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VEGF receptor 2/-3 heterodimers detected in situ
by proximity ligation on angiogenic sprouts
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Seppo Ylä-Herttuala3, Kari Alitalo2, Johan
Kreuger6 and Lena Claesson-Welsh1,*
1Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala

University, Uppsala, Sweden, 2Molecular and Cancer Biology Research

Program, University of Helsinki, Helsinki, Finland, 3Department of

Biotechnology and Molecular Medicine, A.I. Virtanen Institute for

Molecular Sciences, University of Kuopio, Kuopio, Finland, 4Imclone

Systems Corporation, New York, NY, USA, 5Vegenics Limited, Toorak,

Victoria, Australia and 6Department of Medical Biochemistry and

Microbiology, Biomedical Center, Uppsala University, Uppsala, Sweden

The vascular endothelial growth factors VEGFA and

VEGFC are crucial regulators of vascular development.

They exert their effects by dimerization and activation

of the cognate receptors VEGFR2 and VEGFR3. Here, we

have used in situ proximity ligation to detect receptor

complexes in intact endothelial cells. We show that both

VEGFA and VEGFC potently induce formation of VEGFR2/-

3 heterodimers. Receptor heterodimers were found in

both developing blood vessels and immature lymphatic

structures in embryoid bodies. We present evidence that

heterodimers frequently localize to tip cell filopodia.

Interestingly, in the presence of VEGFC, heterodimers

were enriched in the leading tip cells as compared with

trailing stalk cells of growing sprouts. Neutralization of

VEGFR3 to prevent heterodimer formation in response to

VEGFA decreased the extent of angiogenic sprouting. We

conclude that VEGFR2/-3 heterodimers on angiogenic

sprouts induced by VEGFA or VEGFC may serve to

positively regulate angiogenic sprouting.
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Introduction

The mammalian vascular endothelial growth factor (VEGF)

family includes VEGFA, VEGFB, VEGFC, VEGFD and placenta

growth factor (PlGF). These ligands bind in an overlapping

pattern to three different receptor tyrosine kinases denoted

VEGF receptor 1 (VEGFR1), VEGFR2 and VEGFR3 (Olsson

et al, 2006). Although the VEGFRs are not exclusively ex-

pressed on vascular cells, there is prominent expression and

important function of VEGFR1 on hematopoietic and en-

dothelial cells, of VEGFR2 on vascular endothelial cells and

of VEGFR3 on vascular and lymphatic endothelial cells

(LECs). The active VEGF/VEGFR signalling complexes also

include co-receptors, such as heparan sulphate proteoglycans

(Esko and Selleck, 2002) and neuropilins (Geretti et al, 2008).

The VEGFRs transduce their effects according to the con-

sensus scheme for receptor tyrosine kinases. Binding of

ligand leads to dimerization of receptors. This close apposi-

tion confers structural reorganization of the receptor intra-

cellular domain and exposure of the kinase active site

(Hubbard, 1999). Kinase activity catalyses the transfer of

phosphate groups to tyrosine residues, which serve as sub-

strates for the kinase. Such acceptor sites are found both on

the partner in the dimer as well as on cytoplasmic signalling

molecules. Tyrosine phosphorylation initiates signal trans-

duction cascades, which ultimately become established as

cellular responses such as survival, proliferation and motility.

Certain VEGF ligands bind to more than one VEGFR,

potentially allowing receptors to form heterodimers in addi-

tion to homodimers. We have shown earlier that VEGFR2/-3

heterodimers are formed in cultured LECs in response to

VEGFC (Dixelius et al, 2003). In accordance, processing of

VEGFC during synthesis allows binding to both VEGFR2 and -3

(Joukov et al, 1997; Alitalo et al, 2005). Heterodimerization

was accompanied by a loss of phosphorylation of C-terminal

tyrosine residues in VEGFR3 (Dixelius et al, 2003). The

underlying mechanism may involve different substrate spe-

cificities of the VEGFR2 and VEGFR3 kinases. Alternatively,

VEGFR3 may undergo a conformational change when en-

gaged in a heterodimer with VEGFR2, and thereby, certain

acceptor sites become hidden or otherwise inaccessible.

Thus, it is important to determine the composition of receptor

complexes formed under different conditions, as this will be

of consequence for the biological response.

Various sophisticated recombinant animal models have

greatly aided our understanding of the biology of the

VEGFRs. All three receptors are required for proper embryo-

nic development. Gene inactivation of vegfr1 is lethal at

E8.5–9 due to increased endothelial proliferation leading to

obstruction of vessels (Fong et al, 1995, 1999). Inactivation of

vegfr2 leads to arrest in endothelial differentiation, causing

embryonic lethality at E8.5 (Shalaby et al, 1995). Inactivation
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of vegfr3 is lethal slightly later, at E10.5, due to the lack of

remodelling of the vascular network (Dumont et al, 1998). In

subsequent development, VEGFR3 is critical for lymphatic

vessel function. Thus, during a restricted phase in early

development, both VEGFR2 and VEGFR3 serve critical

functions in the formation of the vascular tree.

A number of cell types co-express VEGFR2 and VEGFR3,

potentially allowing formation of heterodimers. Expression of

VEGFR3 is induced during angiogenic sprouting in the adult,

both in physiological and pathological conditions (Tammela

et al, 2008). In differentiating stem cell cultures, VEGFR3 is

expressed by subpopulations of endothelial cells in growing

vessels, some of which may transdifferentiate to become

early lymphatic structures (Kreuger et al, 2006; Adams and

Alitalo, 2007). In addition, VEGFR2 may be variably

expressed by LECs (Petrova et al, 2002), and on collecting

lymphatic vessels that otherwise are characterized by high

expression levels of VEGFR3 (Saaristo et al, 2002).

Here, we investigate the function of VEGFR2/-3 hetero-

dimerization in intact endothelial cells and angiogenic

sprouts, using a newly developed in situ proximity ligation

assay (in situ PLA) (Soderberg et al, 2006; Jarvius et al,

2007). This method is based on the use of oligonucleotide-

conjugated antibodies, which when brought in close proxi-

mity by binding to epitopes on, for example, dimerized

VEGFRs, allow a rolling-circle amplification detected by a

fluorescently labelled probe. We show that endogenous

unmanipulated VEGFRs form heterodimers in response to

VEGFA or VEGFC. We present evidence that heterodimers are

present on tip cell filopodia, and that neutralization of

VEGFR3 to prevent heterodimer formation induced by

VEGFA leads to a marked decrease in sprouting activity. It

is concluded that VEGFR2/-3 heterodimers have a significant

function in the positive regulation of angiogenic sprouting.

Results

Detection of VEGFC-induced VEGFR2/-3 heterodimers

in endothelial cells by immunoprecipitation

To study the induction of VEGFR2/-3 heterodimers, we

examined receptor expression in different endothelial cell

cultures. On reducing gels, VEGFR3 migrates as three mole-

cular weight species, 195, 175 and 125 kDa (Pajusola et al,

1994). The mature, cell surface expressed VEGFR2 appears as

a 250 kDa band on immunoblots. Using porcine aortic

endothelial (PAE) cells transfected to express VEGFR3 as

control, we compared expression of receptors in primary

human saphenous and umbilical vein-derived endothelial

cells (HSaVECs and HUVECs). Both cell types co-expressed

VEGFR2 and VEGFR3 (Figure 1A); we chose HSaVECs for

further experimentation.

Treatment of HSaVECs with processed VEGFC, followed by

immunoprecipitation of VEGFR2 and immunoblotting for

VEGFR3, showed complex formation between the receptors.

Figure 1B displays the prominent 125 kDa band and the

weaker 195–175 kDa VEGFR3 bands in the VEGFR2 immu-

noprecipitate. Heterodimers were not detected in response to

VEGFA in this assay (Figure 1B, upper panel). The effect of

VEGFA on VEGFR2 tyrosine phosphorylation was more pro-

minent than that of VEGFC (Figure 1B, middle panel), in

agreement with the data from earlier biochemical analyses,

showing higher affinity of VEGFA than VEGFC, for binding to

VEGFR2 (Joukov et al, 1997).

Similarly, treatment with VEGFC but not with VEGFA,

allowed detection of the 250 kDa VEGFR2 band in immuno-

blots of VEGFR3 immunoprecipitates from HSaVECs

(Figure 1C, upper panel). These data show that VEGFR2

and VEGFR3 form heterodimeric signalling complexes in

primary cells in response to VEGFC.

In situ PLA reveals VEGFR2/-3 heterodimerization

in response to VEGFA or VEGFC

To demonstrate the formation of heterodimers in intact cells,

we used in situ PLA (see schematic outline in Figure 2A). We

used an experimental design where cells were incubated with

VEGFA, VEGFC or vehicle for 8min, fixed and then probed

with primary antibodies raised in different species and direc-

ted towards the intracellular domains of VEGFR2 or VEGFR3.

Figure 1 Induction of VEGFR2/-3 heterodimers in co-expressing
endothelial cells. (A) Total cell lysates derived from HUVECs,
HSaVECS or PAE cells; either untransfected or expressing VEGFR3
were immunoblotted to detect VEGFR3 (left panel). After reduction
of disulphide bridges, VEGFR3 migrates as three species of apparent
mw 195, 175 and 125 kDa. PAE, HUVEC and HSaVEC lysates were
also immunoblotted to detect VEGFR2, which migrates as two
species around the 250kDa marker (right panel). (B) HSaVEC
lysates from cells treated or not with VEGFA or VEGFC for 8min
were used for immunoprecipitation (ip) of VEGFR2 followed by
immunoblotting for VEGFR3 (upper panel) to detect receptor het-
erodimerization. This was followed by immunoblotting to detect
phosphorylated VEGFR2 (middle panel) using the 4G10 mAb, and
immunoblotting to show equal loading of VEGFR2 (lower panel).
(C) Immunoprecipitation of VEGFR3 from HSaVECs treated as in
(B) followed by immunoblotting to detect co-immunoprecipitation
of VEGFR2 (upper panel), phosphorylation of VEGFR3 (middle
panel) and VEGFR3 loading (lower panel).
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Antibodies against the intracellular domain were preferred,

as they would not be disturbed by the ligand–receptor inter-

action. This was followed by incubation with two sets

of secondary antibodies conjugated with oligonucleotide,

unique for each type of secondary antibody. Ligation of the

oligonucleotides by a bridging probe in a proximity-depen-

dent manner, allows a rolling-circle amplification. Finally,

this product is detected by complementary fluorescent

probes. As shown in Figure 2B, treatment of HSaVECs with

VEGFC induced formation of heterodimers in situ, distributed

on the plasma membrane as well as in the cytoplasm. The

number of heterodimers/cell increased 100-fold from basal,

in response to VEGFC treatment (see quantification in

Figure 2C).

Figure 2 In situ PLA detection of VEGFR2/-3 heterodimers in intact HSaVECs. (A) Schematic outline of the in situ PLA strategy showing:
(i) dimerized receptors (VEGFR2 in blue and VEGFR3 in grey) reacting with primary antibodies; (ii) close proximity of oligonucleotide-ligated
secondary antibodies allows a rolling-circle amplification (RCA); (iii) detection of the RCA product by a fluorescently labelled probe.
(B) Detection of heterodimers (in red) in HSaVECs treated with vehicle (–), VEGFA or VEGFC for 8min on cells labelled with FITC-conjugated
phalloidin (green). Inset in the VEGFC panel shows high magnification to clearly visualize the PLA spots representing heterodimers. Scale
bar¼ 10mm. (C) Quantification of VEGFR2/-3 heterodimers in HSaVECs treated with vehicle (–), VEGFA (A) or VEGFC (C) in cells
preincubated or not with neutralizing antibodies blocking ligand binding to VEGFR2 or VEGFR3. n¼ 6. (D) Quantification of VEGFR2/-3
heterodimers in HSaVECs treated with different human VEGF isoforms (VEGFA121, 145, 165 or 189) or VEGFC for 8min. n¼ 6.
(E) Quantification of VEGFR2/-3 heterodimers in response to VEGFA, VEGFC, VEGFD or PDGFB. Growth factors are indicated as A
(VEGFA), C (VEGFC), D (VEGFD) and P (PDGFB). n¼ 6. Note that a different batch of PLA probes was used in this analysis compared
with other panels in the figure (see Materials and methods). (F) Turnover of VEGFR2/-3 heterodimers in HSaVECs. Cells were treated with
VEGFC for different time periods from 10min to 24h and samples were processed for detection of in situ PLA signals. n¼ 6. Asterisks in panels
C–F indicate the degree of significance (**Po0.01, ***Po0.001).
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Of note, VEGFR2/-3 heterodimerization also increased

significantly (25-fold) when cells were treated with VEGFA

for 8min (see Figure 2B and C). Therefore, despite the fact

that VEGFA fails to induce receptor heterodimerization as

detected by co-immunoprecipitation, VEGFR2/-3 heterodi-

mers were induced by VEGFA in the in situ PLA.

To show the specificity of the reactions, we preincubated

cells with antibodies previously shown to specifically neu-

tralize either human VEGFR2; IMC-1121b (Zhu et al, 2003) or

human VEGFR3; hF4-3C5 (Persaud et al, 2004), by binding to

the ligand-binding part of the extracellular domains. As

shown in Figure 2C, blocking with either of the neutralizing

antibodies quenched the appearance of heterodimers to the

level of basal heterodimerization recorded in unstimulated

cells.

Different VEGFA isoforms (VEGFA121, 145, 165 and 189)

were analysed for their ability to induce VEGFR2/-3 hetero-

dimers. Isoforms with a higher propensity for binding to

heparan sulphate and extracellular matrix, that is

VEGFA145 and VEGFA189 (Kawamura et al, 2008), induced

heterodimers more efficiently than the relatively more solu-

ble isoforms VEGFA121 and VEGFA165 (Figure 2D). In

repeated experiments, however, VEGFC induced heterodimer

formation more efficiently than any of the VEGFA isoforms.

Further, VEGFD also induced VEGFR2/-3 heterodimeriza-

tion, in agreement with that processed human VEGFD, but

not mouse VEGFD, binds to VEGFR2 (Baldwin et al, 2001).

The effect was less efficient than that of VEGFC but more

prominent than that of VEGFA. To control for the specificity,

we analysed the effect of PDGFB, which does not bind to

either of the VEGF receptors. As shown in Figure 2E,

VEGFR2/-3 heterodimers were not induced by PDGFB.

Binding of ligand induces internalization and degradation

of receptor tyrosine kinases. Figure 2F shows HSaVECs

treated with VEGFC for different time periods, followed by

in situ PLA. Formation of heterodimers peaked at 10min and

the ligand-induced heterodimers remained detectable for up

to 2 h. With prolonged incubations, the in situ PLA signals

were lost, in agreement with the clearance of receptors.

Combined, these data provide evidence that heterodimers

are formed in a ligand-dependent and specific manner in

intact cells.

Detection of homodimerization of VEGFRs by

in situ PLA

We next examined the pattern of VEGFR2 and VEGFR3

homodimerization induced by VEGFA and VEGFC. For this

purpose, monoclonal antibodies against either VEGFR2 or

VEGFR3 were divided in pools, which were ligated with

either a ‘plus’ oligonucleotide or a ‘minus’ oligonucleotide.

The PLA reaction indicating for example VEGFR2 homo-

dimers, would occur only as a result of close proximity of a

plus-ligated antibody with a minus-ligated antibody, whereas

pairs consisting of plus–plus or minus–minus ligated anti-

bodies would not give rise to PLA signals (see Figure 3A for a

schematic outline). Consequently, we could score only 50%

of the actual homodimerization events, namely when anti-

bodies combined in plus–minus and minus–plus constella-

tions. Moreover, we could not directly compare the relative

extent of receptor homo- and heterodimerization, as different

combinations of antibodies had to be used to detect the

different receptor complexes.

As shown in Figure 3B, VEGFA and VEGFC consistently

induced heterodimers and VEGFC was about 3–4-fold more

Figure 3 VEGFR2/-3 homo- and heterodimers induced by VEGFA or VEGFC. (A) Schematic outline of primary antibody ligation with
oligonucleotide plus and minus strands to detect VEGFR homodimers. Only pairing of antibodies with plus and minus strands allow initiation
of the rolling-circle amplification. (B) VEGFR2/-3 heterodimerization. HSaVECs were treated for 8min with either VEGFA or VEGFC.
Heterodimerization was 3–4-fold more efficiently induced by VEGFC. n¼ 6. (C) VEGFR2 homodimers. Equal mixtures of VEGFR2 monoclonal
antibodies ligated with plus and minus strands of oligonucleotides (as outlined in A) were used to detect VEGFR2 homodimers on HSaVECs
treated for 8min with VEGFA or VEGFC as above. n¼ 6. (D) VEGFR3 homodimers. Equal mixtures of VEGFR3 monoclonal antibodies ligated
with plus and minus strands of oligonucleotides were used to detect VEGFR3 homodimers on HSaVECs treated for 8min with VEGFA or
VEGFC. n¼ 6. (E) Schematic outline of VEGFR homo- and heterodimerization induced by VEGFA or VEGFC. Note that the relative distribution
of homodimers versus heterodimers cannot be accurately determined due to the inherent difference in affinity of different antibodies. Asterisks
in panels B–D indicate the degree of significance (***Po0.001).
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potent in this regard. VEGFR2 homodimers were induced

only by VEGFA and not by VEGFC (Figure 3C). VEGFR3

homodimers were induced by VEGFC (Figure 3D). There

was a slight tendency for VEGFA-induced VEGFR3 homodi-

merization, but still the effect was negligible compared with

that of VEGFC. Figure 3E concludes on these results; VEGFA

induces VEGFR2 homodimers and VEGFR2/-3 heterodimers.

VEGFC induces VEGFR3 homodimers and VEGFR2/-3 hetero-

dimers. Although no firm conclusions can be made as

reasoned above, homodimers of VEGFR3 seemed to be

roughly two-fold more frequent than heterodimers in

VEGFC-treated cells. Moreover, homodimers of VEGFR2

were eight-fold more frequent than heterodimers in VEGFA-

treated cells.

VEGFR2/-3 heterodimers are formed in blood and

lymphatic endothelium in differentiating EBs

To identify the biological significance of VEGF receptor

heterodimerization, we exploited the embryoid body (EB)

model of angiogenesis (Jakobsson et al, 2007). In this model

system, differentiating mouse embryonic stem (ES) cells

efficiently form capillary structures in response to angiogenic

growth factors. In the first set of experiments, EBs were

cultured in the so-called two-dimensional (2D) setup, seeded

onto tissue culture slides. The advantages of the 2D setup are

that these cultures readily can be scaled up to allow for

biochemical analyses, such as immunoprecipitation, and

that the 2D setup also makes it feasible to analyse the

relatively rare events whereby immature capillaries in EB

cultures begin to transdifferentiate into early lymphatic struc-

tures (Kreuger et al, 2006).

Figure 4A shows co-expression of VEGFR2 and VEGFR3 in

endothelial cells in vascular structures formed in 2D EBs

differentiated for 12 days, when endothelial cells constitute

about 5% of the total cellular pool (Magnusson et al, 2004).

The vascular identity of the cells co-expressing VEGFR2 and

VEGFR3 was validated by positive immunostaining for VE-

cadherin (lower panel in Figure 4A). As shown in Figure 4B,

left panel, immunoprecipitation/immunoblotting analyses

demonstrated VEGFC-induced VEGFR2/-3 heterodimeriza-

tion in the EB model. Parallel VEGFR2 immunoprecipitation

from VEGFA or VEGFC-treated EBs followed by immuno-

blotting for VEGFR3 (Figure 4B, right panel) showed

VEGFC-, but also to some extent, VEGFA-induced receptor

heterodimerization.

We next used in situ PLA to examine VEGFR2/-3 hetero-

dimer formation in intact 2D EBs. As shown in Figure 4C

(quantification in Figure 4D), VEGFA and VEGFC induced

heterodimers to an extent similar to that detected in the

HSaVEC cultures (see Figure 2 for comparison). Occasional

PLA signals were detected also in cells expressing low or non-

detectable levels of CD31, prompting us to ask whether some

of these cells could be LECs or progenitors thereof. We have

shown earlier that differentiation of ES cells allows formation

of lymphatic endothelial precursors that express lower levels

of CD31, which can be identified by virtue of expression of

lymphatic markers such as LYVE1 (Kreuger et al, 2006). As

shown in Figure 4E, VEGFA-treated EB cultures contained

LYVE1-positive cells that also expressed CD31. A certain

fraction of the LYVE1-expressing cells lacked detectable

CD31 expression (arrow in Figure 4E). LYVE1-positive

cells with distinct morphology, possibly corresponding to

monocytic CD45-positive cells, were also detected (asterisk

in Figure 4E; see Kreuger et al, 2006). LYVE1-positive cells

contained VEGFR2/-3 heterodimers, particularly in response

to VEGFC, as shown using in situ PLA (Figure 4F; quantifica-

tion in Figure 4G). The number of PLA signals/cell was lower

in this analysis; this is in part likely due to that co-staining for

LYVE1/CD31 together with PLA required additional washing

steps and therefore, loss in sensitivity. However, the relation-

ship between the different conditions (control, VEGFA,

VEGFC) remained the same.

Tip cell filopodia assemble VEGFR2/-3 heterodimers

in response to VEGFA or VEGFC

Next, the function of VEGFR2/-3 heterodimers in angiogenic

sprouting was addressed. For this purpose, EBs were placed

in a three-dimensional (3D) collagen I matrix that is permis-

sive for the formation of high-quality angiogenic sprouts,

shown to develop a complete basement membrane, to

be luminized and covered by pericytes (Jakobsson et al,

2007; Jakobsson and Claesson-Welsh, 2008). As shown in

Figure 5A, the 3D EB cultures treated with VEGFA displayed

numerous sprouts extending from the core of the EB into the

collagen I gel. Fewer and shorter sprouts were formed in

cultures receiving VEGFC (see quantification in Figure 5B).

Angiogenic sprouts were wrapped in a pericyte coat of NG2-

positive cells both in VEGFA and VEGFC-treated cultures

(Supplementary Figure S1).

VEGFR2 expression was detected in CD31-positive en-

dothelial cells throughout the angiogenic sprout to a similar

extent in response to VEGFA and VEGFC (Figure 5C; quanti-

fication in Figure 5D). There was a tendency for reduced

CD31 expression in the tip region of the sprout. VEGFR3

expression in CD31-positive cells was detected in both VEGFA

and VEGFC-induced sprouts (Figure 5C). Interestingly, in the

VEGFC-treated cultures, VEGFR3 expression was elevated in

the tip region compared with the stalk region of the sprout

(Figure 5D). In situ PLA signals representing VEGFR2/-3

heterodimerization were detected in the 3D EB sprouts

(Figure 5E; see quantification in Figure 5F). There was a

low background in the untreated controls, and a similar

relative degree of VEGFA- and VEGFC-induced heterodimer-

ization as seen in monolayer cultures of HSaVECs and in 2D

EBs. The heterodimer complexes were localized along the

angiogenic sprouts both on the cell bodies and on the end of

filopodia extending from the stalk and tip cells (Figure 5E,

left). Note that the in situ PLA signals tended to coalesce into

larger fluorescent clusters, indicating that the heterodimers

were not evenly distributed over the plasma membrane.

Heterodimers were more concentrated in the tip cells relative

to the stalk cells (Figure 5E, right) in response to VEGFC,

whereas VEGFA-treated sprouts displayed a more even

heterodimer distribution (Figure 5G).

VEGFR3 blockade prevents heterodimer formation

leading to reduced angiogenesis

To study the function of heterodimerization in angiogenic

sprouting, 3D EB cultures were treated with VEGFA in the

presence and absence of neutralizing antibodies against

mouse VEGFR3 (Pytowski et al, 2005) (Figure 6A; see quan-

tification in Figure 6B). We avoided treating cultures with

VEGFR2 neutralizing antibodies, as VEGFR2 is strictly re-

quired for differentiation of endothelial cells from precursor

VEGF receptor heterodimers
I Nilsson et al

&2010 European Molecular Biology Organization The EMBO Journal VOL 29 | NO 8 | 2010 1381



stages (Olsson et al, 2006). In accordance, we have shown

earlier that VEGFR2 neutralization attenuates EB vasculariza-

tion (Magnusson et al, 2004). The contribution of VEGFR2 to

the different stages of endothelial cell development can there-

fore not readily be assessed by this approach.

Figure 6A and B shows that VEGFA-induced angiogenic

sprouting was significantly decreased by treatment with

the VEGFR3-neutralizing antibody but not by a control IgG

antibody. As shown in Figure 6C, the VEGFR3 neutralizing

antibody did not block VEGFA-induced VEGFR2 phosphory-

lation. The transient increase in phosphorylated VEGFR2

level at the 2min time point may be due to increased

VEGFR2 homodimerization and more efficient phosphoryla-

tion under conditions when VEGFR3 is neutralized (compare

VEGFR2 tyrosine phosphorylation in response to VEGFA and

VEGFC in Figure 1B, middle panel). As VEGFA induces

VEGFR2 homodimers and VEGFR2/-3 heterodimers but not

VEGFR3 homodimers (Figure 3), these data indicate that the

Figure 4 Formation of vessel structures in differentiating 2D EBs involves both VEGFR2 and VEGFR3. (A) Expression of VEGFRs in 2D EB
vascular structures. EBs differentiating in 2D cultures for 12 days in the presence of VEGFA shows vessel-like structures co-expressing VEGFR2
and VEGFR3 (upper panels; merged immunostainings to the right), or VE-cadherin and VEGFR3 (lower panels; merged immunostainings to the
right). Scale bar¼ 50 mm (upper), 100mm (lower). (B) Complex formation between VEGFRs in 2D EBs. Left: Immunoprecipitation (ip) of
VEGFR3 from day 12 EBs treated with vehicle (–) VEGFA (A) or VEGFC (C) for 15min followed by immunoblotting for VEGFR2 (upper left
panel). Immunoblotting for VEGFR3 (lower left panel) shows equal loading of VEGFR3. Right: Parallel aliquots of cell lysate were analysed by
immunoprecipitation of VEGFR2 followed by immunoblotting for VEGFR3 (upper right panel). VEGFR2 immunoblotting (lower right panel)
showed equal loading. (C) Heterodimers in CD31-positive cells. Formation of VEGFR2/-3 heterodimers as detected by in situ PLA (red spots) on
2D EBs immunostained for CD31 (green), in response to vehicle (–), VEGFA or VEGFC. Scale bar¼ 10mm. (D) Quantification of PLA spots in
CD31-positive cells as in C. n¼ 8. (E) Identification of LYVE1-positive cells. EBs in 2D cultures were treated with VEGFA or VEGFC until day 12,
and immunostained to detect expression of CD31 (green) and LYVE1 (red). Panels to the right show merged immunostainings. Lymphatic
vascular structures expressing LYVE1 but not CD31 are indicated by arrows in the VEGFC-treated cultures. Single, rather than vessel-organized
LYVE1-positive cells, are indicated by asterisk. Scale bar¼ 100 mm. (F) Heterodimers in LYVE1-positive cells. EBs in 2D culture were treated as
indicated above and processed for immunostaining to detect CD31 (blue) and LYVE1 (white), followed by in situ PLA to detect VEGFR2/-3
heterodimers (red). Scale bar¼ 10 mm. (G) Quantification of PLA spots in LYVE1-positive cells as in (F). n¼ 8. Asterisks in panels D and G
indicate the degree of significance (**Po0.01, ***Po0.001).
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effect of the VEGFR3-neutralizing antibodies is to block

formation of VEGFR2/-3 heterodimers. We thus conclude

that VEGFR2/-3 heterodimerization in this context serves to

positively regulate sprouting angiogenesis.

Discussion

Molecular interactions such as dimerization of receptor tyr-

osine kinases are vital in cellular communication. We show

herein that in situ PLA can successfully be used to detect

native VEGFR2 and VEGFR3 homodimers as well as

VEGFR2/-3 heterodimers. Of note, detection of such native

complexes cannot be done using co-immunoprecipitation

methodology. In contrast to our recent in situ PLA study on

epidermal growth factor (EGF) receptor/Her2 homo- and

heterodimerization, which occurs in the absence of ligand

(Leuchowius et al, 2009), formation of VEGFR complexes

was strictly ligand dependent. Using in situ PLA, we detected

about 3–4-fold more heterocomplexes/cell in response to

VEGFC as compared with VEGFA. The fold-induction of

heterocomplexes compared with basal levels in unstimulated

cells was about a 100-fold for VEGFC. The specificity of the

methodology was validated (1) by the use of neutralizing

anti-receptor antibodies, which block the ligand-binding site

on the receptors; (2) by the use of an irrelevant ligand

(PDGFB); and finally (3) by performing kinetic analyses

that showed disappearance of the PLA spots with time, in

conjunction with ligand-induced internalization of receptors.

Figure 5 Heterodimers in angiogenic sprouts. (A) Angiogenic sprouting in response to VEGFA or VEGFC. EBs were cultured in 3D collagen
matrix in the presence of VEGFA or VEGFC. Microphotographs were taken at day 18 on whole-mount fixed, CD31-immunostained samples.
Scale bar¼ 300 mm. (B) Quantification of total vascular area from the data in (A) based on five EBs per condition and expressed as fold
induction ±s.d. (C) Expression of VEGFR2 and VEGFR3 in angiogenic sprouts. Immunostaining for VEGFR2 (green; upper panels) and
VEGFR3 (green; lower panels) on CD31-positive (red) angiogenic sprouts in 3D EBs treated with VEGFA or VEGFC. The orientation of the tip
versus stalk is indicated. Scale bar¼ 10mm. (D) Quantification of VEGFR2 and VEGFR3 expression in the tip cell region compared with entire
angiogenic sprouts. n¼ 4. (E) Location of heterodimers on VEGFC-induced angiogenic sprouts. Red spots represent PLA reactions in tip cells.
Panels show PLA spots in CD31-positive angiogenic tip cell regions. Lower panels show saturation of CD31-positivity to better visualize the
filopodia. Note that PLA spots are located on filopodia extending ahead of the tip cell. Scale bar¼ 10mm. (F) Quantification of in situ PLA
detecting VEGFR2/-3 heterodimers in angiogenic sprouts in response to VEGFA or VEGFC in 3D EB cultures. n¼ 8. (G) Quantification of
heterodimers in tip and stalk cells. VEGFA-treated angiogenic sprouts contained heterodimers evenly distributed over the sprouts, whereas
VEGFC-treated angiogenic sprouts showed accumulation of heterodimers in tip cells. n¼ 8. Asterisks in panels B, D, F–G indicate degree of
significance (*Po0.05, **Po0.01, ***Po0.001).
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Using in situ PLA, we made two novel and important

discoveries concerning the composition of receptor complexes

induced by VEGFA or VEGFC. First, VEGFC was able to induce

formation of VEGFR3 homodimers and VEGFR2/-3 heterodi-

mers, but not VEGFR2 homodimers. VEGFC has been shown

to have the highest affinity for VEGFR3, but processed mouse

VEGFC also binds to VEGFR2, although with lower affinity

(Joukov et al, 1997) and theoretically, VEGFR2 homodimer-

ization by VEGFC could therefore be anticipated. Indeed,

VEGFC forms co-crystals with VEGFR2 immunoglobulin-like

domains 2 and 3 (Leppänen et al, 2010). However, co-expres-

sion of VEGFR3 may block VEGFR2 homodimerization by

VEGFC. Moreover, it is conceivable that the assembly and

folding of the ligand-receptor complex is influenced by co-

receptors such as neuropilins and proteoglycans. Thus, neu-

ropilin2 has been shown to associate with VEGFR3 in a

VEGFC-dependent manner (Karkkainen et al, 2001; Favier

et al, 2006; Karpanen et al, 2006). The second important

finding reported here is that VEGFA, which binds only to

VEGFR2 and not to VEGFR3, induced VEGFR2/-3 heterodi-

mers. In contrast, VEGFA did not induce co-immunoprecipita-

tion of VEGFR2 and VEGFR3 from monocultures of HSaVECs.

A tendency for VEGFA-induced VEGFR2/-3 heterodimerization

was, however, detected by co-immunoprecipitation in the

more complex 2D EB model (Figure 4B). VEGFA-induced

heterodimeric complexes may be less stable than those in-

duced by VEGFC as VEGFC binds directly to both VEGFR2 and

VEGFR3, whereas VEGFA binds only to VEGFR2. Such loosely

bonded heterodimers would more efficiently be detected by

the PLA methodology, which does not require that complexes

withstand the stress of detergent lysis and stringent wash

protocols.

Figure 6 VEGFA-induced angiogenic sprouting is mediated by VEGFR2 homodimers and VEGFR2/-3 heterodimers. (A) Effect of VEGFR3
neutralization. VEGFA- or VEGFC-induced EB cultures in 3D collagen were treated with or without antibodies neutralizing the function of
VEGFR3. Scale bar¼ 300mm. (B) Quantification of sprouting area. Cultures treated with VEGFA or VEGFC in the absence or presence of
neutralizing VEGFR3 antibodies as shown in panel (A) were quantified. n¼ 5. Asterisks indicate degree of significance (**Po0.01). (C)
Activation of VEGFR2. Immunoblotting for phosphorylated VEGFR2 (pY1175) from HSaVEC cultures treated with VEGFA in the presence and
absence of neutralizing VEGFR3 antibodies, for different time periods (left panel). Middle panel shows blotting for VEGFR2 and lower panel
shows equal loading of b-actin. Densitometric scanning (right panel) of bands showed no decrease in VEGFR2 activation by the VEGFR3
antibodies.
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We used neutralizing antibodies to deduce the effects of

the different VEGFR dimeric complexes in the EB model.

VEGFR3-neutralizing antibodies, which bind to the ligand-

binding site of VEGFR3 (Pytowski et al, 2005), blocked

VEGFA-induced heterodimers although VEGFA fails to

directly bind to VEGFR3. This indicates a scenario where

dimerization is initiated by binding of ligand to one receptor

molecule, rather than simultaneous bridging between two

receptor molecules. Binding of ligand is likely to induce

changes in the conformation of the extracellular domain,

which in turn may trigger dimerization with the second

receptor molecule. Binding of the neutralizing antibody to

the second receptor molecule, in this case VEGFR3, may

block dimerization either by steric hindrance or by locking

the conformation of VEGFR3 in a state incompatible with

dimerization. Interestingly, electron microscopical analysis of

VEGFR2 homodimers show points of contacts between the

receptor molecules involving Ig-like loop 7, which supports

that receptor extracellular domain folding is modulated

during the dimerization process (Ruch et al, 2007).

As it is likely that VEGFR3 neutralization of the VEGFA-

induced sprouts was a result of blocking of heterodimers, we

propose that both VEGFR2 homodimers and VEGFR2/-3

heterodimers contribute to angiogenic sprouting. As judged

from the more modest response to VEGFC, compared with

VEGFA, in angiogenic sprouting in the 3D EBs, VEGFR3

homodimers on the other hand may not contribute to sprout-

ing. The extent of VEGFC-induced sprouting may very well be

context dependent. We observed relatively efficient VEGFC-

induced angiogenic sprouting compared with VEGFA, in

adeno-associated virus-transduced muscle (Supplementary

Figure S2). Overexpression of VEGFC in the mouse cornea,

chorioallantoic membrane or mouse skin has previously been

shown to induce blood vascular angiogenesis (Oh et al, 1997;

Cao et al, 1998; Saaristo et al, 2002). Interestingly, VEGFC-

induced blood vascular angiogenesis is negatively regulated

by ongoing lymphangiogenesis and increases with increasing

distance from the lymphangiogenic site (Benest et al, 2008).

The extent of VEGFC-induced sprouting may be dependent

on the concomitant production of VEGFA to drive essential

aspects of vascular endothelial cell biology that VEGFC may

complement but not replace. In vivo, simultaneous exposure

of cells to VEGFA and VEGFC, in addition to many other

growth modulatory factors, would be the expected scenario.

In this context, it is interesting that EBs treated with a

combination of VEGFA and VEGFC showed increased hetero-

dimerization as detected by PLA, accompanied by a marked

increase in vessel branching (Supplementary Figure S3).

Ligand-dependent increase in commitment to the endothelial

cells lineage and increased expression of receptors may

contribute to this relative increase in receptor heterodimer-

ization.

Our data agree excellently with those of Tammela et al

(2008) who showed that VEGFR3 is upregulated during active

angiogenesis and expressed on tip cells of angiogenic sprouts.

Furthermore, there are previous indications in the literature

that heterodimerization of VEGFRs may be of biological

relevance. Goldman et al (2007) used receptor neutralizing

antibodies to show cooperative signalling of VEGFR2 and

VEGFR3 in lymphatic migration and proliferation. VEGFR2

has been suggested to be required for VEGFC-induced differ-

entiation of vascular progenitor cells (Suzuki et al, 2005).

VEGFC, but not the VEGFR3-specific ligand VEGFC156S

(Kirkin et al, 2001), induced differentiation of VEGFR3-ex-

pressing progenitors. On the other hand, Matsumura et al

(2003) reported that VEGFR3 negatively regulates VEGFR2 in

the maintenance of vascular integrity. We have previously

shown that VEGFR3 heterodimerized to VEGFR2 does not

become phosphorylated on two of its most C-terminal tyr-

osine phosphorylations sites (Dixelius et al, 2003). A similar

scenario, with loss of specific tyrosine phosphorylation, may

be true for VEGFR2 when dimerized with VEGFR3. However,

as the VEGFC-induced VEGFR2 tyrosine phosphorylation is

relatively weak (see Figure 1), it has not been technically

feasible to determine VEGFR2 tyrosine phosphorylation

pattern in response to VEGFC.

Taken together, it seems very likely that the molecular

communication between VEGFR2 and VEGFR3 exerted via

receptor heterodimerization is biologically relevant in angio-

genesis and serves to modulate angiogenic sprouting. It is

important to remember that receptor dimerization is guided

not only by the growth factors but also by the availability of

receptors whose expression levels may be highly plastic

dependent on the physiological or pathological context.

This is implied by our results using the 3D EB model (see

Figure 5), where VEGFA-induced sprouts showed VEGFR3

expression throughout the length of the sprout. In contrast,

VEGFC-induced sprouts showed higher expression of

VEGFR3 and higher extent of VEGFR2/-3 heterodimerization

in the tip. Therefore, the extent of heterodimerization is likely

to vary with receptor expression level and be different during

the various stages of the angiogenic process, and provide an

additional avenue for cells to fine tune their responses to

different VEGFs. Detailed studies on how homodimer versus

heterodimer ratios impact proliferation, survival, migration

and differentiation of endothelial cells will reveal the span of

information that can be transmitted by VEGFA and VEGFC. It

is for example an interesting possibility that signalling

by VEGFR2/-3 heterodimers contribute to the early develop-

mental function of VEGFR3 in vascular pruning (Dumont

et al, 1998).

Materials and methods

Endothelial and ES cell culture
Primary human saphenous vein endothelial cells (HSaVECs) and
human umbilical vein endothelial cells (HUVECs) were purchased
from Promocell (Heidelberg, Germany) and cultured on gelatin-
coated dishes in endothelial cell basal medium supplemented with
5% fetal bovine serum (FBS) and bullet kit (Promocell). Cells were
used between passage 2 and 8. PAE cells overexpressing human
VEGFR3 (PAE/VEGFR3) and wild-type controls were cultured on
gelatin-coated dishes in F12 medium supplemented with 10% FBS
(Invitrogen, San Diego, CA).

HSaVECs were treated with different growth factors as indicated.
Typically, cells were seeded in eight-well chamber slides (5�104 per
well), kept overnight in starvation medium and thereafter subjected
to treatment for 8min at 371C, with the following human ligands:
VEGFA121 (R&D), VEGFA165 (PeproTech), VEGFA145, VEGFA189
(both from Relia Tech GmbH, Braunschweig, Germany) all at 50 ng/
ml. This concentration found to be close to saturating on a linear
scale as determined by dose-response analyses (not shown). Effects
were compared with those of VEGFC (in-house production), VEGFD
(Vegenics Limited, Toorak, Australia), human platelet-derived
growth factor (PDGFB; PeproTech), all given at 100 ng/ml. In some
cases, pre-incubation on ice for 15min with neutralizing antibodies
against human VEGFR2 (IMC-1121b; 15mg/ml; Zhu et al, 2003) or
VEGFR3 (hF4-3C5; 15 mg/ml; Persaud et al, 2004) was performed.
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The murine ES cell line R1 (Nagy et al, 1993) was routine
cultured on a layer of mitomycin-C-arrested mouse embryonic
fibroblasts in ES medium: DMEM-Glutamax supplemented with
15% FBS, 25mM HEPES pH 7.4, 1.2mM sodium pyruvate, 0.12%
monothiolglycerol and 1000U/ml recombinant leukaemia inhibi-
tory factor (LIF; Chemicon International, Temecula, CA) and
passaged every second day. All medium components, except LIF,
were from Invitrogen.

Differentiation of ES cells in 2D or 3D cultures were done
essentially as described (Li et al, 2008). Briefly, on day 0, ES cells
were resuspended in ES medium without LIF to induce differentia-
tion. Cells were then aggregated in drops (1200 cells/drop) hanging
from the lid of a non-adherent culture dish to form EBs. After
4 days, EBs were collected and seeded out individually on eight-well
chamber glass slides (BD Biosciences, Franklin Lakes, NJ) for
immunostaining or for proximity ligation, or in groups on 60mm
cell culture dishes for immunoprecipitation (ip) and western blot
analyses. To score for 3D angiogenic sprouting, day 4 EBs were
seeded into 12-well dishes, in groups of 8–10, on a layer of 0.6ml of
solidified collagen type I solution (Ham’s F12 medium [Invitrogen],
5mM NaOH, 20mM HEPES, 0.117% NaHCO3, 1% Glutamax-1
[Invitrogen] and 1.5mg/ml collagen type I (Cohesion Technologies
Inc, Palo Alto, CA)). Immediately thereafter, a second layer of
collagen solution was added on top. After 3 h, 1.2ml of medium
with or without indicated growth factors was added. EBs were
maintained under normal growth conditions or supplemented with
human VEGFA (50 ng/ml PeproTech, Rocky Hill, NJ), or human,
processed VEGFC (100 ng/ml; produced in-house). When indicated,
neutralizing anti-mouse VEGFR3 (31C1, 15mg/ml; Pytowski et al,
2005) or isotype-matched control (15mg/ml; Southern Biotech;
Birmingham, AL) were added to the cultures.

Co-immunoprecipitation assay
Cultures grown in 60mm dishes (5�105/dish), treated or not with
growth factors and neutralizing antibodies as indicated, were lysed
in Nonidet P-40 (NP-40) lysis buffer: 50mM HEPES pH 7.5, 100mM
NaCl, 1mM EGTA, 1mM PMSF, 5mg/ml aprotinin, 5 mg/ml
leupeptin, 100mM Na3VO4, and 1% NP-40. Lysates were cleared
by centrifugation and incubated on ice for 2 h with 1mg of VEGFR2
or VEGFR3 antibodies. For immunoprecipitation of VEGFR2 or
VEGFR3 from human cells (e.g. HSaVEC), sc505 or sc321 antibodies
(Santa Cruz Biotechnology Inc, Santa Cruz, CA) were used. The
corresponding antibodies used for mouse cells (e.g. EBs) were
AF644 for VEGFR2 or AF743 for VEGFR3 (R&D Systems,
Minneapolis, MN). Immunoprecipitates were collected using
Protein G Sepharose and subjected to SDS–PAGE, followed by
transfer to Hybond-C extra membranes (Amersham Biosciences,
Uppsala, Sweden). Membranes were incubated with antibodies
directed against VEGFR2, VEGFR3 or phosphotyrosine (clone 4G10;
Upstate Biotechnology Inc, Lake Placid, NY), followed by horse-
radish perioxidase-conjugated secondary antibodies (Amersham
Biosciences, Uppsala, Sweden). In parallel, total cell lysates were
analysed by immunoblotting for VEGFR2 phosphorylation (pY1175;
Cell Signaling Technology Inc, Beverly MA) and b-actin content
(Santa Cruz Biotechnology). Immune reactivity was visualized
using the enhanced chemiluminescence plus detection system
(Amersham Biosciences, Uppsala, Sweden). Assays were repeated
three times and representative results are shown.

Immunofluorescent staining of EBs
EB cultures were washed twice in phosphate-buffered saline (PBS)
and fixed in 4% paraformaldehyde (PFA) in PBS for 30min at room
temperature. After permeabilization in 0.1% Triton X-100 and block
with TNB (PerkinElmer Life Science) or Tris-buffered saline
complemented with 3% bovine serum albumin and 0.1% Tween
20, antibodies against CD31, LYVE1, NG2 (Chemicon), VE-cadherin
(R&D Systems), VEGFR2 (AF644) or VEGFR3 (sc321 or AF7431;
R&D Systems) were applied. All samples were treated with Hoechst
33342 to visualize nuclei. Stained EBs were mounted on glass slides
in Fluoromount-G (Southern Biotechnology, Birmingham, AL) and
analysed by a Nikon Eclipse E1000 microscope with a Nikon Eclipse
DXM 1200 camera (Nikon, Tokyo, Japan) or an LSM 510 META
confocal microscope (Carl Zeiss, Oberkochen, Germany).

Quantification of CD31-positive vascular area was done on � 4
objective micrographs using the Easy Image Analysis 2000 software

(Tekno Optik, Huddinge, Sweden). Five-10 EBs per condition were
examined and the results are shown in arbitrary units±s.d.
Quantification of VEGFR2 and VEGFR3 expression along vascular
sprouts in 3D EBs was performed on four EBs per condition and
repeated three independent times.

In situ proximity ligation assay (in situ PLA)
Cultures, treated as indicated, were immediately fixed in 4% PFA on
ice for 30min and thereafter subjected to in situ PLA using Duolink
Detection kit (Olink Bioscience, Uppsala, Sweden) according to the
manufacturer’s instructions for Duolink Blocking solution and
Detection protocol. Briefly, slides were blocked, incubated with
antibodies directed against VEGFR2 (sc-6251) and VEGFR3 (sc321;
Santa Cruz Biotechnology) and thereafter incubated with PLA
probes, which are secondary antibodies (anti-mouse and anti-
rabbit) conjugated to unique oligonucleotides. Note that different
commercial batches of secondary antibodies varied slightly in their
capacity to detect VEGFR2/-3 heterodimers so that the absolute but
not relative numbers of receptor complexes were different (see
Figure 2C compared with Figure 2E).

When indicated, primary antibodies were converted to PLA
probes by conjugation to 50thiolated oligonucleotides as described
earlier (Soderberg et al, 2006). Briefly, 50 mg monoclonal antibody
(anti-VEGFR2, sc-6251 from Santa Cruz or anti-VEGFR3, MAB743
from R&D) were treated with 30-fold excess of sulfo-SMCC
(sulfosuccinimidyl 4-[N-maleimidomethyl]cyclohexane-1-carboxy-
late), Pierce Biotechnology (Rockford, Il). Unreacted sulfo-SMCC
was removed by gel filtration. Freshly reduced thiolated oligonu-
cleotides were added at a ratio of 1:4 (antibody:oligonucleotide)
and coupled overnight. The PLA probes were then purified by gel
filtration, removing unreacted antibodies and oligonucleotides.

Circularization and ligation of the oligonucleotides was followed
by an amplification step. The products were detected by a
complementary fluorescently labelled probe. Slides were mounted
using Vectashield (Vector Laboratories Inc, Burlingame, CA) and
evaluated using an LSM 510 META confocal microscope (Carl
Zeiss). Z-stack micrographs taken with the 40� /63� objectives
were obtained. The number of heterodimers, visualized as bright
fluorescent signals, was counted in 10–15 fields/well. n (number of
wells) ¼ 6 for HSaVEC analyses, and n (number of individual EBs)
¼ 8 for EB analyses. Representative results are shown from
experiments repeated at least three times. Cell images obtained
were exported using the AxioVision software (Carl Zeiss) in TIF
format for further analysis and determination of heterodimers/cell
in Blob-Finder image analysis software (Version 2.5), which has
been developed by the Centre for Image Analysis, Uppsala
University. Quantifications are given as meanþ s.d.

Statistical evaluation
Statistical analyses were performed using Student t-test and
P-values o0.05 were considered significant. *Po0.05, **Po0.01,
***Po0.001.

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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