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THE SOUTHWESTERN NATURALIST 51(4):471-480 DECEMBER 2006 

VEGETATION-INDEX MODELS PREDICT AREAS VULNERABLE TO PURPLE 
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Natural History Museum, University of Kansas, Lawrence, KS 66045 (ATP) 
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ABSTRACT-Purple loosestrife (Lythrum salicaria) constitutes an invasive species detrimental to wetland 

habitats in North America. To estimate areas vulnerable to it in Kansas, we modeled the potential 

geographic distribution of the species by using current records in the state, remotely sensed vegetation 

index data from the Moderate Resolution Imaging Spectrometer (MODIS), and the Genetic Algorithm 

for Rule-Set Prediction (GARP). Models built using only localities from northeastern Kansas (the origin 

of invasion within the state) consistently predicted test localities in other parts of the state with 

negligible omission. An additional analysis using records from all counties where the species is known 

showed a similar prediction. All models indicated suitable conditions for purple loosestrife in much of 

eastern and central Kansas, as well as in riverine and irrigated areas in the western part of the state. The 

approach presented here might prove useful for assessing the regional colonization potential of other 

newly detected invasive species before other studies can be undertaken. 

RESUMEN-Lythrum salicaria constituye una especie invasora perjudicial para los habitats pantanosos en 

Norteamerica. Para estimar cuales son las areas vulnerables a esta especie en Kansas, modelamos la 

distribuci6n potencial de la especie utilizando registros actuales del estado, datos de indices de 

vegetaci6n tomados remotamente por el Moderate Resolution Imaging Spectrometer (MODIS), y el 

Genetic Algorithm for Rule-Set Prediction (GARP). Modelos construidos usando s6lo las localidades del 

noreste de Kansas (el origen de la invasi6n dentro del estado) predijeron consistentemente a las 

localidades de prueba en otras partes del estado con omisi6n despreciable. Un analisis adicional usando 

registros de todos los condados en los cuales se conoce que la especie esta presente mostr6 una 

predicci6n similar. Todos los modelos indicaron condiciones apropiadas para la especie en la mayor 

parte del este y del centro de Kansas, tanto como en aLreas riberenias e irrigadas en la parte occidental 

del estado. El enfoque presentado aqui posiblemente sera de utilidad en la evaluaci6n del potencial de 

colonizaci6n regional de otras especies invasoras recientemente detectadas antes de que otros estudios 

puedan ser realizados. 

Several techniques now exist for modeling the 

environmental requirements and geographical 

distribution of a species based on the environ 

mental characteristics of sites of known occur 

rence (Graham et al., 2004). Such presence-only 

occurrence data sets often derive from museum 

and herbarium collections and represent the 

only data available for many species. Occurrence 

records are typically employed in conjunction 

with digital maps that provide data for long-term 

climatic patterns, topography, potential vegeta 

tion, and other environmental variables that 

commonly influence the macrodistributions of 

species (Mackey and Lindenmayer, 2001). Using 

a Geographic Information System (GIS), a model 

of the niche requirements of a species (sensu 

Hutchinson, 1957) in those ecological-environ 

mental dimensions is created and then projected 

onto geography, thus approximating the poten 

tial geographical distribution of the species in 

the study region (Anderson et al., 2002a). 

Such techniques have been applied to the 

study of invasive species, which constitute a press 

ing economic and scientific problem affecting 

diverse sectors of society (Ricciardi et al., 2000). 

In the past, invasive-species management was 

largely reactive in nature (Smallwood and 

Salmon, 1992; Sakai et al., 2001). However, 
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building on earlier climatic-matching methods 

(Johnston, 1924; Chicoine et al., 1985; Panetta 

and Mitchell, 1991), recent studies have used 

GIS distributional modeling tools to model the 

environmental requirements of a species based 

on occurrence records from its native range; the 

ecological model is then projected onto other 

continents to predict which areas are suitable 

there (Welk et al., 2002; Peterson, 2003; Peterson 

et al., 2003). 

Regrettably, a combination of factors often 

hinders distributional modeling of newly de 

tected invasive species. First, georeferenced 

native-range locality data are seldom readily 

available (Peterson et al., 2003). Second, due to 

the non-equilibrium circumstances of an active 

invasion, records from the colonization front 

alone typically cannot be used along with 

traditional environmental data (e.g., topograph 

ic and climatic variables; Peterson and Cohoon, 

1999) to model the regional colonization poten 

tial of the species accurately (Welk, 2004). Under 

such conditions, the environmental characteris 

tics of newly colonized sites often reflect a strong 

ly biased subset of the niche of the species. 

Furthermore, traditional environmental data 

(especially climatic variables) typically exhibit 

strong spatial autocorrelation, and climatic 

gradients might correspond (spuriously) to the 

direction of colonization of an invasive, hinder 

ing successful modeling of the geographical 

distribution of the species. Hence, predictions 

based on these data sources are expected to yield 

a strong underestimation of the potential distri 

bution of the species (Welk, 2004). 

Fortunately, it might be possible to use re 

motely sensed vegetation-index data in conjunc 

tion with locality records from the active coloni 

zation front, with the goal of characterizing at 

least the next steps in the invasion process. 

Because reflectance parameters present in vege 

tation-index data sets indicate important pheno 

logical patterns, such data hold promise for 

discriminating between suitable and unsuitable 

habitat for many species (Egbert et al., 2002). 

Satellite data sets have several benefits over 

traditional climatic coverages, including less time 

and lower expense of production, finer spatial 

resolution, and incorporation of up-to-date 

human modifications of the landscape. Most 

importantly (and due in large part to these latter 

2 factors), they might avoid or at least strongly 

reduce many of the spatial-autocorrelation pit 

falls of traditional climatic coverages and are less 

likely to exhibit gradients that correspond co 

incidentally with the direction of colonization of 

an invasive. 

Such predictions would help management 

personnel assess the extent and location of areas 

vulnerable to invasion (at the grain of analysis). 

Because only a few occurrence records are 

available at the beginning of an invasion by 

a species, it is unlikely that they represent its full 

environmental tolerances. However, due to the 

advantages mentioned above, models based on 

remotely sensed vegetation-index coverages 

might be able to characterize important qualities 

of the sites inhabited to date and yield useful 

maps of the areas most vulnerable to invasion in 

the region. The aim is not for management 

personnel to search exhaustively for established 

propagules of an invasive species in all map 

pixels where it is predicted. Rather, assessing the 

suitability for future spread in a newly invaded 

region is critical to focusing management efforts 

and justifying control measures. 

Purple Loosestrife in Kansas-Purple loosestrife 

(Lythrum salicaria) is an herbaceous, perennial, 

wetland plant native to Eurasia that has been 

detrimental as an invasive species in the United 

States and Canada (Stuckey, 1980; Thompson et 

al., 1987; Hight et al., 1995; Whitt et al., 1999). 

The spread of the species through the wetlands 

of North America began in New England in the 

early 1800s, and it has now been reported in all 

48 of the contiguous United States except 

Florida (Thompson et al., 1987; Malecki et al., 

1993; Blossey et al., 2001). The species is a strong 

competitor to native species and can dramatically 

alter wetland habitat (Gaudet and Keddy, 1995; 

the state (circles in C; one locality record per county). The composite models shown here represent the 

superimposition of 10 models (gray = 1 to 9 models predicting presence; black = all 10 models). The state 

appears distorted lengthwise due to projection in geographic coordinates. County abbreviations follow: BT, 

Barton; DP, Doniphan; DG, Douglas; HV, Harvey; JO, Johnson; KM, Kingman; LN, Linn; PT, Pottawatomie; SN, 

Shawnee; SF, Stafford; and WO, Woodson. 
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Twolan-Strutt and Keddy, 1996; but see Morri 

son, 2002). It often colonizes rapidly via water 

courses, especially disturbed areas, such as 

roadside ditches (Lindgren, 2003). Control 

efforts have met only limited success, especially 

because established stands of the species pro 

duce large seed banks (Blossey et al., 2001; 

Denoth and Myers, 2005; Henne et al., 2005). 

Purple loosestrife has been recorded recently 

at several sites in eastern and central Kansas 

(Fig. IA). The appearance of this invasive has 

caused concern for natural systems along rivers, 

creeks, and other areas with wetlands. Because 

gradual yet dramatic climatic gradients exist in 

Kansas (especially a progressive decrease in 

precipitation from east to west), the suitability 

of areas in central and western parts of the state 

for purple loosestrife is not immediately clear 

(see Kiuchler, 1974, for a potential vegetation 

map of Kansas). Special concern exists for 2 of 

the most critical stopover points for migratory 

birds in the Great Plains: Cheyenne Bottoms 

Wildlife Management Area and Quivira National 

Wildlife Refuge (Zimmerman, 1990; Skagen and 

Knopf, 1994; W. Scott, pers. comm.), 2 wetland 

complexes that lie in relatively drier regions to 

the west of known records of purple loosestrife 

in the state. A prior study modeling the potential 

distribution of the species at a continental extent 

by using traditional climatic data yielded only 

coarse-grain predictions that were inconclusive 

for much of Kansas (Welk, 2004). Hence, fine 

grain modeling of the potential distribution of 

the species in the region could indicate which 

areas are vulnerable to invasion by purple 

loosestrife and, thus, prove beneficial for de 

veloping a management plan. 

Our study extends beyond past research 

linking remotely sensed data to the distribution 

of purple loosestrife. A previous study used high 

resolution photography to map the spatial extent 

of existing stands of purple loosestrife (Frazier 

and Moore, 1993). In contrast, we apply GIS 

based distributional modeling in a predictive 

framework. Because the satellite data used here 

are much coarser than the size of most known 

patches of the species in Kansas, existing stands 

of purple loosestrife contribute only insubstan 

tially to the reflectance parameters of a given 

map pixel, avoiding a potential circularity in the 

modeling process. Hence, the vegetation-index 

data are not being used to detect the presence of 

purple loosestrife and then identify similar areas 

in an effort to map current stands of the species. 

Rather, the present study uses vegetation-index 

data to characterize the phenological patterns of 

vegetation patches that are likely vulnerable to 

invasion by purple loosestrife and then maps 

such areas. Furthermore, because most wetlands 

in Kansas are too small to identify using satellite 

imagery, the current models do not characterize 

wetland vegetation per se, but rather any larger 

vegetation assemblage associated with wetland 

habitats (where purple loosestrife has been 

found). Hence, purple loosestrife would be 

expected to invade only wetland habitats within 

the areas identified as generally suitable by 

modeling, an issue of scale and grain common 

in distributional modeling that must be taken 

into account in interpreting the predictions 

(Mackey and Lendenmayer, 2001). 

METHODs-GARP and Distributional Modeling-Recent 
ly, several approaches to predictive modeling of the 

geographical distributions of species have been de 

veloped in a Geographic Information System (GIS) 

environment (Nicholls, 1989; Skov, 2000; Scott et al., 

2002). Many modeling techniques require presence 

absence data sets, which are only rarely available (see 

Elith, 2000; Guisan and Zimmerman, 2000). The 

Genetic Algorithm for Rule-set Prediction (GARP) 

has shown utility under a wide variety of conditions 

with presence-only occurrence data, which are more 

commonly obtainable (e.g., Elith, 2000; Anderson et 

al., 2003; Peterson and Robbins, 2003; Wiley et al., 

2003). 
GARP uses environmental data and localities of the 

occurrence of a species to produce a model of its niche 

requirements in those ecological-environmental di 

mensions (Stockwell and Noble, 1992; Stockwell and 

Peters, 1999). The ecological model is then projected 

into geographical space to yield a map of the potential 

distribution of the species in the study region. Due to 

various possible biotic interactions and contingent 

historical causes (e.g., failure to disperse), the species 

might not inhabit all pixels of potential distribution 

(Anderson et al., 2002a, 2002b). Furthermore, human 

modifications of the landscape might further alter 

(usually reduce) the current distribution of a species 

(Anderson and Martinez-Meyer, 2004). Rather than 

a drawback, however, this "overprediction" derives 

from the niche-based nature of the models and actually 

allows for synthetic evolutionary and ecological appli 

cations, including prediction of the potential distribu 

tions of invasive species (Peterson et al., 1999; 

Anderson et al., 2002a, 2002r, Peterson et al., 2003). 

To build the model, GARP evaluates non-random 

associations between environmental characteristics of 

localities of known occurrence versus those of the 

overall study region. It works in an iterative process of 

rule selection, evaluation, testing, and incorporation or 

rejection. First, a method is chosen from a set of 

possibilities (e.g., logistic regression and bioclimatic 

envelope rules) and is applied to the data. Then, a rule 
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is developed and predictive accuracy (sensu Stockwell 

and Peters, 1999) is evaluated via map pixels in 

trinsically resampled from both the known distribution 

and from the study region as a whole. The change in 

predictive accuracy from one iteration to the next is 

used to evaluate whether a particular rule should be 

incorporated into the rule-set. As implemented here, 

the algorithm runs either 1,000 iterations or until the 

addition of new rules has no appreciable effect on the 

intrinsic accuracy measure (convergence). 

Data Sources-Geographic coverages with 250-m X 

250-m pixels comprised the remotely sensed data. We 

used a time series of 6 Normalized Difference 

Vegetation Index (NDVI) 16-day composite coverages, 

drawn from the Moderate Resolution Imaging Spec 

trometer (MODIS) 250-m Vegetation Index data 

set (MOD13Q1; http://edcimswww.cr.usgs.gov/pub/ 
imswelcome/). They corresponded to composite end 

dates of 25 June, 29 September, 16 October, 31 

October, and 15 November 2000; and 16 January 

2001 (the only dates available at the time). NDVI is 

calculated as (near-infrared - red)/(near-infrared + 

red), producing values ranging from -1.0 to 1.0. 

Because it is generally correlated with photosynthetic 

activity, NDVI summarizes quantity and vigor of green 

vegetation (Tucker, 1979; Jackson et al., 1983). High 

positive NDVI values indicate high densities of green 

vegetation, while values near or below zero are 

characteristic of land-cover types that lack green 

vegetation, such as water, soil, or impervious urban 

surfaces (e.g., asphalt, concrete). While raw NDVI data 

sets are most often used for studies focused on 

vegetation, they can also be used for land-cover 

mapping, particularly when a time-series of data 

(several months or more) is available (Loveland et 

al., 1991; Strahler et al., 1999). In this study, we used 

raw NDVI values because they are strongly correlated 

with biomass and leaf area. 

Locality data correspond to information provided by 

the Kansas Department of Agriculture and to speci 

mens housed in the McGregor Herbarium, University 

of Kansas, Lawrence (Fig. IA). These records derive 

from ad hoc surveys and opportunistic collecting. As 

with most presence-only data sets (especially those 

associated with museum and herbarium collections), 

they do not include data regarding the absence of the 

species from other sites in the region. Nor do we 

integrate any information regarding abundances 

(which is generally lacking in such data sources). 

Localities without GPS readings were georeferenced to 

the nearest minute using various detailed maps. Thus, 

the geographical coordinates for many of the localities 

are accurate only to ca. 1 to 2 km. This lack of precision 

(less than the resolution of the vegetation-index data) 

must be taken into account in evaluating the models 

(see below). Because these current occurrence locali 

ties along an active colonization front likely do not 

represent the full ecological tolerances of the species, 

the resulting models represent conservative estimates; 

the true potential distribution for the species might be 

substantially larger than that predicted here. 

Model Building-To evaluate the efficacy of modeling 

based on the current data sets, we conducted a series of 

validation tests. In distributional modeling, known 

occurrence localities are commonly divided at random 

into 2 groups: a training (calibration) data set used to 

create the models and a test (validation) data set used 

to evaluate them (Fielding and Bell, 1997; Peterson et 

al., 2002). A one-tailed X2 statistic can then be 

employed to determine whether test localities fall into 

regions of predicted presence more often than 

expected by chance, given the proportion of map 

pixels predicted present by the model. The indepen 

dent test data set thus provides an extrinsic measure of 

model significance (better than random prediction). 
In addition to statistical significance, good models 

should also show low (or zero) omission of test 

localities (Peterson et al., 1999; Anderson et al., 

2002a, 2003). 
Thus, we partitioned the known locality records of 

purple loosestrife in Kansas by randomly dividing them 

into training and test data sets. Each time we did this, 

the training data set approximated the data available 

early in a regional colonization process (a small 

number of locality records known from a marginal 

area of the study region). To do so, we made 5 training 

data sets by randomly selecting one record from each 

of 3 northeastern counties with multiple locality 

records for the species (Doniphan County, 32 records; 

Douglas County, 2 records; and Shawnee County, 3 

records). These counties are in northeastern Kansas, 

the area of the state first invaded by the species. Each 

training data set was selected independently; thus, 

a locality could be chosen in more than one of the 5 

training data sets. For each data partition, all other 

localities in the state (i.e., those not selected for the 

training data set) formed the respective test data set, 

which was used only for evaluating the results. Use of 

only 3 locality records constitutes a minimal training 

data set for GARP modeling (Stockwell and Peterson, 

2002b). However, such a situation would likely be 

typical during early stages in the invasion by a species. 

Thus, these analyses provide a difficult, yet realistic, test 

for GARP in this pilot implementation. 

Next, to estimate the potential distribution of the 

species in Kansas with a larger, less-biased set of 

localities, we also conducted an analysis based on 

locality records from all of the 9 counties where purple 

loosestrife is known in Kansas. For counties with 

multiple localities, one was randomly selected for 

inclusion in the training data set (i.e., sampling was 

stratified by county to minimize bias due to the 

direction of colonization from the northeast, from 

which the preponderance of records derive). Hence, 

the final training set held 9 localities, and all other 

records were again set aside as a test data set. 

Owing to strong stochastic elements characteristic of 

genetic algorithms, no unique solution is produced by 

GARP. Hence, production of multiple models is 

necessary to account for variability among independent 

runs of model building (Anderson et al., 2002a, 2003; 

Lim et al., 2002; Wiley et al., 2003). To do so, we made 

10 models for each training data set. The 10 models for 

each training data set were then combined to create 

a composite model of the potential distribution of the 

species across the study region. Because all models 

showed zero intrinsic omission error (omission of 

training localities), the model-selection procedure 

outlined in Anderson et al. (2003) was not necessary. 

The composite model for each training data set likely 
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TABLE 1-Results of quantitative tests of the predicted potential distribution of purple loosestrife (Lythrum 

salicaria) along an active invasion front in Kansas. Models were made using remotely sensed MODIS vegetation 

index data and the Genetic Algorithm for Rule-set Prediction (GARP). Results are presented for each of 5 random 

data partitions of occurrence localities into training data sets (for making models; one locality from each of 3 

northeastern counties) and test data sets (for evaluating models; the remaining 43 records in the state; see Fig. 1). 

A one-tailed x2 statistic was employed to determine whether test localities fell into regions predicted present in the 

composite model (pixels predicted by any of the 10 original models made for the respective training data set) 

more often than expected by chance, given the proportion of map pixels predicted present by the composite 

model (area). All test localities falling outside the predictions fell within 2 km of pixels of predicted presence and, 

thus, within the radius of possible error in the coordinates of the locality records. 

Data partition Area Test localities in/total x2 P Test localities within 2 km/total 

1 0.373 32/43 25.36 <0.001 43/43 

2 0.301 26/43 18.86 <0.001 43/43 

3 0.355 30/43 22.08 <0.001 43/43 

4 0.330 29/43 23.02 <0.001 43/43 

5 0.349 30/43 23.08 <0.001 43/43 

approximates the potential distribution of the species 

better than any single model by revealing any 

consistent signal present in most models, and we use 

the composite models as our best estimates of the 

potential distribution of the species in the study region. 

Pixels predicted by all 10 original models thus reflect 

a stronger prediction than pixels predicted by only one 

original model. The analyses yielded a total of 6 

composite models, one for each of the 5 training data 

sets based on localities from northeastern Kansas, and 

one for the training data set that included one record 

from each county in the state where the species is 

known. 
Many of the present locality records for purple 

loosestrife are accurate only to ca. 1 to 2 km (see Data 

Sources). For testing significance in the X2 analyses, we 

maintained a strict in-out criterion for the test localities 

(not allowing any radius of error around the locality 

records). However, in interpreting extrinsic omission 

rates (omission of test localities), we took into account 

the accuracy of the locality records by accepting those 

falling within 2 km of predicted areas. 

RESULTS-The composite models made using 

each of the 5 training data sets of locality records 

from the 3 northeastern counties indicated areas 

of potential distribution for purple loosestrife 

extending throughout much of eastern and 

central Kansas, as well as in riverine and irrigated 

areas in the western part of the state (Fig. 1B). 

These models predicted localities from the 

corresponding test data sets significantly better 

than expected at random. Here, 26 to 32 of the 

43 test localities fell in pixels predicted by at least 

one of the 10 original models (26 to 40% strict 

omission; Table 1; one-tailed X21 = 18.9 to 25.4; 

P < 0.001). More importantly, all test localities 

falling outside areas predicted by the corre 

sponding composite model lay within 2 km of 

predicted pixels (and thus within the radius of 

possible error in the coordinates of the locality 

records). In fact, for these analyses, all test 

localities fell either in or within 2 km of pixels 

predicted by all 10 original models. Thus, the 

models achieved not only high statistical signif 

icance, but also negligible extrinsic omission in 

areas predicted with high support (Fig. IB). For 

each of these data sets, the composite model 

indicated areas of potential presence for the 

species at both Cheyenne Bottoms Wildlife 

Management Area and Quivira National Wildlife 

Refuge with high support (all 10 original models 

predicting presence for at least part of each 

wetland). 

The composite model for the training data set 

based on one locality per county yielded a similar 

prediction (Fig. IC). In that analysis, 34 of the 37 

test localities lay in pixels predicted by at least 

one original model, and all test localities fell 

within 1 km of pixels predicted present by all 10 

models. The same general geographical patterns 

were found as in the preliminary models, but 

with a moderately stronger prediction in central 

and western Kansas (Fig. IC). Again, Cheyenne 

Bottoms Wildlife Management Area and Quivira 

National Wildlife Refuge were strongly pre 

dicted, with map pixels at these sites indicated 

by all 10 original models. 

DISCUSSION-Because of the non-equilibrium 

nature of the ongoing colonization of Kansas 

from the northeast by purple loosestrife, these 

models made by using the localities currently 

known in the state likely represent a conservative 
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(best-case) scenario of the potential distribution 

of the species in the region (at the present grain 

of analysis). Nevertheless, even with few and 

biased locality data (Stockwell and Peterson, 

2002a, 2002b), the models predicted even distant 

test localities with negligible omission error, 

indicating surprisingly low overfitting of the 

training data. Combining climatic or topograph 

ical data with vegetation-index coverages might 

be advantageous in some circumstances. Howev 

er, due to the low omission error found in the 

present study, the addition of other variables is 

apparently not necessary in this system to predict 

other known occurrences adequately at this 

grain of analysis. 

However, most wetlands in Kansas are too 

small to identify using satellite imagery. Thus, 

the grain of our analyses was larger than most of 

the actual wetland patches purple loosestrife is 

likely to invade. Due to these factors, of the areas 

identified as generally suitable by the models, we 

expect purple loosestrife to invade only wetland 

habitats present within such pixels (Shamsi and 

Whitehead, 1977; Stuckey, 1980; Morrison, 2002; 

Lindgren, 2003; see also Mackey and Lenden 

mayer, 2001; Pearson et al., 2004). 

The composite model resulting from the 

analysis based on one locality per county 

represents our most realistic estimate of the 

potential distribution of the species in the 

region, albeit probably still conservative at this 

grain of analysis. This model indicated a high 

risk of invasion by purple loosestrife for large 

areas of Kansas (Fig. 1C; pixels predicted by all 

10 models represented the areas with highest 

risk). In addition to the success of the quantita 

tive model-validation tests, the widespread pre 

diction in eastern and central Kansas, but narrow 

prediction in western Kansas (confined largely to 

watercourses) makes sense and lends intuitive 

credibility to the utility of this method. Chey 

enne Bottoms Wildlife Management Area and 

Quivira National Wildlife Refuge are predicted 

to be at high risk for invasion, with map pixels 

corresponding to those sites predicted by all 

models. The general similarity to the previous 

predictions (which were based on only 3 

localities from northeastern Kansas) suggested 

robustness to the small and geographically 

biased samples of the first analyses. Areas 

predicted by the model are likely vulnerable to 

invasion (because the model indicated their 

suitability for the species), and the high capacity 

for dispersal and strong competitive ability of the 

species increases the chances that it will reach 

and colonize these areas (Thompson et al., 1987; 

Gaudet and Keddy, 1995; Twolan-Strutt and 

Keddy, 1996). However, the best-case nature of 

these analyses (which were performed using non 

equilibrium records) cautions against conclud 

ing that areas not predicted by the model are 

fully safe. Effective 1 January 2003, a quarantine 

for purple loosestrife was established in the state 

by the Kansas Department of Agriculture, and 

both control and monitoring efforts continue 

(W. Scott, pers. comm.). 

This modeling approach (using remotely 

sensed data and current records from the region 

being invaded) might be useful in predicting the 

regional colonization potential of other recently 

detected nonnative species before definitive 

studies can be undertaken. Even given the 

advantages of remotely sensed vegetation-index 

data, models based on non-equilibrium occur 

rence records might still be biased by spurious 

correlations between the few known nonnative 

records and patterns of reflectance present in 

the base coverages. Hence, such models are 

probably not useful in anticipating the entire 

geographical potential of an invasion. In addi 

tion, species are only likely to inhabit appropri 

ate habitats within the map pixels used in the 

modeling analyses. Nevertheless, our approach 

shows promise for minimizing the effects of 

biases associated with the training localities 

(which are highly problematic with traditional 

climatic and topographic data sets; e.g., Welk, 

2004) and for anticipating the next steps of an 

invasion. The vegetation-index data used here 

are strongly related to phenology and were 

highly successful in predicting the occurrence 

of purple loosestrife, a wetland plant. Vegetation 

index data might not be as useful for modeling 

other types of species, and future research 

should explore the generality of these results 

for other taxa, as well as the relative utility of 

vegetation-index data sets from various seasons. 

In addition, other (i.e., non-MODIS) remotely 

sensed data sets might be useful for similar 

applications (e.g., Egbert et al., 2002). Similarly, 

in addition to use with GARP, this approach 

could be applied with other presence-only 

distributional-modeling algorithms (see Elith, 

2000; Graham et al., 2004; Elith et al., 2006). 
Finally, examination of the rule-sets produced by 

GARP (or other niche-based models produced 
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by other algorithms) could provide information 

regarding the conditions required by the species 

but is beyond the scope of the current paper. 
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