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Abstract. Drought and heat events affect the uptake and se-
questration of carbon in terrestrial ecosystems. Factors such
as the duration, timing, and intensity of extreme events influ-
ence the magnitude of impacts on ecosystem processes such
as gross primary production (GPP), i.e., the ecosystem up-
take of CO2. Preceding soil moisture depletion may exac-
erbate these impacts. However, some vegetation types may
be more resilient to climate extremes than others. This effect
is insufficiently understood at the global scale and is the fo-
cus of this study. Using a global upscaled product of GPP
that scales up in situ land CO2 flux observations with global
satellite remote sensing, we study the impact of climate ex-
tremes at the global scale. We find that GPP in grasslands
and agricultural areas is generally reduced during heat and
drought events. However, we also find that forests, if consid-
ered globally, appear in general to not be particularly sen-
sitive to droughts and heat events that occurred during the
analyzed period or even show increased GPP values during
these events. On the one hand, normal-to-increased GPP val-
ues are in many cases plausible, e.g., when conditions prior to
the event have been particularly positive. On the other hand,
however, normal-to-increased GPP values in forests may also
reflect a lack of sensitivity in current remote-sensing-derived
GPP products to the effects of droughts and heatwaves. The

overall picture calls for a differentiated consideration of dif-
ferent land cover types in the assessments of risks of climate
extremes for ecosystem functioning.

1 Introduction

We expect that climate change will lead to increases in
frequencies, durations, intensities, and spatial extents of
droughts and heatwaves in the next decades (Meehl et al.,
2000; Olesen and Bindi, 2002; Seneviratne et al., 2012;
Coumou and Robinson, 2013; Cook et al., 2015; Zscheis-
chler and Seneviratne, 2017). Ecosystems will respond to the
events ahead in multiple ways. In particular the processes
controlling the terrestrial carbon balance, i.e., photosynthe-
sis and respiratory processes as well as fires and, for ex-
ample, pest-induced mortality, are expected to be affected
(Peuelas et al., 2004; Ciais et al., 2005; Vetter et al., 2008;
Reichstein et al., 2013; Bastos et al., 2014; Yoshida et al.,
2015; Wolf et al., 2016; Brando et al., 2019) (for a recent
review see Sippel et al., 2018). Given that these responses
represent feedbacks to the coupled climate–ecosystem dy-
namics, it is important to understand which factors generally
influence the magnitudes of such impacts at the global scale
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(Frank et al., 2015). Previous studies have shown that event
duration can be as important as intensity in controlling the
reduction of gross primary production (GPP), which repre-
sents the total ecosystem carbon uptake (Granier et al., 2008;
von Buttlar et al., 2018; Orth and Destouni, 2018). In par-
ticular, compound extreme events, e.g., the combination of
drought and heat stress, can increase the impact on GPP as
compared to singular stressors (Ciais et al., 2005; AghaK-
ouchak et al., 2014; Zscheischler et al., 2018; von Buttlar
et al., 2018). Several case studies point to the crucial role of
timing of the extreme event in influencing the magnitude of
impacts on ecosystem functioning. Warm and early springs
may partly compensate for severe carbon impacts of summer
droughts (Wolf et al., 2016). In contrast, soil moisture deple-
tion in spring can even enhance carbon losses during summer
(Buermann et al., 2013; Sippel et al., 2017a; Buermann et al.,
2018).

One important aspect is the question of how strongly land
cover types modulate drought and heat impacts on the fun-
damental processes controlling ecosystem carbon dynamics,
such as gross primary production, ecosystem respiration, and
net ecosystem exchange. Evidence from eddy covariance sta-
tions (von Buttlar et al., 2018) and case studies using spa-
tiotemporal remote-sensing-derived data (Wolf et al., 2016;
Flach et al., 2018) suggest that certain ecosystems are less
vulnerable to heat and drought events than others. However,
the question of to what degree land cover types shape the im-
pacts of droughts and heatwaves globally remains unclear.
Here we aim to specifically investigate the importance of
land cover type in controlling the impacts of climate ex-
tremes relative to other factors such as duration and mag-
nitude of the extreme event.

When discussing impacts of climate extremes, the crucial
question is their definition. One option is to use values over
some global thresholds to detect extremes, e.g., to detect tem-
peratures above 25 or 30 ◦C and to investigate the associated
anomaly in vegetation productivity. Another option is to de-
fine extreme events relative to some locally varying thresh-
old, e.g., defined by the 95th percentile of the distribution of
the data. Here, we rely on the latter definition, and we refine
the definition by also taking a joint multivariate distribution
of the data with regionally varying thresholds into account
(Flach et al., 2017, 2018). Furthermore, we restrict our anal-
ysis to those events that can also be considered a relative
drought and heat event. We estimate anomalies regionally,
i.e., defining extreme events relative to the typical conditions
of the regional growing season. We apply this method jointly
to air temperature, surface moisture, and incoming shortwave
radiation as fundamental variables to detect relative extreme
events. Each event describes a spatiotemporal context that
can be described by its spatial extent and duration (Zscheis-
chler et al., 2013; Mahecha et al., 2017). The impacts are then
assessed in these areas as anomalies in gross primary pro-
duction (GPP). Our study addresses the impacts in the time
range between 2003 and 2018 globally in different land cover

Table 1. Grouping of the different ecosystems in the categories for-
est, agriculture, and other.

Land cover class Category

Mixed forest Forest
Deciduous broadleaf forest Forest
Evergreen needleleaf forest Forest
Deciduous needleleaf forest Forest
Evergreen broadleaf forest Forest
Woody savannas Other
Savannas Other
Grasslands Other
C3 cropland/natural vegetation mosaic Agriculture
C3 croplands Agriculture
C4 fraction cropland/natural vegetation mosaic Agriculture
C4 fraction croplands Agriculture
Open shrublands Other
Closed shrublands Other
Permanent wetlands Other
Urban and built-up areas Other

classes and builds on nonlinear predictive models to under-
stand the importance of the driving factors (for details see the
Methods section, Sect. 2).

In the following, we will first start with the methods
(Sect. 2), including subsections on the data, the preprocess-
ing, the methods used for anomaly detection, the subsequent
detection of spatiotemporally connected extreme events, and
finally the statistical model to infer the main drivers of the
GPP response during droughts and heatwaves. In the Results
section (Sect. 3), we will first show more generally the as-
sociated productivity during droughts and heatwaves in for-
est ecosystems and agricultural systems. Then, we will ex-
plain the observed responses, first with a simple graphical
approach, and we will then quantify the drivers of the ob-
served responses with a statistical model. In the Discussion
section (Sect. 4), we will first elaborate on other studies,
which found contrasting responses to climate extremes, and
will then show how our findings can be interpreted (with a
specific focus on forest ecosystems). Finally, we discuss po-
tential biases and limitations of our approach and of the data
used, and we finish with some conclusions (Sect. 5).

2 Methods

For detecting hydrometeorological extreme events across
ecosystems, we need (i) a set of variables describing hydrom-
eteorological extreme events and their impacts on productiv-
ity (Sect. 2.1), (ii) a detection algorithm (Sect. 2.2), and (iii)
an approach to evaluate the hydrometeorological extremes
with regard to responses in different ecosystems (Sect. 2.4).
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2.1 Data

To detect hydrometeorological extreme events, we use 2 m
air temperature, incoming shortwave radiation (both are
from ERA5, original resolution 0.25◦; Copernicus Climate
Change Service, 2017), and surface moisture (v3.3b, origi-
nal resolution 0.25◦ from the Global Land Evaporation Am-
sterdam Model (GLEAM) framework; Miralles et al., 2011;
Martens et al., 2017). We consider surface moisture as a hy-
drometeorological variable due to its importance for drought
detection although it is influenced by vegetation. The impacts
of the identified extremes are quantified as anomalies in gross
primary productivity (GPP, original resolution 1/12◦ from
the remote-sensing-driven FluxCom product (FLUXCOM-
RS); Tramontana et al., 2016). Anomalies in GPP are com-
puted as deviations from the mean seasonal cycle exclud-
ing the extreme year itself. The selected hydrometeorological
variables have global coverage and a common spatial resolu-
tion of 0.25◦, and they are used at an 8 d temporal resolution
covering the 2003–2018 period. The time period is chosen
as it represents the common period of all data sets used (at
the time of the analysis). Land cover classes at 1/12◦ reso-
lution (from the year 2010) were obtained from the Moder-
ate Resolution Imaging Spectroradiometer (MODIS, collec-
tion 5; Friedl et al., 2010). We group the available land cover
classes into forest ecosystems (land cover classes containing
“forest”), agricultural ecosystems (containing “crop”), and
all remaining land cover types (Table 1).

2.2 Preprocessing and anomaly detection

We compute deviations from a smoothed median seasonal
cycle in the hydrometeorological variables, which we denote
as anomalies. For detecting extreme events, we apply a mul-
tivariate anomaly detection procedure described in detail in
Flach et al. (2018). It (i) accounts for seasonal changes in
the variance of the anomalies using a moving window tech-
nique and (ii) uses climatic similarities to obtain more robust
thresholds for extreme event detection via spatial replicates
as proposed by Mahecha et al. (2017) (for more details see
Sect. 2.3).

The extreme event detection algorithm itself is applied to
the set of hydrometeorological anomaly time series and re-
turns anomaly scores computed by kernel density estimation.
Kernel density estimation showed good performance among
other possible methods and accounts for nonlinearities in the
data (Flach et al., 2017). The resulting anomaly scores can
be interpreted as a univariate index of deviation from the
general multivariate pattern. We consider the highest 5 % of
the anomaly scores to be extreme events (95th percentile),
which is within the typical range of percentiles defining ex-
treme events (McPhillips et al., 2018). For a detailed step-
by-step description to detect multivariate anomalies, see Ap-
pendix A.

Figure 1. Map of the first three leading principal components (PCs)
colored according to the color space hue (PC1), saturation (PC2),
and lightness (PC3). Coloring according to hue (i.e., the color wheel
specifies the tone of the color), saturation (intensity of the color
ranging from grey to pure color), and lightness (brightness of the
color, ranging from black to white) is one way to get an impression
of three-dimensional data on a map.

Note that the extreme events so far are multivariate ex-
treme events in any direction of the variables, i.e., depending
on the input variables. They may contain heatwaves as well
as cold spells and droughts as well as extremely wet peri-
ods, as well as their compounding combinations. A selection
of droughts and heatwaves takes place at a later step (see
Sect. 2.4).

2.3 Climatic similarities to obtain spatial replicates

We follow the procedure described and developed by Ma-
hecha et al. (2017), which was extended to the multivariate
case by Flach et al. (2018). In summary, the used approach
defines climatically and phenologically similar regions by
using the leading principal components (here three) of the
seasonal cycles of the hydrometeorological variables (tem-
perature, surface moisture, radiation) in addition to the vege-
tation proxy (gross primary productivity). Similar cycles ap-
pear in the same region of the obtained principal component
space (Fig. 1). Thus, a simple classification can be obtained
by dividing the principal component space into equally sized
cubes. Here we use 25 breaks for each of the first three princi-
pal components, which leads to 814 classes globally of sim-
ilar climate and phenology. For each pixel, we sample four
random spatial replicates from each region to efficiently run
the anomaly detection workflow globally (previously the pro-
cedure was used for Europe only). The number of random
spatial replicates depends on the number of observations in
each 3-month period and the length of the time series (here
16 years of data, each with 11 observations per 3-month pe-
riod, leads to 176 observations for each spatial replicate and
thus 880 observations for the pixel and its four spatial repli-
cates), which is a reasonable compromise between stability
of the results for extreme event detection and computational
efficiency to run the anomaly detection procedure globally.
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2.4 Framework for extracting event-based statistics

We use the extracted binary information (extreme/non-
extreme) to compute statistics based on the spatiotempo-
ral structure of the extreme events similar to Lloyd-Hughes
(2011), Zscheischler et al. (2013), Mahecha et al. (2017),
and Chen et al. (2019). Extreme voxels are considered to be-
long to the same extreme event if they are connected within
a 3 ×3× 3 (long × lat × time) cube. Note that this defini-
tion includes connections over edges. We compute event-
based statistics from the 1000 largest extreme events glob-
ally as introduced also for the Russian heatwave (Flach et al.,
2018). Specifically, we calculate affected volume, centroids,
mean, and integral of GPP separately for positive and nega-
tive anomalies, as well as the distance between the centroids
of the positive and the negative anomalies of GPP during the
event. We consider an event to be predominantly a relative
drought (relative heatwave) if more than 50 % of the surface
moisture (temperature) values during the extreme event are
beneath (exceed) the 5th (95th) percentile of the variable. We
select drought (n = 98) and heat (n = 44) events and com-
bined drought–heat events (n = 71), which are taking place
during the growing season (total n = 213). Growing season
is defined here to be an extreme event taking place in the half
year of the GPP maximum (± 3 months). Our statistics ac-
count for the spherical geometry of the Earth by weighting
with the cosine of latitude.

Furthermore, we evaluate if the positive and negative
anomalies in GPP during the event predominantly have a
spatial or temporal component. Therefore, we split the event
into parts with enhanced and parts with reduced productiv-
ity. Between those two parts, we compute the spatiotempo-
ral distance between the centroids of each part. We consider
positive and negative GPP anomalies to occur predominantly
spatially if the temporal distance of the centroids is almost
simultaneous, i.e., less than one time step in the data (8 d).
GPP anomalies are considered to be predominantly tempo-
rally changing if the spatial distance of the centroids is less
than 110 km (approximately 1◦ at the Equator). Both spatial
and temporal components can be found for centroids which
are more than 110 km and more than 8 d away.

2.5 Statistical model of GPP during extreme events

As we detect heatwaves and droughts relative to the mean
seasonal patterns, positive or negative GPP anomalies during
the droughts and heatwaves may additionally be influenced
by differences in the conditions in the hydrometeorologi-
cal variables during the extreme event, differences in back-
ground climate in which the vegetation is growing, or dura-
tion and affected area of the event. We use gradient boosting
machines (Friedman, 2001) to predict average GPP anoma-
lies during the event as a function of mean surface moisture,
mean temperature, mean radiation during the event, duration,
affected area, land cover class, and mean climate during the

growing season, i.e., mean temperature and surface moisture
during all growing seasons between 2003 and 2018. We tune
model parameters by following a workflow described in Elith
et al. (2008) using a hyper grid search from 100 different ran-
dom initializations of splitting the data into training (75 %)
and testing data (remaining 25 %). We compute uncertainty
of the variable importance measure described in Friedman
(2001) from each of the 100 best models of the hyper grid
search. Additionally we use an approach based on local in-
terpretable model-agnostic explanations (LIME), which tries
to predict each single observation in a black box model based
on locally weighted regression (Ribeiro et al., 2016). Here,
this approach helps to understand (1) the effect of specific
land cover classes and (2) the direction of the effect.

3 Results

The focus of this study is to better understand the impact of
droughts and heatwaves on different vegetation types. There-
fore, we detect multivariate extreme events relative to the re-
gional typical conditions during the growing season. Further-
more, we use a global upscaled product of GPP to estimate
the impact of the detected drought and heatwaves on differ-
ent vegetation types. Our analysis based on a 5 % threshold
in the multivariate anomaly scores leads to a detection of 213
events (98 relative droughts, 44 relative heatwaves, 71 com-
pound drought–heatwaves) between 2003 and 2018.

If we only discriminate forest and agricultural ecosys-
tems, we find substantial differences in the direction of the
GPP anomalies during extreme droughts and heatwaves in
the growing season. In agricultural (C3 and C4 croplands as
well as C3 and C4 fractions croplands/natural vegetation mo-
saics) and other nonforest land cover types (savannas, grass-
lands, open and closed shrublands, woody savannas, perma-
nent wetlands, and urban and built-up areas), GPP was re-
duced during the identified events (agricultural land cover
types: 64 %; 56 %–72 %, 95 % confidence interval; reduc-
tion, Fig. 2a; other ecosystems 60 %; 53 %–67 %; Fig. 2c).
In forested areas, instead, a majority of 71 % (63 %–78 %) of
events show enhanced productivity (Fig. 2b). The dichotomy
described in the instantaneous response patterns confirms the
overall statistics. Events with their centroid in France 2003,
Russia 2010, and Germany 2018 all show bidirectional GPP
anomalies that coincide with land cover type transitions be-
tween predominantly forested land cover and others (a de-
tailed illustration of the different events is provided in the
Supplement). Figure 3 summarizes these findings across all
events by relating the global integral areas of positive and
negative anomalies in GPP during extreme events to the dom-
inant land cover type. Note that the numbers in Fig. 3 are pro-
portions of the affected space–time volume of the extreme
events and thus slightly different from the proportions of the
number of events reported earlier in this paragraph. Thus,
Fig. 3 also indicates that it does not matter whether we obtain
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Figure 2. Relative drought and heat events colored with the relative anomaly in gross primary production for (a) agricultural, (b) forest,
and (c) other ecosystems. Point sizes are proportional to the affected volume of the space–time event. The largest and some well-known
events are labeled. Note that one single extreme event can affect adjacent grid cells. Each of these adjacent grid cells may be dominated by
a different ecosystem type. These extreme events will appear more than once, i.e., in (a), (b), and (c), each with the grid cells of part of the
extreme event affecting the respective ecosystem. Labels are as follows: compounding drought and heatwave in the United States 2012, most
commonly known as US drought 2012 (USA 2012); compounding European drought and heatwave 2003, commonly known as European
heatwave 2003 (Europe 2003); compounding European drought and heatwave 2018 (Europe 2018); compounding eastern European drought
and heatwave 2015 (Europe 2015); Siberian heatwave 2011 (Siberia 2011); compounding western Russian drought and heatwave 2010,
commonly known as Russian heatwave 2010 (Russia 2010); compounding Amazon drought and heatwave 2010, mostly known as Amazon
drought 2010 (Amazon 2010); drought in Brazil 2012 (Brazil 2012); compounding drought and heatwave at the Horn of Africa 2009 (Horn
of Africa 2009); compounding Indian drought and heatwave 2009 (India 2009); and compounding drought and heatwave in China 2011
(China 2011).
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Figure 3. Proportion of GPP anomalies with reduced or enhanced productivity and their distribution in the different ecosystems (growing
season events between 2003–2018). Bar sizes are proportional to the affected volume of the identified events. Numbers denote percentages of
the affected volume for each of the categories. Forests tend to be associated with enhanced productivity rates, while agricultural ecosystems
tend to be associated with reduced productivity.

the statistics on an event basis or on the basis of a space–time
volume. For both perspectives, the main message is the same:
agricultural and other ecosystems are most strongly affected
by droughts and heatwaves, whereas forests show neutral to
enhanced productivity in the majority of the cases.

The events analyzed here are based on relative radiation,
heat, and water availability anomalies (see Methods section).
To better understand the role of absolute climate conditions,
we show the reported GPP anomalies in terms of absolute
temperatures and surface moisture levels in Fig. 4a. The fig-
ure shows that reduced rates of GPP tend to coincide with
very low surface moisture and high temperature (8 d aver-
ages).

Furthermore, we show the events in climate space under
which they occur, i.e., the average temperatures during grow-
ing season and average surface moisture during growing sea-
son (Fig. 4b). Here, we can see that the events under scrutiny
are detected as extreme events relative to the normal grow-
ing season conditions. Thus, the relative drought and heat
events are occurring in very hot and dry climates (upper left
of Fig. 4c) as well as in very wet and cold climates (lower
right of Fig. 4c). We can see a tendency towards stronger neg-
ative impacts of heat and drought events in hotter climates
(Fig. 4c). A similar effect is not so clearly visible for very
hot and dry climates. A reason may be a limited number of
data points towards the upper left direction in Fig. 4c. Fur-
thermore, heat and drought events in usually wet and cold
climates are not associated with negative impacts or are even
associated with an enhancement of productivity, e.g., when
more radiation or temperature is available during the event in
normally energy-limited systems.

Delineating different ecosystems within this space shows
that they are arranged along decreasing surface moisture
values. Most extreme events in forests tend to occur un-
der slightly higher surface moisture conditions compared to
agricultural and other ecosystems (Fig. 4c). Forests are hit
less frequently with critical dry conditions for which we pre-
dominantly observe reduced productivity. In contrast, we ob-

serve reduced productivity during the events for agricultural
ecosystems, which experience frequently critical hot and dry
conditions (Fig. 4c).

Figure 4a shows that temperature and soil moisture have
some effect on the direction of the impact, but it does not
consider other potentially important variables. Thus, we re-
fine our understanding of the observed patterns using a sta-
tistical model. To unravel the importance of land cover type
and other factors, we predict average GPP anomalies us-
ing gradient boosting machines (R2

= 0.43; Friedman, 2001;
Sect. 2.5) and explore their relative variable importance.
Growing season temperature, event duration, land cover type,
and surface moisture are, in decreasing order, the most im-
portant variables in the statistical model (Fig. 5a).

Apart from identifying important variables that explain the
GPP anomalies during drought and heat anomalies, we dis-
entangle the direction of each factor’s effect in the model and
in particular for specific land cover classes. Negative model
coefficients are a negative contribution of the respective vari-
able to the GPP anomaly; that is, the variable contributes to
a stronger impact. In contrast, a positive model coefficient is
associated with a positive contribution of the respective vari-
able to the GPP anomaly. Thus, positive model coefficients
weaken the impact of the extreme event, which may even
lead to an enhancement of GPP during the extreme event.

Whereas growing season temperature and duration show
a negative model coefficient (i.e., a longer duration and a
warmer climate are associated with a stronger impact), a
greater availability of radiation and higher surface moisture
during the event reduce the impact on vegetation.

Productivity in different land cover types is influenced in
contrasting ways: forest ecosystems (land cover types includ-
ing “forest” in their names) show increased average GPP dur-
ing the extreme events. In contrast, agricultural ecosystems
(land cover types including “cropland” in their names) re-
duce average GPP anomalies (Fig. 5b).

On land cover level, there is one exception of the agri-
cultural ecosystems having a more neutral model coefficient:
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Figure 4. (a) Mean temperature and surface moisture during the
relative drought and heat events and (b) growing season temperature
and growing season surface moisture for forests and agricultural
ecosystems. Size and color of the points denote the affected space–
time volume and the direction of the impact on productivity. (c)

Average conditions in temperature and surface moisture during the
events for all ecosystems. Colored lines enclose 25 % (dashed lines)
and 50 % (solid lines) of the events within forest, agricultural, and
other ecosystems.

“C3 croplands/natural vegetation mosaics”. However, “C3
croplands” itself, “C4 fraction croplands”, and “C4 fraction
croplands/natural vegetation mosaics” all show negative co-
efficients. These agricultural systems are highly managed, so
their difference may be more related to management than
to ecological differences. Mostly in the temperate and bo-

real zone mixed forests, deciduous broadleaf forests and ev-
ergreen needleleaf forests exhibit the most positive model
coefficients. In the tropical zone evergreen broadleaf forests
show the least positive model coefficient. In between forests
and grasslands (savannas), woody savannas have still con-
siderably many trees in each grid cell. They are positioned
with a positive-to-neutral model coefficient on the transition
between forests and savannas. Savannas and grasslands are
both associated with a negative model coefficient comparable
to agricultural systems. Open and closed shrublands as well
as permanent wetlands exhibit a negative coefficient. Urban
and built-up area is associated with a neutral coefficient.

We showed that the land cover type is one of the major
factors influencing the direction of the GPP anomaly dur-
ing an extreme event. A single hydrometeorological extreme
event with a given magnitude and duration can affect two
or more adjacent land cover types simultaneously with po-
tentially contrasting impacts (spatial contrasting anomalies).
Apart from an extreme event simultaneously affecting adja-
cent ecosystems with different or even contrasting impacts,
it is also possible that one ecosystem shows contrasting im-
pacts over time, i.e., with increasing duration. During startup
of the extreme event, enhanced productivity may be observed
which can turn into a contrasting reduced productivity at a
later stage of the extreme event. This temporal difference
in the response with a longer-lasting extreme event is con-
sidered to be a temporally contrasting anomaly. To explic-
itly quantify the role of spatial vs. temporal effects on the
GPP anomalies during extreme events, we split each event
into parts with enhanced and reduced GPP anomalies and
computed the centroidal distance in space and time. In fact,
positive and negative GPP anomalies mostly co-occur si-
multaneously in adjacent spatial regions (116 events of 213
events in total within ±8 d; Fig. 6). Especially for large-scale
events (large volume), a considerable distance in the anoma-
lies can be observed both in space and in time. Thus, these
extreme events show spatially as well as temporally contrast-
ing anomalies. Taking only the temporal distance into ac-
count, we have more events with enhanced productivity be-
fore reduced productivity (temporal distance <−8 d, n = 44)
than events with reduced productivity before enhanced pro-
ductivity (> 8 d, n = 33).

4 Discussion

Contrasting responses of ecosystems to climate extremes,
e.g., in the US in 2012 (Wolf et al., 2016) or in Russia in 2010
(Flach et al., 2018), are not singular cases but are shown to
be frequent phenomena in response to hydrometeorological
extreme events at the global scale. Within the same extreme
event, reduced and enhanced productivity can be observed
simultaneously in adjacent spatial regions. This finding com-
plements previous studies on temporal (Wolf et al., 2016;
Sippel et al., 2017a; Buermann et al., 2018) or spatial con-
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Figure 5. (a) Variable importance of the 10 best gradient boosting machines predicting average GPP anomalies during the events; (b) direction
and feature weight of the variables explaining GPP anomalies of the individual events based on linear regression via local interpretable
model-agnostic explanations (LIME).

trasting responses (Jolly et al., 2005; Zaitchik et al., 2006;
Lewińska et al., 2016).

This study provides evidence that the impacts of extreme
drought or heat anomalies on GPP during growing seasons
are firstly a function of event duration and long-term climate
and secondly also depend on the affected land cover type.
In particular the tendency towards positive vs. negative re-
sponses seems to be controlled by tree cover (similar to the
results of Ivits et al., 2014, and Walther et al., 2019); that is,
forests seem to show higher resilience to drought and heat
anomalies in the short term, which is reflected in a tendency

towards positive GPP anomalies during the events. However,
our results are based on events that are extreme relative to
the regional normal conditions. In the Supplement, we illus-
trate a range of events in more detail. For instance, a rela-
tive drought or heatwave in a typically wet ecosystem can
boost productivity as well as a heatwave in ecosystems that
are typically cold (see cases reported, for example, for China
2011, India 2009, and the Siberian heatwave 2011). Both wa-
ter stress and temperature affect ecophysiological processes
in a nonlinear manner. Heat events below optimal tempera-
tures enhance photosynthesis (Wang et al., 2017), or photo-

Biogeosciences, 18, 39–53, 2021 https://doi.org/10.5194/bg-18-39-2021



M. Flach et al.: Vegetation modulates the impact of climate extremes on gross primary production 47

Figure 6. Each extreme event is split into parts with enhanced and
reduced GPP anomalies. The centroidal distance between both parts
in space and time shows whether contrasting GPP anomalies are
predominantly taking place temporally, spatially, or spatiotempo-
rally. Point sizes are proportional to the event’s affected volume.

synthesis may be enhanced by the radiation surplus during
dry periods (Walther et al., 2019), especially at higher lati-
tudes (Bachmair et al., 2018) and as long as ecophysiologi-
cal limits are not violated. Yet, the prevalence of certain land
cover types is partly controlled by climatic gradients; there-
fore, land cover cannot really be considered independently
of the mean climatological conditions that likewise play a
role (Fig. 4a). Climate conditions also lead to adaptation of
physiological processes. For instance, forests in dry ecosys-
tems may be characterized by a more conservative water use
strategy (Teuling et al., 2010; van Heerwaarden and Teuling,
2014; Ramos et al., 2015) and adapted to drought compared
to analogous land cover types whose biogeographic history
experienced colder and more moderate conditions (Doughty
et al., 2015). Moreover, forests have access to deeper soil
water compared to other ecosystems (Yang et al., 2016; Fan
et al., 2017). The isohydric degree may further differentiate
the response of forests, as it differs between tree species (Ro-
man et al., 2015; Ruehr et al., 2015; Yi et al., 2017).

Our study only reports on GPP responses during the cli-
matic anomaly without considering the legacy of the events.
Responses may emerge with some time lag between weeks
and months (Schwalm et al., 2012; Ruehr et al., 2015) or even
at longer timescales (years) (Saatchi et al., 2013; Anderegg
et al., 2015). Hence, finding enhanced productivity of forests
during some heat event does not exclude increased mortal-
ity in the long term. Forest ecosystems are known to poten-
tially have a much delayed response to environmental stress,
which can trigger strong secondary impacts like insect out-
breaks (Hicke et al., 2006; Rouault et al., 2006; Allen et al.,
2010) or fires (Brando et al., 2014). In contrast, agricultural
systems are known to be very directly vulnerable to droughts
(De Keersmaecker et al., 2016; Bachmair et al., 2018). We
choose the growing season as the time period of interest,
which is notably different than summer for some regions,

e.g., in the Mediterranean where more positive responses to
warm anomalies in the cold season may be expected (Sippel
et al., 2017b) and impacts of droughts may also be less than
during the dry season (Huang et al., 2018).

Our results for gross primary productivity do not necessar-
ily translate directly into net ecosystem exchange, because
GPP and ecosystem respiration interact in a complex way
(Richardson et al., 2007). However, studying the Russian
heatwave 2010, Bastos et al. (2014) found an increase in au-
totrophic respiration rates in forests, whereas crops declined
their respiration rates. Flach et al. (2018) observed simi-
lar differences between forests and agricultural systems for
gross primary productivity as well as for net ecosystem pro-
ductivity during the Russian heatwave. This similarity would
suggest that the increase in autotrophic respiration for for-
est ecosystems during the heatwave does not offset potential
carbon gains of available radiation and temperature in this
particular energy-limited forest ecosystem. Although these
findings remain case studies which are as such difficult to
generalize, we would expect to see similar responses for net
ecosystem productivity as for gross primary productivity.

Another aspect to discuss is data quality. We use ERA5
data for radiation and 2 m air temperature. In particular for
the latter one, there are indications that 2 m air temperature
might be slightly underestimated: land surface temperature
is known to have a slight cold bias over the Iberian Penin-
sula due to the effect of prescribed vegetation and topogra-
phy (Johannsen et al., 2019). This bias might further translate
into turbulent energy fluxes and eventually also affect 2 m air
temperature. However, as we use a relative detection scheme,
a systematic seasonal cold bias in temperature would not
change the occurrence of relative heat events in our study.
In addition, it should be noted that ERA5 data have a consid-
erably better data quality than its predecessor ERA-Interim
(Johannsen et al., 2019), and it is thus preferred in this study.

Furthermore, we use GLEAM surface moisture. GLEAM
is driven by ERA5 data; thus, errors in ERA5 might further
propagate into GLEAM. Additionally, GLEAM is known
to underestimate soil-moisture–temperature coupling due to
soil and vegetation characteristics, in particular for temper-
ate and continental climates (Gevaert et al., 2017). This may
lead to an overestimation of the remaining soil moisture in
energy-limited regimes and to an underestimation of soil
moisture in water-limited regimes. It implies an underestima-
tion (overestimation) of drought intensity for energy-limited
(water-limited) regimes in our study. However, GLEAM is
still best at capturing latent heat flux dynamics compared to
other products (Gevaert et al., 2017), and it therefore seems
to be reasonable to rely on GLEAM to detect droughts and
heatwaves in our study.

Gross primary productivity from FLUXCOM-RS may
inherit errors from the underlying remote sensing prod-
ucts; these have, in particular, been discussed for tropical
forests (Asner et al., 2004; Asner and Alencar, 2010; Wu
et al., 2018). Recently, Stocker et al. (2019) showed at the
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global scale that remote-sensing-retrieved GPP underesti-
mates drought impacts due to soil moisture effects on light
use efficiency. Comparing our estimates of GPP impacts to
published data from eddy covariance stations for two case
studies (US 2012; Wolf et al., 2016; and Europe 2003; Ciais
et al., 2005; Reichstein et al., 2007) indicates that we do in-
deed underestimate GPP impacts. This lack of sensitivity of
FLUXCOM-RS GPP to droughts and heatwaves seems to be
a more general issue of GPP estimates as well as in remote
sensing in general: we suspect that in addition to the GPP es-
timates used by Stocker et al. (2019), FLUXCOM-RS GPP
also underestimates the impacts of climate extreme events
specifically for forest ecosystems. FLUXCOM-RS addition-
ally exhibits a good agreement for forests globally with GPP
estimates based on solar-induced fluorescence (Walther et al.,
2019). Thus, the lack of sensitivity to drought and heat im-
pacts in forest ecosystems may be a more general issue in
remote sensing data.

5 Conclusions

To understand the effect of different vegetation types and
other factors on the response of drought and heatwaves, we
analyzed 213 events between 2003 and 2018 globally. Gener-
ally, we find that extreme events of a given extent, magnitude,
and duration often affect different adjacent vegetation types,
each vegetation type differing in their specific response to the
event. Quantifying these findings, we find that vegetation is
one important variable which has to be considered for under-
standing the impact of climate extremes. Whereas agricul-
tural systems, grasslands, savannas, and shrublands are most
impacted in terms of gross primary productivity, forests are
not particularly sensitive to the extreme event or even show
enhanced gross primary productivity during the events.

Thus, we conclude that a more differentiated considera-
tion of the role of land cover reveals firstly major differences
between forests, agricultural, and other ecosystems. These
differences may originate from a different (micro)climate or
different water management strategies including the access
to deeper soil water or point to more strongly lagged impacts
in forest ecosystems.

Our findings imply for future climate that forest ecosys-
tems may be crucial for mitigating immediate negative im-
pacts on the carbon cycle of an increasing number of heat-
waves. However, longer-lasting heatwaves, drying in con-
tinental climates, or a disproportionate increase in summer
drought–heat events due to mutual dependencies may more
frequently lead to critical moisture conditions for which we
observe negative impacts for forests and to which forests are
not well adapted. This is particularly critical as forest recov-
ery times are multidecadal.

However, the lack of sensitivity of forest ecosystems to
droughts and heatwaves is stronger than we would expect it
to be, as forests are generally considered to be vulnerable to
drought- and heat-related mortality risks. Thus, we think that
our results also point towards deficiencies in FLUXCOM-
RS-derived GPP data, which are potentially a more general
issue in remote-sensing-derived indices of vegetation activ-
ity. These deficiencies call for the development of new global
GPP products with a higher sensitivity to droughts and heat-
waves, which can unravel the role of forest ecosystems in a
more frequently hot and dry future climate.

Biogeosciences, 18, 39–53, 2021 https://doi.org/10.5194/bg-18-39-2021



M. Flach et al.: Vegetation modulates the impact of climate extremes on gross primary production 49

Appendix A: Details on the procedure to detect

anomalies

The procedure which is used here to detect multivariate
anomalies works as follows (see also Flach et al., 2018):

1. Select one pixel and some spatial replicates (here four
spatial replicates as defined in Sect. 2.3) to obtain five
considerably similar time series of temperature, radia-
tion, and surface moisture.

2. Subtract a smoothed median seasonal cycle from each
time series to obtain anomalies (deviations from the nor-
mal seasonality) and their covariance matrix Q.

3. Select a seasonal window of 3 months in each year
(3 months would correspond to, for example, all sum-
mers in the years under scrutiny).

4. Standardize the anomalies to zero mean and unit vari-
ance.

5. Compute kernel density estimates using a standard mul-
tivariate normal kernel, K, with the covariance matrix
Q. Using a multivariate normal kernel accounts for lin-
ear correlations among the set of input variables (here
radiation, temperature, surface moisture) while allow-
ing for nonlinear shapes in the data (Flach et al., 2017).

6. Transform the resulting univariate index of deviations
from the general multivariate pattern into a score of nor-
malized ranks between 0.0 (very normal) and 1.0 (ex-
tremely far away from the dense regions of the multi-
variate distribution).

7. Select the data points higher than a threshold of 0.95 to
obtain 5 % of the data as multivariate extreme events.

8. Memorize the extreme events and the obtained score for
the selected pixel and season.

9. Repeat the procedure (steps 3–8) in a (running) moving
window of 3 months length.

10. Repeat the procedure with the next pixel.
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