

Points with a mixture of vegetation and soil appear between

the soil line and the vegetation point. Figure 2 shows this

scatter plot created from one of our images. Because our

camera also includes a view of the sky, our scatter plot

contains a blue sky region ( bottom image, marked in blue) as

well as the soil region (middle image, marked in red) and the

vegetation region (top image, marked in green). Clouds blend

into the soil line, but are still very distinct from vegetation.

Pixels containing vegetation and blue sky are remarkably

well separated from everything else in a natural scene.

One of the most popular ways to use the information

contained in the red and NIR bands for remote sensing appli-

cations is to compute a quantity known as the Normalized

Difference Vegetation Index (NDVI) which varies from -1

(blue sky) to 1 (chlorophyll-rich vegetation) [8].

NDVI =
ρNIR − ρRED

ρNIR + ρRED

(1)

An informative interpretation of the NDVI is given in

[15], where it is shown to be a measurement of the slope

from the origin to the location of the pixel in a 45 degree

rotation of the red-NIR space. Several attempts have been

made in the remote sensing literature to correct deficiencies

in this index [10], [5], [16], [15], particularly in shadows

and underexposed areas. Since the NDVI measures the slope

from the origin, sensor noise and errors in the radiometric

calibration of the red and NIR sensors have a much greater

effect in underexposed areas. Shadows pose a more chal-

lenging problem, since the reflected light that illuminates

shadowed regions can have a spectral distribution that is

significantly different from that of sunlight, usually shifted

towards blue wavelengths because of atmospheric scattering.

The typical use of NDVI in remote sensing is to measure

the Leaf Area Index (LAI), the percentage of the ground

surface that is covered by vegetation. However, when the goal

is linear classification into vegetation and non-vegetation

categories, it is useful to provide the raw NIR and red values

as well as the NDVI to the classifier. This is because a linear

decision boundary based solely on the NDVI corresponds to

a line intersecting the origin of the red-nir space, whereas

a linear classifier operating on the raw pixel values and a

constant bias feature can produce a decision boundary with

an arbitrary intercept. In this paper the NDVI is discussed

to tie this vegetation detection technique back to its origins

in the remote sensing community, but the actual classifiers

evaluated in section IV use the raw pixel values as well as

the NDVI, since for a linear classifier they may be more

informative than using many of the variants of the NDVI.

1) Validation of Approach: The USGS digital spectral

library [17], provides a useful tool for selecting an appropri-

ate NIR filter, and verifying the effectiveness of using NIR

in conjunction with red across a variety of different types

of vegetation and non-vegetation. This library contains the

spectral signatures of over 800 different materials. Many of

these spectra are from rare minerals that are not relevant

to our application. The relevant subset of the library used

for testing contained 105 common types of vegetation and

169 common soil mixtures, artificial materials, and coatings.

The optimal linear separator on this dataset classifies 258

of 274 materials correctly. A yellow aspen leaf and dry

grass are misclassified as non-vegetation, and various man-

made materials and natural mixtures involving hematite are

misclassified as vegetation (figure 3).

B. 3-D Point Distribution

A complementary approach to vegetation detection, pre-

sented in [1], uses the spatial distribution of the local ladar

point cloud to classify the region into surfaces, linear struc-

tures, and a class referred to as scatter, which includes tree



Fig. 2. Scatter plot of NIR reflectance vs. red reflectance for all pixels in a typical image. Different regions in the scatterplot correspond to different
types of materials in the image. Pixels in the green region correspond to vegetation (top image), pixels in the red region are mainly soil and man-made
structures (middle image), and pixels in the blue region correspond to sky (bottom image).

Fig. 4. Small images show the RGB and color appearance of two scenes. Large images are the RGB image with areas of high NDVI highlighted in bright
green. While generally reliable in natural scenes, NDVI can fail on synthetic materials such as the paint on the truck in the right image. In this case 3-D
methods would easily classify the side of the truck as a rigid obstacle instead of vegetation. Note that NDVI correctly classifies the brown dead grass in
the left image as vegetation.

canopy and porous vegetation. This method first computes

the eigenvalues of the covariance matrix of the local point

cloud (defined as all points within a certain distance of the

point of interest), and then classifies the point based on the

relative magnitudes of those eigenvalues. Linear structures

have one dominant eigenvalue. Surfaces have two large

eigenvalues, and an area is declared to be scatter when the

third largest eigenvalue is a significant fraction of the largest

eigenvalue. In addition, the estimated surface normal of the

local area, another useful feature of the local point cloud, is

recovered by this computation as it is simply the eigenvector

corresponding to the smallest eigenvalue of the covariance

matrix.

This 3-D method performs particularly well on certain

man-made structures where the NDVI approach is known

to fail. For instance, certain types of vehicle paint give off a

vegetation-like NDVI signature (figure 4), but the flat sides of

vehicles are easily detected as surface 3-D structures (figure

5). However, the 3-D method does require a relatively dense,

high-quality point cloud, which limits its application to areas

closer to the robot.

III. SYSTEM OVERVIEW

The vegetation index technique for detecting chlorophyll-

rich vegetation can (and has) been implemented in many

different ways, but since this is an experimental paper which



Fig. 3. Material spectra misclassified by an optimal linear discriminator
using the red and NIR bands (600-670nm and 900-1000nm). Horizontal line
segments indicate the simulated camera responses used for classification.
258 of 274 common materials are classified correctly. The failures are
mainly dead vegetation where the chlorophyll has had time to degrade, man-
made materials such as plastic, and natural mixtures involving hematite.

Fig. 5. Left: average RGB values of each voxel in a scene containing cars.
Right: after 3-D classification the voxels containing the flat sides of the
cars are classified as obstacles (blue). Voxels containing curved car surfaces
have more of a vegetation-like signature (green), and voxels corresponding
to ground are marked in red.

addresses system-level effects we include a brief description

of the specific implementation to aid in analyzing the results.

The robotic system used for this evaluation extends the

approach outlined in [18]. A set of laser scanners and

cameras provide the input to the perception system, which

consists of 3-D points that have been projected into camera

images, and tagged with local properties of the image such

as color and the NDVI value (Figure 6). The local perception

system then discretizes the space surrounding the robot into

a 3-D grid of voxels, and accumulates summary statistics

of the tagged laser points over each voxel. The summary

statistics include the averages of the point tags, eigenvalues

of the local point cloud scatter matrix, the surface normal

(3rd eigenvector of the scatter matrix), and the probability

and strength of laser pulse reflection from the voxel. The

perception system is then responsible for condensing this 3-

D grid of voxels into a 2-D grid of cost values so that the

planner (a variant of A*) can then plan a minimum cost path.

Various interpretations have been proposed for the meaning

of the cost values, such as mobility risk, but due to the

tightly coupled nature of mobile robot systems they have

no fundamental interpretation apart from the paths that they

cause the planner to produce through the environment.

Costs are produced from the voxels by applying a set

of learned classifiers in conjuction with several hand-tuned

rules for combining the classification results in each vertical

column. Linear maximum entropy (multi-class logistic re-

gression) classifiers [19], are used in order to meet the strict

real-time requirements imposed by continuous motion at

several meters per second. These classifiers find a conditional

distribution P (c|d) for the class c(d) of training example

d ∈ D, that has maximum entropy (i.e. makes as few

assumptions as possible) subject to the constraint that the

expected value of each feature fi(d, c) of each example

matches its average value over the training set (2).

1

|D|

∑

d∈D

fi(d, c(d)) =
∑

d

P (d)
∑

c

P (c|d)fi(d, c) (2)

In practice the empirical distribution of d in the training set

is used to approximate the true distribution P (d), and a weak

Gaussian prior is added to control overfitting. The resulting

maximum entropy conditional distribution takes the form of

a linear classifier over the features (3), that is normalized to

form a probability distribution (4).

P (c|d) =
1

Z(d)
e

P

i
λifi(d,c) (3)

Z(d) =
∑

c

e
P

i
λifi(d,c) (4)

The classifiers are trained from labeled data sets that are

gathered by either driving the robot over areas of different

terrain type (and labelling everything that passes under the

robot), or in the case of obstacles, by hand-labelling their

locations in a set of point clouds using a simple paint-like

interface. Currently there are two ways that classifiers are

used in the system. The classification of a voxel as obstacle,

vegetation, or ground influences how the data it contains is



Fig. 6. Top left: A typical camera image. Inputs to the perception system consist of 3-D points that have been projected into the camera images and
tagged with local image properties such as color (top right) and the NDVI value (bottom right). The points are then accumulated in a discretized 3-D grid
of voxels, with the average NDVI of each voxel shown in the bottom left image.

used in estimating the ground plane. Also, the rigid/non-

rigid obstacle classifications of the voxels in each column

are used to compute an overall rigid/non-rigid flag for the

column, which allows for the assignment of different costs

to rigid and non-rigid obstacles in the 2-D costmap.

Because the beamwidth of the ladar we use is approx-

imately 10x the angular resolution of the cameras, ladar

points tagged with the center point of the ladar beam may be

incorrectly tagged with pixels from the sky. Because of this

effect voxels straddling vegetation/sky image boundaries can

have average NDVI values that look like non-vegetation (blue

sky is particulary bad because of its exceptionally low NDVI

value). To reduce this problem, the exposure on the cameras

is controlled to correctly expose only those portions of the

image where ladar returns were received, which generally

means that sky pixels are marked as overexposed and their

NDVI tags do not contribute to the voxel’s classification.

IV. VOXEL CLASSIFICATION RESULTS

A. Data Set

The system was trained and tested using data from two sig-

nificantly different physical environments. Training examples

of rocks, bushes, grass, trees, and man-made structures such

as cars, telephone poles, and barrels were gathered from a

site in Western Pennsylvania. More examples of rocks and

bushes were collected several weeks later in natural terrain in

the foothills of the Colorado Rockies. Voxels were labeled

by either hand-labelling the point cloud, or in some cases

labeling everything the vehicle drives over. In both cases the

features (density, surface normal, scatter matrix eigenvalue,

RGB, NIR, and NDVI) of each labeled voxel were recorded

every time a new laser point in that voxel was observed.

B. Classification Results

We start our evaluation with quantitative results on the

effects of using NDVI for several important discriminative

tasks. We first compare the performance of the feature

sets for similar (but physically separate) environments and

lighting conditions. Figure 7 compares classifiers trained for

the binary task of discriminating between non-rigid voxels

(grass, bushes, etc...) and rigid voxels (Tree trunks, rocks,

cars, telephone poles, bare ground, etc...). As discussed

in Section III, this task is crucial to the way the robot

generates a costmap for path planning. Both the RGB and the

NDVI features can accomplish this task sucessfully, showing

roughly a 20% improvement in classification accuracy over

ladar features alone. The ladar features become crucial,

however, in the more complicated three-way classification

task used by the robot to estimate the true ground plane

of the scene. This task is similar to the previous task, with

the exception that the rigid voxel class is divided into an

obstacle class and a road class (horizontally oriented bare

ground surfaces). In Figure 8 we see that combining the

camera features with the ladar features boosts the total clas-

sification accuracy by approximately 10%. This performance

boost is almost entirely from improvements in the ability to

discriminate between the obstacle and road classes, as shown

in Tables II & III. Again in this task we see that the camera

features are very helpful in discriminating between non-rigid

voxels and the other two classes (Table I).

Finally we investigate the generalization ability of the dif-

ferent feature sets across different geographic environments

on the task of discriminating between rocks and bushes.

For this test the training set is from Pennsylvania, and the



Fig. 7. Voxel classification accuracy vs range for telling rigid obstacles (rocks, tree trunks, telephone poles, cars, etc...) apart from non-rigid obstacles
(grass and bushes). Left: training set performance. Right: Test set performance. Inclusion of RGB or NDVI features provides a significant performance
boost over ladar features alone.

Fig. 8. Voxel classification accuracy vs range for discriminating between rigid obstacles, non-rigid vegetation, and ground. Left: training set performance.
Right: Test set performance. This task, which is used in ground plane estimation, benefits significantly from combining ladar and RGB or NDVI features.

Fig. 9. Voxel classification accuracy vs range for discriminating between rocks and bushes. Left: training set performance. Right: Test set performance.
The training set for this task was collected in Pennsylvania, and the test set was collected in Colorado. The NDVI features show superior generalization
to the novel environment.



True Class
Predicted Class obstacle vegetation ground

obstacle 88.7 11.4 3.1

vegetation 9.5 64.0 27.9

ground 1.8 24.6 68.9

TABLE I

CONFUSION MATRIX FOR A CLASSIFIER TRAINED ONLY WITH LADAR

FEATURES

True Class
Predicted Class obstacle vegetation ground

obstacle 88.1 0.2 4.7

vegetation 6.4 95.1 21.2

ground 5.5 4.7 74.1

TABLE II

CONFUSION MATRIX FOR A CLASSIFIER TRAINED WITH ALL FEATURES

test set is from Colorado. As shown in figure 9, the NDVI

features are hardly affected by the change in environment,

and their performance degrades only slightly. The RGB

features, on the other hand, allow the classifiers to overfit

to the specific lighting and flora of the training set, leading

to vastly degraded performance in the novel environment.

Fortunately, it is not necessary to have many NIR sen-

sors to benefit from the generalization ability of the NDVI

features. As long as a representative sample of RGB-NIR

tuplets are available for the current environment and lighting

condition, a RGB-based classifier can be trained to predict

the NDVI values. This representative sample might come

from a single NIR camera whose field of view overlaps with

that of an existing RGB camera on the robot. Figure 10 shows

the results of predicting the NDVI value at each pixel in an

image using simple features computed from the local RGB

values consisting of the RGB, HSV, and Lab values of the

pixel when blurred with a gaussian at four scales (sigma of

1, 2, 4, and 8 pixels). The 100-node regression tree used

for the prediction was trained on a random sample from a

4-color (RGB and NIR) image with a field of view covering

a separate portion of the same scene. Table IV gives the

relative error rates of predicting NDVI over a sequence of

1646 4-color images from the same environment. Numbers

given have been normalized by the error produced by simply

predicting the mean NDVI value of all the pixels in the

image sequence. Classifiers were re-trained every 25 images

using an image that was 20 seconds old (which corresponds

to approximately 30m of travel in this sequence, enough to

ensure a significant viewpoint difference). The regression tree

produced less than 8% of the error obtained by predicting

True Class
Predicted Class obstacle vegetation ground

obstacle 78.7 0.2 21.1

vegetation 6.7 95.1 21.4

ground 14.6 4.7 57.5

TABLE III

CONFUSION MATRIX FOR A CLASSIFIER TRAINED WITH ONLY CAMERA

FEATURES

Fig. 10. NDVI can be predicted from RGB for a given environment and
illumination condition, meaning the benefits of NDVI can be captured even
if the NIR sensors on the robot have a much more limited field of view
than the RGB sensors. The 4-color image (RGB & NIR, only RGB shown)
at top left is used to train a classifier that predicts the NDVI image (bottom
right) for the RGB image at top right. The ground truth NDVI image is
shown at bottom left. Note how the vegetation behind the cars is detected
against the dark green portion of the building.

100-node regression tree linear least squares

0.078 0.117

TABLE IV

MEAN NDVI PREDICTION ERROR OVER A SEQUENCE OF 1646 4-COLOR

IMAGES CAPTURED ONBOARD A MOBILE ROBOT WHILE DRIVING IN A

GRASSY URBAN AREA.

the mean NDVI value.

V. SYSTEM-LEVEL PERFORMANCE GAINS FROM

IMPROVED VEGETATION DETECTION

The increase in voxel classification accuracy from adding

RGB and NDVI features improves the robot’s overall ability

to autonomously avoid rigid obstacles without being overly

afraid of bushes or tall grasses. Figure 6 shows the robot’s

view of two barrels that it is avoiding during a 2 m/s

autonomous run. Figure 11 shows the classification maps the

robot generates from this position with and without the NDVI

features. The tall grass behind the barrels creates many false

obstacles for the ladar-only perception system. With NDVI

information the barrels stand out clearly as the two large blue

blobs, and there is only one small false-positive obstacle. To

show generalization across environments, this run took place

in Colorado using classifiers that were trained exclusively on

data collected in Pennsylvania.

VI. CONCLUSIONS AND FUTURE WORK

The near-infrared and red color bands provide a robust

method for discriminating between rigid obstacles and non-

rigid vegetation that thus far has been underutilized on

mobile robotics systems. By showing how it contributed to

performance improvements in a field tested robotic system,

we hope to encourage more widespread use of this technique

More work is needed in the area of color constancy, or

compensating for the effect of differences in the illuminants



Fig. 11. Left: classification map using ladar features only. Right: adding NDVI information allows the system to be more selective, and display the barrels
from Figure 6 clearly in the classification map without also picking up non-rigid vegetation. The barrels are the two large white blobs. White indicates
obstacle classification (high cost), green indicates vegetation classification (low cost), and red indicates road classification (very low cost). The position of
the robot is represented as a gray rectange.

encountered. The general problem of color constancy is

underdetermined, however robotic systems that use ladars

in conjuction with NIR and color cameras have a crucial

advantage in that they often have access to information such

as laser remission, surface normal, and surface shape that can

be used to help deduce the approximate spectral distribution

of the illumination.
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