
 

 

 

 

 

Edinburgh Research Explorer 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VEGFR-3 controls tip to stalk conversion at vessel fusion sites
by reinforcing Notch signalling

Citation for published version:
Tammela, T, Zarkada, G, Nurmi, H, Jakobsson, L, Heinolainen, K, Tvorogov, D, Zheng, W, Franco, CA,
Murtomäki, A, Aranda, E, Miura, N, Ylä-Herttuala, S, Fruttiger, M, Mäkinen, T, Eichmann, A, Pollard, JW,
Gerhardt, H & Alitalo, K 2011, 'VEGFR-3 controls tip to stalk conversion at vessel fusion sites by reinforcing
Notch signalling', Nature Cell Biology, vol. 13, no. 10, pp. 1202-13. https://doi.org/10.1038/ncb2331

Digital Object Identifier (DOI):
10.1038/ncb2331

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Nature Cell Biology

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 10. Aug. 2022

https://doi.org/10.1038/ncb2331
https://doi.org/10.1038/ncb2331
https://www.research.ed.ac.uk/en/publications/9b3fb770-c34f-4a81-b8ed-b726aa4b8f45


VEGFR-3 controls tip to stalk conversion at vessel fusion sites

by reinforcing Notch signalling

Tuomas Tammela1,9, Georgia Zarkada1,9, Harri Nurmi1, Lars Jakobsson2,10, Krista
Heinolainen1, Denis Tvorogov1, Wei Zheng1, Claudio A. Franco2, Aino Murtomäki1, Evelyn
Aranda3, Naoyuki Miura4, Seppo Ylä-Herttuala5, Marcus Fruttiger6, Taija Mäkinen1,10, Anne
Eichmann7, Jeffrey W. Pollard3, Holger Gerhardt2,8, and Kari Alitalo1,11

1Molecular/Cancer Biology Laboratory, Institute for Molecular Medicine Finland, Research

Programs Unit and Department of Pathology, Haartman Institute, Biomedicum Helsinki, PO Box

63 (Haartmaninkatu 8), 00014 University of Helsinki, Finland 2Vascular Biology Laboratory,

London Research Institute—Cancer Research UK, 44 Lincoln’s Inn Fields, London WC2A 3PX,

UK 3Department of Developmental and Molecular Biology, Albert Einstein College of Medicine,

New York, New York 10461, USA 4Department of Biochemistry, Hamamatsu University School of

Medicine, 431-3192 Hamamatsu, Japan 5A. I. Virtanen Institute and Department of Medicine,

University of Kuopio, PO Box 1627, 70211 Kuopio, Finland 6Institute of Ophthalmology, University

College London, London EC1V 9EL, UK 7Institut National de la Santé et de la Recherche

Médicale U833, Collège de France, 11 Place Marcelin Berthelot, 75005 Paris, France 8Vascular

Patterning Laboratory, Vesalius Research Center, VIB, Campus Gasthuisberg, B-3000 Leuven,

Belgium

Abstract

Angiogenesis, the growth of new blood vessels, involves specification of endothelial cells to tip

cells and stalk cells, which is controlled by Notch signalling, whereas vascular endothelial growth

factor receptor (VEGFR)-2 and VEGFR-3 have been implicated in angiogenic sprouting.

Surprisingly, we found that endothelial deletion of Vegfr3, but not VEGFR-3-blocking antibodies,

postnatally led to excessive angiogenic sprouting and branching, and decreased the level of Notch

signalling, indicating that VEGFR-3 possesses passive and active signalling modalities.
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Furthermore, macrophages expressing the VEGFR-3 and VEGFR-2 ligand VEGF-C localized to

vessel branch points, and Vegfc heterozygous mice exhibited inefficient angiogenesis

characterized by decreased vascular branching. FoxC2 is a known regulator of Notch ligand and

target gene expression, and Foxc2+/−; Vegfr3+/− compound heterozygosity recapitulated

homozygous loss of Vegfr3. These results indicate that macrophage-derived VEGF-C activates

VEGFR-3 in tip cells to reinforce Notch signalling, which contributes to the phenotypic

conversion of endothelial cells at fusion points of vessel sprouts.

During late embryogenesis and in the adult, blood vessels form primarily by angiogenesis,

that is by sprouting from pre-existing vessels. Vascular endothelial growth factor (VEGF)

potently promotes angiogenesis, and is indispensable for vascular development1,2, and

VEGFR-2 tyrosine kinase is the primary receptor transmitting VEGF signals in endothelial

cells3,4. VEGFR-3 is activated by the VEGF homologues VEGF-C and VEGF-D, which,

when fully proteolytically processed, also stimulate VEGFR-2 (ref. 5) and induce the

formation and activation of VEGFR-2–VEGFR-3 heterodimers6,7. Inactivation of the Vegfr3

gene (also known as Flt4) leads to marked defects in arterial–venous remodelling of the

primary vascular plexus, resulting in lethality by embryonic day (E) 10.5 (ref. 8) or to

defective segmental artery morphogenesis9 in mice or zebrafish, respectively.

As the lymphatic vessels begin to develop at around E10.5, the level of Vegfr3 expression

gradually decreases in the blood vessels, and from E16.5 onwards it is found nearly

exclusively in the lymphatic vascular endothelium10,11. However, VEGFR-3 is induced in

angiogenic endothelial cells for example in tumours, wounds and in maturing ovarian

follicles12–14. Homozygous gene-targeting of Vegfc leads to embryonic lethality at E16.5

due to a complete failure in lymphatic vessel formation, whereas Vegfc heterozygous mice

survive with lymphatic vessel hypoplasia and lymphedema, but do not exhibit blood

vascular defects as adults15. Conversely, Vegfd gene-targeted mice are viable and normal16.

Interestingly, compound deletion of both Vegfc and Vegfd phenocopies the homozygous loss

of Vegfc, but these mice survive past the time point of critical requirement for Vegfr3

(ref. 17), implicating other as yet unknown ligands or ligand-independent signalling for

VEGFR-3.

Angiogenic sprouting involves specification of subpopulations of endothelial cells into tip

cells that respond to VEGF guidance cues, and stalk cells that follow the tip cells and

proliferate to form the vascular network18. Recent evidence indicates that VEGF induces the

membrane-bound Notch ligand delta-like 4 (Dll4) in the tip cells, which leads to the

induction of the stalk-cell phenotype in adjacent endothelial cells through activation of

Notch-1 (refs 10,19–21). The angiogenic sprouts fuse at intervals18, followed by the

formation of a vessel lumen to form a functional microcirculatory loop22,23. The fusion of

migrating tip cells is chaperoned by Tie2- and neuropilin-1-positive macrophages24, which

express a variety of growth factors and proteolytic enzymes24–26. However, the molecular

players regulating sprout fusion and vessel anastomosis have remained unknown.

We recently demonstrated that VEGFR-3 is expressed at a high level in endothelial tip cells,

and that blocking VEGFR-3 with antibodies results in decreased angiogenesis during

postnatal development and in tumours14. Stimulation of VEGFR-3 augments VEGF-induced

angiogenesis and sustains blood vessel growth even in the presence of VEGFR-2 inhibitors,

whereas antibodies against VEGFR-3 and VEGFR-2 in combination produce additive

inhibition of angiogenesis and tumour growth14. Consistent with the concept of high levels

of VEGFR-3 activity in the tip cells, genetic or pharmacological disruption of the Notch

signalling pathway in vivo leads to widespread endothelial Vegfr3 expression and excessive

sprouting14,27,28.
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Here, we show that genetic inactivation of Vegfr3 in endothelial cells surprisingly resulted in

increased numbers of tip cells and vessel hyperplasia, which closely resembled loss of Notch

signalling, whereas haploinsufficiency of Vegfc led to disruption of tip cell fusion points and

inefficient angiogenesis. Our results implicate a bimodal role for VEGFR-3 in regulating

angiogenesis, and indicate that the VEGF-C–VEGFR-3 signalling pathway controls the

branching morphogenesis of blood vessels.

RESULTS

Endothelial deletion of Vegfr3 results in excessive angiogenesis

To study the consequences of homozygous endothelial-specific loss of Vegfr3 during

angiogenesis, we mated Vegfr3flox/flox mice with PdgfbiCreERT2 mice that express

tamoxifen-activated Cre recombinase in endothelial cells29. Complete deletion of Vegfr3 in

the retinal endothelium was achieved by 24 h following administration of 4-

hydroxytamoxifen (4-OHT; Supplementary Fig. S1a–d). Some residual Vegfr3 expression

was detected by quantitative real-time (qRT) PCR (Supplementary Fig. S1e), presumably

originating from retinal oligodendrocytes30 or from monocytic cells31.

Surprisingly, when Cre was induced in PdgfbiCreERT2; Vegfr3flox/flox (Vegfr3iΔEC) mice for

48 h from postnatal day (P) 3 to P5, marked excessive branching, filopodia projection and

hyperplasia of the nascent vascular plexus were observed (Fig. 1a–e). There was a

significant increase in the proliferation of retinal endothelial cells (Fig. 1f and

Supplementary Fig. S2). Increased branching and vascular hyperplasia were also observed in

hindbrains of Vegfr3iΔEC embryos at E11.5 (Fig. 1g–k and Supplementary Fig. S3).

We sought to validate these findings in other models outside the developing central nervous

system. Excessive angiogenesis and sprouting were also detected in syngeneic

subcutaneously implanted Lewis lung carcinomas (LLC) and B16-F10 melanomas in the

Vegfr3iΔEC mice (Fig. 1l,m and data not shown). Furthermore, when ears of adult

Vegfr3iΔEC mice were transduced with AdVEGF, we observed a more robust angiogenic

response, characterized by increased vascular tortuosity, enlargement and surface area (Fig.

1n and Supplementary Fig. S4).

VEGFR-3 tyrosine kinase activity is crucial for lymphatic vessel growth32, but its role in

angiogenesis is not known. To determine whether VEGFR-3 is tyrosine phosphorylated in

blood vascular endothelial cells in vivo, we injected recombinant VEGF, VEGF-C or BSA

control protein into the outflow tract of wild-type embryos at E10.5, a stage when lymphatic

vessels have not yet developed (Fig. 2a–c). VEGF did not promote tyrosine phosphorylation

of VEGFR-3, unlike VEGF-C, but a faint phosphorylation signal was detected in both

VEGF- and BSA-stimulated embryos, indicating a baseline level of VEGFR-3

phosphorylation (Fig. 2b). As expected, VEGF and VEGF-C both stimulated VEGFR-2

phosphorylation (Fig. 2c).

We have previously shown that VEGFR-3-blocking antibodies suppress angiogenesis14,

whereas our results surprisingly showed that genetic targeting of Vegfr3 produced excessive

angiogenic sprouting, indicating the possibility of ligand-independent sprouting. We found

that VEGFR-3 was phosphorylated in the absence of its ligands by stimulation with collagen

I in cultured human dermal blood vascular endothelial cells (hBECs) even in the presence of

blocking monoclonal antibodies or a VEGFR tyrosine kinase inhibitor, whereas the Src

inhibitor PP2 blocked collagen-I-induced phosphorylation of VEGFR-3 (Fig. 2d), indicating

that VEGFR-3 can be phosphorylated independently of its ligands33.
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We addressed the role of VEGFR-3 kinase activity in angiogenesis in vivo by studying the

retinas of Chy mice, which harbour a heterozygous kinase-inactivating point mutation in the

tyrosine kinase domain (Vegfr3KD/+), leading to a decreased level of VEGFR-3 signalling

and severe lymphatic vessel hypoplasia32. The retinas of mice harbouring one kinase-dead

(KD) and one deleted Vegfr3 allele (Vegfr3iΔEC/KD) showed an increase in the vascular area,

branching and filopodia projection that was comparable to homozygous loss of Vegfr3

(Vegfr3iΔEC/iΔEC; Fig. 2e–i), indicating that VEGFR-3 hypophosphorylation can trigger the

phenotype. In contrast, Vegfr3KD/+ and Vegfr3iΔEC/+ single heterozygotes were

indistinguishable from wild-type retinas (Fig. 2e–i).

The administration of VEGFR-3-blocking antibodies to Vegfr3iΔEC mice did not affect the

hypervascular phenotype (Fig. 3a,b). In contrast, VEGFR-2-blocking antibodies rescued the

increase in vascular area in the Vegfr3iΔEC mice (Fig. 3a,b). However, the nascent vessels

appeared abnormally thick in the Vegfr3iΔEC retinas following administration of VEGFR-2-

blocking antibodies (arrowheads in Fig. 3a), indicating that the phenotypic rescue was not

complete. Furthermore, the expression level of VEGFR-1, a negative regulator of VEGF,

was decreased in the Vegfr3iΔEC retinas (Fig. 3c), indicating an increased level of VEGF–

VEGFR-2 signalling. Consistently, we detected a minor increase in the level of VEGFR-2

phosphorylation following stimulation of cultured human umbilical vein endothelial cells

(HUVECs) with VEGF when VEGFR-3 expression was silenced using siRNA

oligonucleotides (Fig. 3d). Antibodies blocking human VEGFR-3 had no effect on

VEGFR-2 phosphorylation in response to VEGF in HUVECs (Supplementary Fig. S5a).

Loss of Vegfr3 in endothelial cells leads to a decreased level of Notch target gene
expression

The phenotype resulting from endothelial Vegfr3 deletion closely resembled the hyperplastic

vascular pattern resulting from inhibition of Dll4/Notch signalling between tip and stalk

cells. Indeed, we detected a marked decrease in the level of Notch target gene transcripts and

the Notch ligand Dll4 in the Vegfr3iΔEC retinas (Fig. 4a), indicating a decreased level of

Notch signalling in the endothelium, resulting in tip cell dominance over stalk cells. In

contrast, no changes in Notch targets could be observed in pups treated with VEGFR-3-

blocking antibodies (Supplementary Fig. S5b), indicating that the perturbations to VEGFR-3

by blocking antibodies and genetic targeting are qualitatively different.

To investigate the responsiveness of the Vegfr3-deficient endothelium to exogenous Notch

activation, we administered Jagged1, a small peptide Notch agonist, to Vegfr3iΔEC pups, and

observed a rescue of the hypervascular phenotype (Fig. 4b,c). Notably, the vasculature was

normalized also in terms of morphology, unlike after anti-VEGFR-2 antibody administration

(Fig. 4c), indicating that decreased Notch signalling underlies the phenotype in Vegfr3iΔEC

retinas.

According to our results, VEGFR-3 contributes to the activation of Notch that is known to

promote a phenotypic switch from a tip cell to a stalk cell. We chose to test this hypothesis

in mosaic embryoid bodies consisting of both Vegfr3+/LacZ heterozygous and wild-type

embryonic stem cells34. Vegfr3+/LacZ endothelial cells preferentially localized to the tips of

VEGF-induced vascular sprouts (Fig. 4d,g), whereas inhibiting Notch cleavage with the γ-
secretase inhibitor DAPT abrogated the competitive advantage of the Vegfr3+/LacZ

endothelial cells (Fig. 4h). Vegfr3+/LacZ endothelial cells preferentially localized to the tips

of vascular sprouts also in mosaic retinas at P5 (Fig. 4i), indicating increased tip cell

competence for the Vegfr3 haploinsufficient cells, which further implicates a decreased level

of Notch signalling in endothelial cells with targeted Vegfr3 loss-of-function.
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VEGF-C–VEGFR-3 signalling controls fusion of vascular sprouts

We next sought to determine which of the two VEGFR-3 ligands, VEGF-C or VEGF-D, is

responsible for activating VEGFR-3 in the angiogenic endothelium in vivo. Strikingly, Vegfc

heterozygous mice demonstrated retardation of retinal vascularization and decreased vessel

branching density (Fig. 5a–d). In contrast, the Vegfc heterozygotes exhibited increased

vessel sprouting and filopodia projection (Fig. 5e,f), and a decrease in the level of Notch

target gene expression (Fig. 5g). These results implied a failure in stabilization of sprout

fusion sites, and indicated that the excess sprouts represent failed tip cell fusions. Indeed,

tracking endothelial cell migration paths by collagen IV immunostaining showed that

endothelial cells in Vegfc-haploinsufficient mice had frequently retracted from putative

sprout fusion sites (Fig. 5h,i). Importantly, Vegf (also known as Vegfa) levels in the Vegfc

heterozygous retinas were normal, whereas Vegfc transcript levels were decreased by more

than 50% (Supplementary Fig. S5c). No changes in angiogenesis were observed in

homozygous or heterozygous Vegfd gene-targeted retinas (Supplementary Fig. S6),

indicating that VEGF-C is the key ligand responsible for VEGFR-3 activation during retinal

angiogenesis.

Macrophages expressing Tie2 have been implicated as critical cellular chaperones for the

formation of vascular anastomoses24,25, and our results indicated a role for VEGF-C in this

process. We detected VEGF-C expression in 50.9% (3.1% ± s.e.m.) of F4/80-positive

macrophages in wild-type retinas. High-resolution imaging showed that all F4/80- and Tie2-

positive cells were also VEGF-C positive (Fig. 5j). Curiously, the VEGF-C-positive

macrophages were positioned at the vascular front and primarily resided at vascular

branching points immediately behind the tip cell front, whereas macrophages at sites of tip

cell engagement expressed lower levels of VEGF-C (Fig. 5j and Supplementary Fig. S7).

Interestingly, complete loss of macrophages in op/op mice35 largely phenocopied

heterozygous loss of Vegfc, as evidenced by decreased radial migration, area and branching

of the vascular plexus, as well as by increased sprouting of the vessels (Fig. 5k–o).

Furthermore, the Notch target genes Hey1 and Hey2 were significantly downregulated in the

op/op retinas (Fig. 5p).

VEGF-C–VEGFR-3 signals induce Notch target genes through PI(3)K and FOXC2

To understand the mechanisms whereby VEGF-C–VEGFR-3 signalling contributes to Notch

signalling, we stimulated cultured hBECs with VEGF-C and observed induction of Notch

target genes over a 1–2 h stimulation period (Fig. 6a and data not shown). We found that

VEGF-C induced DLL4 in the hBECs (Supplementary Fig. S8), but similar induction of the

Notch targets was observed also in the presence of a soluble Notch inhibitor, Dll4-Fc (Fig.

6a), implicating ligand-independent induction of Notch targets. Silencing VEGFR-3

expression with siRNA suppressed the induction of Notch targets and DLL4 in response to

VEGF-C (Fig. 6b). Interestingly, VEGF-C potentiated Notch target gene expression induced

by transduction of hBECs with a retrovirus encoding membrane-bound Dll4 (Fig. 6c). The

endothelial Notch receptors (NOTCH1 and NOTCH4) were not induced by VEGF-C

stimulation (Supplementary Fig. S8). Taken together, these data indicate that VEGF-C–

VEGFR-3 signalling can induce Notch target genes through a mechanism that is

independent of canonical Notch signalling.

Phosphatidylinositol 3-kinase (PI(3)K) is a downstream effector of receptor tyrosine kinases,

and it has been implicated as a positive regulator of Notch signalling36–38. PI(3)K is

activated by VEGFR-3 signals, indicating a mechanism for activation of Notch downstream

of VEGFR-3. Indeed, pharmacological inhibition of PI(3)K, but not the MAP-kinase MEK,

suppressed Notch activation by VEGF-C (Fig. 6d and data not shown). Interestingly, siRNA
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silencing of VEGFR-3 expression returned ligand-induced activation of PI(3)K to baseline

levels (Fig. 6e), indicating that PI(3)K activity is at least partially regulated by VEGFR-3 in

angiogenic endothelial cells.

PI(3)K/Akt signalling is known to regulate FOX family transcription factors39, and

VEGFR-3 has been reported to genetically interact with FoxC2 in lymphatic endothelial

cells40. FOXC2 has also been shown to directly regulate HEY2 and DLL4 expression38,41,

indicating a possible link between the VEGFR-3 and Notch signalling pathways. We found

FOXC2 messenger RNA induction in hBECs by VEGF-C stimulation, but not in response to

Notch activation by membrane-bound Dll4 (Fig. 7a and data not shown). Loss of Vegfr3 in

vivo led to a marked decrease in the level of FoxC2 expression in the endothelial cells at the

angiogenic front (Fig. 7b–d). Downregulation of Foxc2 was also evident in Vegfc

heterozygous retinas (Fig. 7e). To investigate whether VEGFR-3 and FoxC2 function in the

same pathway, we generated Vegfr3+/−;Foxc2+/− compound heterozygous mice, which

exhibited similar excessive endothelial growth, branching and filopodia projection as

observed in the Vegfr3iΔEC homozygous retinas (Figs 7f–i, 1). The vasculature of single

heterozygotes appeared indistinguishable from wild-type littermates (Fig. 7f–i).

Collectively, these data indicate that VEGFR-3 may induce Notch target genes through

FoxC2 independently of Notch ligand–receptor interactions (Fig. 7j).

DISCUSSION

Here we demonstrate that endothelial loss of VEGFR-3 leads to hypervascularization in

developmental and tumour angiogenesis as well as in purely VEGF-driven angiogenesis.

This finding contrasts with our previous data showing that VEGFR-3-blocking antibodies

rather suppress angiogenesis14,42. Although seemingly in stark conflict, it is important to

consider that the two phenotypes are a result of profoundly different perturbations of

VEGFR-3. In the case of antibodies, the intracellular domain is free to interact with

intracellular proteins, whereas the entire receptor is missing following genetic deletion.

Indeed, VEGFR-3 can be phosphorylated by the intracellular tyrosine kinase Src, activated

downstream of integrins following cell adhesion to matrix collagen I, even in conditions in

which VEGFR-3 tyrosine kinase activity is lost33. Here we showed that the tyrosine kinase

domain of VEGFR-3 can be phosphorylated following endothelial cell adhesion to collagen

I in the presence of specific antibodies that block ligand–receptor interactions. Given that

endothelial cells adhere to collagen I during angiogenic invasion of tissues43, it is likely that

some phosphorylation of VEGFR-3 occurs also in vivo even in the presence of blocking

antibodies or the absence of the ligand.

Our analysis of mice harbouring various allelic combinations of endothelial-cell-deleted

(iΔEC), kinase-dead mutant and wild-type Vegfr3 allowed for a titration of both kinase

activity and genetic dose of VEGFR-3. The combination of a 50% decrease in genetic dose

and loss of kinase activity in the remaining allele (iΔEC/KD) represented a threshold for the

degree of VEGFR-3 phosphorylation required for normal angiogenesis. Importantly, our

previous results indicate that the kinase-dead mutant may exert dominant-negative

activity32, which is why it is likely not to precisely mimic the effect of VEGFR-3-blocking

antibodies.

Our results indicate that VEGFR-3 controls Notch targets, but VEGFR-3 is also capable of

inducing mitogenic signalling14. According to our model, the latter ‘active’ function is

dependent on ligand binding and can be blocked by specific inhibitors, whereas the

regulation of Notch can persist even in the presence of inhibitors (Fig. 7j). The elucidation

of the ligand-independent, or ‘passive’, signalling modality may explain why compound
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deletion of both VEGFR-3 ligands, Vegfc and Vegfd, does not recapitulate the early

embryonic lethality of Vegfr3 gene-targeted mice17, and why VEGFR-3-blocking

antibodies, which prevent ligand-dependent activation of the receptor, suppress

angiogenesis14.

Interestingly, we observed a slight increase in the level of VEGFR-2 activity in cultured

cells in which VEGFR-3 expression was silenced, whereas robust overexpression of wild-

type, kinase-dead or ligand-binding-defective VEGFR-3 decreased the level of VEGFR-2

phosphorylation following VEGF stimulation44. Furthermore, we showed that VEGFR-2-

blocking antibodies were able to rescue the hypervascularity resulting from endothelial

deletion of Vegfr3, although morphologically the vessels remained abnormal. These findings

indicate that VEGFR-3, although not capable of binding to VEGF, may act as a negative

regulator of VEGF–VEGFR-2 signalling. Interestingly, implications towards such an

interaction were already made in an elegant study demonstrating that VEGF can bring

VEGFR-2 and VEGFR-3 to close proximity without inducing VEGFR-3 phosphorylation45.

Importantly, we did not detect differences in the level of VEGFR-2 phosphorylation

following VEGF stimulation in the presence of VEGFR-3-blocking antibodies.

The previous observations45 place VEGFR-3 in VEGF–VEGFR-2 signalling clusters on the

endothelial cell membrane and in subsequent signalosomes, which are known to contain

multiple membrane-bound molecules that modulate the activity of VEGFRs, including

ephrin-B2 (refs 46,47), claudin-like protein 24 (ref. 48), neuropilin-1 (ref. 49) and VE-

cadherin50. It is therefore possible that VEGFR-3-blocking antibodies sterically disrupt the

cluster or promote receptor internalization in addition to suppressing ligand-activated

VEGFR-3 kinase activity. Conversely, loss of VEGFR-3 would allow its molecular partners

to interact with VEGFR-2, which may modulate the signalling properties of this potent

endothelial kinase.

We detected a significant decrease in the expression of multiple Notch target genes and the

Notch ligand Dll4 in the Vegfr3iΔEC retinas, and observed a rescue of the hypervascular

phenotype following exogenous activation of the Notch signalling pathway. In contrast,

VEGF-C was capable of inducing Notch target gene expression even in the presence of a

potent Notch inhibitor, that is independently of the canonical Notch ligands, as well as

potentiating the induction of Notch targets in response to Dll4–Notch interactions. Notch

target gene induction stimulated by VEGF-C was suppressed by administration of a PI(3)K

inhibitor, which has also been shown to suppress Notch target gene expression following

stimulation with VEGF (refs 36,38) or cyclic adenosine monophosphate37 (cAMP) in

endothelial cells or endothelial cell progenitors, respectively.

We have previously established a genetic interaction for VEGFR-3 and FoxC2 in the

regulation of lymphatic valve formation40. Previous studies have shown that FOXC2

directly regulates the expression of DLL4 and HEY2 (refs 38,41), possibly by interacting

with the Notch intracellular domain38 (NICD). Here we demonstrate that endothelial loss of

Vegfr3 leads to a pronounced downregulation of FoxC2, and Foxc2+/−;Vegfr3+/− compound

heterozygotes recapitulated the phenotype observed in Vegfr3iΔEC homozygotes.

Interestingly, Notch1+/−;Vegfr3+/− compound heterozygous embryos exhibit increased

lethality, whereas single heterozygotes survive in normal Mendelian ratios51. According to

our findings and the published literature, it seems that VEGFR-3 can augment Notch

signalling independently of canonical Notch ligand–receptor interactions through a

mechanism involving FoxC2.

In zebrafish, VEGF-C controls angiogenesis before the formation of the lymphatic vascular

system52. Interestingly, we detected induction of VEGF-C expression in macrophages at
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sites of sprout fusion, and robust expression in cells localized at vessel branch points. Tie2-

positive macrophages have been implicated in tumour angiogenesis53 and as chaperones of

sprout fusion during development24, which is why it is of particular interest that the Tie2-

positive macrophages were also VEGF-C positive. We observed similar vascular

mispatterning, branching failure and a decreased level of Notch target gene expression in

both Vegfc haploinsufficient mice and macrophage-deficient op/op mice. Although

macrophages produce a plethora of growth factors26, our studies implicate VEGF-C as a key

factor in vascular branch formation on the basis of genetic loss-of-function experiments, as

well as the spatiotemporally coincident expression of both VEGF-C and VEGFR-3 at sites

of sprout fusion.

Importantly, the phenotype resulting from heterozygous loss of Vegfc is different from

homozygous endothelial deletion of Vegfr3, as characterized by decreased and increased

branching, respectively. Deficiency of the ligand is likely to lead to decreased levels of

activity of both VEGFR-3 and VEGFR-2, and to affect the ‘active’ mode of VEGFR-3

signalling, which promotes angiogenesis, whereas the passive mode of signalling is still able

to function through intracellular activation of VEGFR-3. However, the loss of Vegfr3

abolishes both signalling modalities, leading to a significant decrease in the level of Notch

signalling. Unlike the loss of VEGF-C, which resulted in reduced angiogenesis, the loss of

VEGFR-3 did not negatively affect VEGFR-2 signalling; rather a small increase was

observed.

VEGFR-3 signals seem to have an important role in a mechanism for the rapid conversion of

tip cells to stalk cells, which is required at points of sprout fusion, where tip cells of

opposing sprouts meet and establish cell–cell junctions. Our data support a model in which

VEGF-C-producing macrophages stimulate VEGFR-3-positive tip cells to turn on Notch

target genes, which leads to decreased sensitivity to VEGF and downregulation of VEGFR-3

in these cells14,27,28, facilitating the assembly of vascular loops. In support of this model, we

observed FoxC2 expression only in stalk cells and in endothelial cells forming vascular

loops, but not in tip cells. Interestingly, Vegfc expression is also found in angiogenic

endothelial cells during development14, indicating the possibility of autocrine VEGF-C–

VEGFR-3 interactions that may produce qualitatively distinct signals.

Our data indicate that BECs are instructed to migrate and proliferate primarily by VEGFR-2,

whereas VEGFR-3 is the primary receptor driving differentiation signals towards the stalk-

cell phenotype by activating Notch target gene expression through FoxC2. However, when

VEGFR-2 is blocked, VEGFR-3 kinase activity can partially compensate for the loss of

VEGFR-2 activity in driving the growth of endothelial cells, and vice versa14. Indeed, we

have previously shown that VEGFR-3 activation can promote proliferation of BECs in vivo,

but these signals are weak when compared with those originating from VEGFR-2 (refs

14,54). However, blocking VEGFR-3 augmented the effect of VEGF–VEGFR-2 axis

inhibitors by providing additional inhibition of angiogenesis14, which reflects the capacity of

VEGFR-3 for angiogenic signalling.

Our results using inducible gene targeting elucidate a bimodal function for VEGFR-3 in

angiogenesis as a driver of both growth and differentiation of endothelial cells, which could

not have been discovered by studying specific inhibitors alone, attesting to the power of

mouse molecular genetics. VEGFR-3-blocking antibodies and kinase inhibitors are capable

of targeting only the ‘active’ arm of VEGFR-3 signalling, whereas the ‘passive’ arm could

be eliminated only by genetic deletion of the receptor (Fig. 7j). Our results support an

intricate mechanism that controls the formation and integrity of vascular micro-anastomoses

during angiogenesis, and reinforce the concept of augmentation of Notch signals by receptor
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tyrosine kinase activation, which may provide additional tools for the therapeutic

manipulation of the blood vascular system.

METHODS

Methods and any associated references are available in the online version of the paper at

http://www.nature.com/naturecellbiology

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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METHODS

Mice and tissues

The study was approved by the Committee for Animal Experiments of the District of

Southern Finland. The mice were anaesthetized with intraperitoneal injections of xylazine

(10 mg kg−1) and ketamine (80 mg kg−1). The Vegfr3+/LacZ (ref. 8), Vegfr3flox/flox (ref. 17),

Vegfc+/LacZ (ref. 15), Vegfd+/− (ref. 16), ROSA26-R (ref. 55), Foxc2+/− (ref. 56), Csf1op/op

(ref. 35) and Pdgfb–iCreERT2 (ref. 29) mouse lines have been published previously. After

killing the mice, tissues were immersed in 4% paraformaldehyde, washed in phosphate

buffered saline (PBS) and then processed for whole-mount staining, immersed in OCT
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medium (Tissue Tek) or embedded in paraffin. Deletion of Vegfr3 in the Pdgfb–

iCreERT2;Vegfr3flox/flox mice was validated by immunohistochemistry and qRT-PCR

(Supplementary Fig. S1). The possibility of a 3′ Vegfr3 mRNA fragment originating from a

cryptic start codon was excluded by qRT-PCR probes targeting the 5′ and 3′ ends of the

Vegfr3 transcript; no difference in expression levels was found (data not shown).

Analysis of angiogenesis in the postnatal mouse retina and in the

embryonic mouse hindbrain

Neonatal Pdgfb–iCreERT2; Vegfr3flox/flox, Pdgfb–iCreERT2;ROSA26-R or control mice were

intragastrically injected with 2 μl of 4-OHT (Sigma) dissolved in 97% ethanol, on P3 and P4

using a 10 μl Hamilton syringe. A 12 h induction of Cre activity with 4-OHT during P5 was

sufficient to result in Cre-activated β-galactosidase reporter expression in most endothelial

cells of the developing retinal vasculature; the strongest signal was observed in the tip cells

(Supplementary Fig. S1a), which express high levels of Pdgfb (ref. 18). Induction for 48 h

resulted in robust Cre-dependent β-galactosidase activity in all endothelial cells

(Supplementary Fig. S1b). For the antibody treatments, NMRI pups were subcutaneously

injected with 50 mg kg−1 of anti-VEGFR-3 (mF4-31C1; ref. 57) or anti-VEGFR-2 (DC101;

ref. 58) on P3 and P4. The small peptide mimetic of the Notch ligand Jagged1 (Jag1) or

scrambled control peptide (SC-Jag1, Thermo Scientific) was dissolved in 50%

dimethylsulphoxide and 50% sterile water, and administered subcutaneously at 10 mg kg−1

(refs 19,59) on P3 and P4 at 12 h intervals. To identify proliferating endothelial cells, the

pups were given 0.2 mg of 5-bromo-2-deoxyuridine (BrdU) by intraperitoneal injections, 2 h

before being killed. In all cases, the pups were killed on P5, and their eyes were collected for

analysis. For hindbrain analysis, pregnant females were given 2.5 mg of 4-OHT dissolved in

40% ethanol and 60% sunflower seed oil (Sigma), using a feeding needle at E10.5 (for 24 h

analysis) or E10.5 and E11.5 (for 48 h analysis). Embryos were collected on E11.5 or E12.5,

and hindbrains were processed for whole-mount immunohistochemistry.

Transduction of the mouse ear skin with adenoviral gene transfer vectors

Cre was induced at least 2 days in advance by subcutaneous implantation of sustained

release pellets (21 days) containing tamoxifen (25 mg, Innovative Research). Adenoviruses

encoding human VEGF165 or VEGF-B167 were injected intradermally into the ears of

Pdgfb–iCreERT2;Vegfr3flox/flox mice. A total of 2×108 plaque-forming units of each virus

were injected in a volume of 50 μl. The mice were perfusion-fixed 5 days after injection, and

the ears were collected and processed for whole-mount analysis60, or immersed in OCT

medium (Tissue Tek).

Tumour cell lines, xenografts and treatments

B16–F10–Luc2–G5 mouse melanoma or mouse LLC cells were maintained in DMEM,

supplemented with 2 mM L-glutamine, penicillin (100 U ml−1), streptomycin (100 μg ml−1)

and 10% fetal calf serum (Promo Cell). For B16–F10–Luc2–G5 cells, zeocin was added at a

final concentration of 0.3 mg ml−1 as a selection marker. The B16 and LLC syngeneic grafts

were made by injecting 2–4 × 106 cells into the subcutaneous space in the abdominal flank

of Pdgfb–iCreERT2;Vegfr3flox/flox mice. Again, Cre was induced by subcutaneous

implantation of the sustained tamoxifen-release pellets (25 mg, Innovative Research).

Immunohistochemistry

50 μm sections of tumours and 10 μm sections of ears were fixed with cold acetone, washed

with PBS and blocked with TNB (PerkinElmer). The following primary antibodies were
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used for immunostaining of mouse tissues: polyclonal goat anti-mouse VEGFR-3 (R&D

Systems, 1:50–1:100), rabbit polyclonal anti-GFP (TP401, Torrey Pines Biolabs, 1:1,000),

unconjugated or fluorescein isothiocyanate (FITC)-conjugated rat anti-PECAM-1 (clone

MEC 13.3, 553370, BD Pharmingen, 1:500, 1:800), rat anti-mouse endomucin (V.7C7:

sc-65495, Santa Cruz Biotechnology, 1:100), polyclonal rabbit anti-FITC (Zymed/

Invitrogen, 1:100), rabbit anti-mouse collagen IV (LB-1403, Cosmo Bio, 1:1,000), rabbit #6

polyclonal antiserum to VEGF-C (ref. 61), or pre-immune rabbit #6 serum as a negative

control61, and Alexa-Fluor-594-conjugated mouse anti-BrdU monoclonal antibody (clone

MoBU-1, B35132, Invitrogen, 1:500). Sections were washed with TNT buffer and the

primary antibodies were detected with the appropriate Alexa 488, 594 or 647 secondary

antibody conjugates (Molecular Probes/Invitrogen).

Hindbrains of E11.5 or E12.5 embryos were processed for whole-mount immunofluoresence

staining as previously described62. For analysis of the microvasculature, retinas were stained

with biotinylated Griffonia simplicifolia lectin (Vector Laboratories), as before18, followed

by immunostaining. Alternatively, to detect β-galactosidase activity, eyes were processed, as

before14. After staining, retinas were washed and mounted in Vectashield (Vector

Laboratories) or re-fixed in 4% paraformaldehyde and processed for whole-mount

immunofluoresence staining. All fluorescently labelled samples were mounted with

Vectashield containing 4,6-diamidino-2-phenylindole (DAPI, Vector Laboratories).

Microscopy

Fluorescently labelled samples were analysed with a compound fluorescent microscope

(Zeiss 2, Carl Zeiss; ×10 objective with numerical aperture (NA) 0.30) or a confocal

microscope (Zeiss LSM 510Meta, objectives ×10 with NA 0.45, oil objectives ×40 with NA

1.3 and ×63 with NA 1.4; or Zeiss LSM 5 Duo, objectives ×10 with NA 0.45, oil objectives

×40 with NA 1.3 and ×63 with NA 1.4) using multichannel scanning in frame mode, as

before14. Three-dimensional projections were digitally reconstructed from confocal z stacks.

Co-localization of signals was assessed from single confocal optical sections. Images of

whole retinas were acquired using tile scanning with a pinhole diameter >3.0 Airy units. X-

gal (5-bromo-4-chloro-3-indolyl-β-D-galactoside) staining of LacZ reporter mice was

analysed with a Leica DM LB camera (objectives ×10 with NA 0.25 and ×20 with NA 0.4).

Cell culture and reagents

hBECs (PromoCell) were maintained in endothelial cell growth medium (ECGM,

PromoCell, C22120) with supplements provided by the manufacturer. For stimulation

experiments, hBECs were starved for 6–8 h in serum-free ECGM and stimulated for 1 or 2 h

in fresh starvation media. The following reagents were used: human VEGF (100 ng ml−1,

293-VE, R&D) and VEGF-CΔNΔC (200 ng ml−1; ref. 63). For Notch or PI(3)K inhibition

experiments, cells were starved for 6 h and Dll4-Fc (Dll4-Fc conditioned medium64),

LY294002 (10 μM, 440204, Calbiochem) or PD98059 (20 μM, Calbiochem) was added for

30, 15 and 30 min respectively before stimulation with VEGF-C (200 ng ml−1, added in the

same media). For silencing experiments, hBECs were transfected with human VEGFR3 or

non-targeted siRNA (Thermo Scientific Dharmacon siGENOME ON-TARGETplus

SMARTpool reagents), using Oligofectamine (Invitrogen). For activation of Notch in

cultured hBECs, 50% of the cells were transduced with pMX retroviral vectors expressing

mouse Dll4–ECTM–eGFP (mDll4–ECTM–eGFP; ref. 64). Gene expression was examined

48 h post-transfection by qRT-PCR from cells lysed in RLT buffer (Qiagen). Alternatively,

cells were lysed in PLCLB lysis buffer (150 mM NaCl, 5% glycerol, 1% Triton X-100, 1.5

M MgCl2, 50 mM HEPES, pH 7.5, 1 mM Na3VO4, phenylmethylsulphonyl fluoride,

leupeptin and aprotinin) for western blotting65, using the following antibodies: goat anti-
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mouse VEGFR-2 (AF357, R&D Systems), goat anti-mouse VEGFR-3 (AF743, R&D

Systems), mouse anti-human VEGFR-3 (clone 9D9, ref. 66), rabbit anti-human β-actin

(#4967, Cell Signaling) and mouse anti-phosphotyrosine (#05-321, Millipore).

Analysis of VEGFR-3 phosphorylation following adhesion to collagen I

hBECs were transfected with pMX retrovirus encoding VEGFR3–StreptagII (ref. 67),

detached using Accutase (PAA Laboratories) and plated on Collagen I or poly-L-lysine

(both 4 μg cm−2), which was used as a control. Cells were then incubated for the indicated

times depending on the experimental set-up with 1 μg ml−1 3C5 (ref. 68), 1 nM cediranib

(Astra Zeneca) or 1 mM PP2 (Calbiochem). VEGFR-3 was precipitated from PLCLB

lysates using Strep-Tactin beads (IBA). After that proteins were analysed by western

blotting using antibodies to pTyr or VEGFR-3.

Analysis of VEGFR-3 and VEGFR-2 phosphorylation in ex vivo embryo

cultures

E10.5–E11.5 NMRI wild-type embryos were excised from amnionic sacs and placed in

Dulbecco’s modified Eagle’s medium (DMEM) containing 0.2% bovine serum albumin

(BSA) on ice. The embryos were injected through the outflow tract with 0.5 ml of DMEM

containing 100 ng ml−1 recombinant human VEGF165 (R&D Systems), 200 ng ml−1 VEGF-

CΔNΔC (ref. 69) or 0.2% BSA. Altogether 10–15 embryos were used in each group.

Embryos were placed in DMEM containing the same concentration of growth factors,

incubated at 37 °C for 20 min and lysed in 1% Triton X-100, 40 mM Tris-HCl (pH 7.5), 150

mM NaCl, 2 mM Na3VO4, 100 μM phenylmethylsulphonyl fluoride, 50 mM NaF and 10 μg

ml−1 of both aprotinin and leupeptin. Insoluble materials were removed by centrifugation at

14,000g for 15 min.

PI(3)K activity assay

hBECs were incubated on 96-well plates (104 cells per well) and silenced with human

VEGFR3 or non-targeting siRNA for 48 h, before stimulating with VEGF (100 ng ml−1) or

VEGF-C (200 ng ml−1) for 15 min. PI(3)K activity was evaluated using FACE PI3-kinase

p85 ELISA Kit (Active Motif) according to the manufacturer’s instructions. The signal was

normalized to cell numbers by staining with crystal violet. PI(3)K activity was measured

with a microplate reader (Thermo Labsystems Multiscan Ascent).

Three-dimensional cultures of embryoid bodies

Embryonic stem cells were routinely cultured on a layer of irradiated DR4 mouse embryonic

fibroblasts in the presence of leukaemia inhibitory factor (LIF). For vascular sprouting

experiments, cells were cultured for two passages without feeders, trypsinized, depleted of

LIF, followed by mixing of wild-type (DsRed) and Vegfr3+/LacZ cells in a 1:1 ratio and left

in suspension (day 0). On day 4, embryoid bodies were embedded in a polymerized collagen

I gel (as previously described70) with the addition of 30 ng ml−1 mVEGF164 (Peprotech)

with dimethylsulphoxide or DAPT (5 μM, Sigma-Aldrich). Medium was changed on day 6

and every day thereafter.

qRT-PCR

Total RNA from retinas, collected at P5, or hBECs was isolated using the RNeasy Mini Kit

(Qiagen) or the NucleoSpin RNA II Kit (Macherey-Nagel). Homogenization was carried out

using rotor-stator homogenization, followed by on-column DNase digestion (RNase-Free
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DNase Set, 79254). Quality control of samples was carried out using a Nanodrop ND-1000

spectrophotometer. RNA was reverse-transcribed using the DyNAmo cDNA Synthesis Kit

(F-470L, Finnzymes) or the iScript cDNA Synthesis Kit (Bio-Rad) according to the

manufacturer’s instructions. Three qRT-PCR reactions were carried out from every in vitro

transcription reaction using TaqMan Gene Expression Assays (Applied Biosystems) and the

DyNAmo Probe qPCR Kit (F-450S, Finnzymes) or the iQ Supermix Kit (Bio-Rad). qRT-

PCR was carried out using a BIO-RAD C1000 Thermal cycler according to a standardized

protocol. The TaqMan Gene Expression Assays used for mouse mRNA were: Gapdh

(4352932E), Cadh5 (Mm00486938_m1), Pdgfb (Mm00440678_m1), Vegfr1

(Mm00438980_m1), 5′-Vegfr3 (Mm01292608_m1), 3′-Vegfr3 (Mm00433354_m1), Nrarp

(Mm00482529_s1), Hey1 (Mm00468865_m1), Hey2 (Mm00469280_m1), Dll4

(Mm00444619_m1), Notch1 (Mm00435245_m1), Notch4 (Mm00440525_m1) and Foxc2

(Mm01250130_s1). At least three retinas from Pdgfb–iCreERT2; Vegfr3flox/flox and

Vegfr3flox/flox littermates were used for analysis at P5.

The TaqMan Gene Expression Assays used for human RNA were: GAPDH

(Hs99999905_m1), HEY1 (Hs01114113_m1), HEY2 (Hs00232622_m1), NRARP

(Hs01104102_s1), DLL4 (Hs01117332_g1), NOTCH1 (Hs01062014_m1), NOTCH4

(Hs00965895_g1) and FOXC2 (Hs00270951_s1). The data were normalized to the

endogenous controls Gapdh or Cadh5 and GAPDH in murine and human samples,

respectively. At least three independent experiments per condition were analysed. Fold

changes were calculated using the comparative CT (threshold cycle) method.

Vessel morphometry and quantitative analysis

The vascular surface area in retinas was quantified as an isolectin-B4-positive area from ×10

confocal micrographs acquired of all intact quarters of the processed retina and at a similar

distance from the optic nerve using Image J software, as described previously14. PECAM-1-

positive vessels from thick tumour sections were quantified from 1.69 mm2 micrographs

from regions of uniform staining intensity in a similar manner. PECAM-1-positive vessels in

the ear sections were quantified from images that were acquired using tile-scanning mode

with a pinhole diameter >3 Airy units. Vessel branching points, sprouts and filopodia

number were counted manually from fluorescence micrographs of retinas, as described

previously71. For each hindbrain, the number of sprouting vessels on the pial side and the

number of branching points on the subventricular zone were determined in 3–6 randomly

chosen 0.85 mm2 fields. At least two litters of embryos per embryonic stage were

independently analysed. Images were edited using PhotoShop software (Adobe).

Statistical analysis

Statistical analysis was carried out using PASW Statistics 18.0. A two-tailed Student t-test,

paired Student t-test or one-way analysis of variance (ANOVA) was used for statistical

analysis. A P value of less than 0.05 was considered to be statistically significant.
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Figure 1.

Blood vascular hyperplasia and excessive filopodia projection in mice with a targeted

deletion of Vegfr3 in the endothelium. (a,b) Visualization of blood vessels by isolectin B4

(iB4) staining of Vegfr3iΔEC and wild-type littermate retinas at P5. Yellow dots indicate

filopodia at the vascular front in b. Scale bars, 100 μm (a) and 50 μm (b). (c–f) Quantitative

analysis of the retinas shown in a and b. (c) iB4-positive surface area normalized to total

area. (d) Number of vessel branching points. (e) Number of filopodia per length of vascular

front. (f) BrdU-positive cells per iB4 area (see Supplementary Fig. S2). In all cases, Cre

activity was induced for 48 h before the mice were killed. c–e show data from one litter

containing 5 Vegfr3iΔEC and 3 wild-type mice. (f) Data from one litter containing 3

Vegfr3iΔEC and 4 wild-type mice. (g,h) Endomucin staining of E11.5 mouse hindbrains after

Cre induction for 24 h before the mice were killed. Yellow asterisks indicate the hindbrain

midline in g, and yellow dots indicate filopodia in h. Scale bars, 100 μm (g) and 20 μm (h).

(i–k) Quantitative analysis of the Vegfr3iΔEC and wild-type hindbrains; n =3 Vegfr3iΔEC and

5 wild-type embryos. (i) Endomucin-positive surface area normalized to total area. (j)

Number of vessel branching points in the subventricular side. (k) Number of vessel sprouts

in the pial side (see Supplementary Fig. S3). (l) PECAM-1 staining of LLC tumour

xenografts 11 days after implantation into Vegfr3iΔEC or wild-type littermate mice. Scale

bar, 50 μm. (m) Quantification of PECAM-1-positive area in the tumours shown in l; n = 5

Vegfr3iΔEC and 5 wild-type mice. (n) Fold increase in vascular area 4 days after transduction

with adenoviral vectors encoding VEGF (AdVEGF), normalized to AdVEGF-B in

Vegfr3iΔEC versus wild-type mice (see Supplementary Fig. S4); n =3 ears per group. **P

<0.005, *P <0.05. Error bars, s.e.m.
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Figure 2.

Role of VEGFR-3 tyrosine kinase activity in angiogenesis. (a) Intra-embryonic injection of

FITC–dextran (green) into the cardiac outflow tract at E11.5 showing homogeneous

perfusion of the embryo. Scale bar, 200 μm. (b,c) Immunoprecipitation (IP) of VEGFR-3

(b) or VEGFR-2 (c) of embryos stimulated with VEGF, VEGF-C or BSA followed by

western blotting (WB) for phosphotyrosine (pY), VEGFR-3 (R3) or VEGFR-2 (R2). N = 9

(b) and 8 (c) embryos per lane. (d) Immunoprecipitation of VEGFR-2 from hBECs

transduced with pMX–VEGFR3–StreptagII retrovirus. Adherent cells were stimulated with

VEGF-C, whereas detached cells were replated on collagen I or poly-L-lysine, and subjected

to the indicated inhibitors. Uncropped images of blots are shown in Supplementary Fig. S9a.

(e) Schematic illustration showing the expected VEGFR-3 activity following the indicated

genetic perturbations of Vegfr3. (f) iB4 staining of mouse retinas at P5 48 h after 4-OHT

administration. A, artery; V, vein. Scale bar, 100 μm. (g–i) Quantitative analysis of the

retinas shown in f. (g) Isolectin B4 (iB4)-positive surface area normalized to total area. (h)

Number of vessel branching points. (i) Number of filopodia per length of vascular front.

Data pooled from 4 litters containing altogether 8 iΔEC/iΔEC, 4 iΔEC/KD, 6 +/iΔEC, 5 KD/

+ and 7 wild-type pups. *P<0.05. Error bars, s.e.m.
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Figure 3.

An increased level of VEGFR-2 signalling contributes to vascular hyperplasia in Vegfr3iΔEC

retinas. (a) Isolectin B4 staining (in green) of Vegfr3iΔEC retinas after treatment with

VEGFR-3- or VEGFR-2-blocking antibodies during P3–P5. Non-specific rat IgG was used

as a control. Arrowheads indicate abnormally thick vessels. Scale bar, 100 μm. (b)

Statistical analysis showing the percentage vessel area increase in Vegfr3iΔEC versus wild-

type littermate mice in every treatment group (individual experiments; n = 4, 5 and 4

Vegfr3iΔEC pups treated with anti-VEGFR-3, anti-VEGFR-2 and IgG, respectively; and 6, 3

and 5 wild-type pups treated with anti-VEGFR-3, anti-VEGFR-2 and IgG, respectively). (c)

qRT-PCR analysis of Vegfr1 gene (also known as Flt1) expression; n = 4 Vegfr3iΔEC and 3

wild-type pups. In all analyses of the retina, Cre activity was induced for 48h before the

mice were killed. *P < 0.05, ***P < 0.001. Error bars, s.e.m. (d) Cultured HUVECs

subjected to siRNA-mediated silencing of VEGFR3 expression (VEGFR3 siRNA) and

stimulation with VEGF for the indicated times. VEGFR-2 was immunoprecipitated (IP)

followed by immunoblotting (IB) for phosphotyrosine (pY) and VEGFR-2. Numbers below

the blots indicate relative intensities of pY to VEGFR-2, normalized to control siRNA at the

same time point. Note the increased pVEGFR-2 signal at 30 min and 60min (red).

Immunoprecipitation and western blot analysis for VEGFR-3 from the same lysates is

shown below. Uncropped images of blots are shown in Supplementary Fig. S9b.
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Figure 4.

A decreased level of Notch signalling underlies excessive angiogenesis in Vegfr3iΔEC

retinas. (a) Fold changes in Hey1, Hey2, Nrarp and Dll4 mRNA levels in the retinas of

Vegfr3iΔEC and wild-type littermate pups at P5. mRNA levels were normalized to Cadh5 to

compensate for the increased endothelial cell numbers in Vegfr3iΔEC retinas. *P < 0.05; n =

4 Vegfr3iΔEC and 3 wild-type pups. Error bars, s.e.m. (b,c) Vessel area quantification (b)

and isolectin B4 (iB4) staining (c) of Vegfr3iΔEC and wild-type littermate retinas at P5

following administration of Jagged1 peptide mimetics (Jag1) or scrambled peptides (SC-

Jag1) and 4-OHT for 48h. Scale bar, 100 μm. ***P < 0.001; n = 3 Vegfr3iΔEC and 4 wild-

type pups treated with SC-Jag1 and 4 Vegfr3iΔEC and 4 wild-type pups treated with Jag1.

Data pooled from 2 individual experiments. Error bars, s.e.m. (d) A 10 day chimaeric

embryoid body derived from wild-type DsRed-expressing embryonic stem cells (red), mixed

in a 1:1 ratio with embryonic stem cells having one functional Vegfr3 allele (Vegfr3+/LacZ)

and stained for iB4 (green). Red arrowheads indicate tip cells of wild-type origin; green

arrowheads point to Vegfr3 heterozygous cells. Scale bar, 200 μm. (e) High-magnification

image of a sprout showing a mosaic distribution of the cells. DNA in blue. Scale bar, 20 μm.

(f,g) Quantification of the tip cell genotype in all sprouts (f; 65.89%±2.5% s.e.m.; n = 621

sprouts), in sprouts that exhibited a 1:1 contribution of wild-type and Vegfr3+/LacZ cells (g;
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61.8%± 1.8% s.e.m.; n = 360 sprouts) and in sprouts with a 1:1 contribution of wild-type

and Vegfr3+/LacZ cells following treatment with DAPT (h; 53.7%±2.7% s.e.m.; n = 325

sprouts). **P < 0.01, **P < 0.05. Error bars, s.e.m. (i) Mosaic retina of a P5.5 pup derived

from a wild-type blastocyst injected with Vegfr3+/LacZ embryonic stem cells and stained for

iB4. β-galactosidase activity (in black, arrow) indicates a Vegfr3+/LacZ cell. Scale bar, 50

μm.
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Figure 5.

Vegfc haploinsufficiency leads to instability of sprout fusion points and inefficient

angiogenesis. (a) Isolectin B4 (iB4) staining (green) of retinas from Vegfc+/− mice and their

wild-type littermates at P5. (b–f) Quantitative analysis of the retinas shown in a; data pooled

from two litters containing altogether 6 Vegfc+/− and 9 wild-type pups. (b) iB4-positive

surface area normalized to total area. (c) Extent of vascular plexus migration from the optic

stalk (OS). (d) Number of vessel branching points. (e) Number of sprouts. (f) Filopodia per

length of vascular front. (g) Fold changes in Hey1, Hey2 and Nrarp mRNA levels analysed

by qRT-PCR in the retinas of Vegfc+/− and wild-type pups at P5 (data pooled from two

litters containing altogether 7 Vegfc+/− and 6 wild-type pups). (h) Number of failed fusions

per vascular loop in the retinas of Vegfc+/− and Vegfc+/+ pups at P5 (n = 6 Vegfc+/− and 9

wild-type pups, data pooled from 2 litters). (i) iB4 (green) and collagen IV (red) staining of

Vegfc+/− or wild-type littermate retinas at P5. Arrowheads indicate empty basement

membrane sleeves. (j) iB4 (white), VEGF-C (red) and Tie2 (green) immunostaining in wild-

type mouse retinas at P5. Arrows indicate VEGF-C- and Tie2-positive macrophages at the

angiogenic front. (k) iB4 staining (green) of P5 retinas of op/op pups and op/+ littermate

controls. (l–o) Quantitative analysis of the retinas shown in k; n = 5 op/op and 4 op/+ pups.
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Dashed line in a and k indicates a similar distance from the optic stalk (OS). (l) iB4-positive

surface area normalized to total area. (m) Extent of vascular plexus migration from the optic

stalk. (n) Number of vessel branching points. (o) Number of sprouts. (p) Fold changes in

Hey1, Hey2 and Nrarp mRNA levels analysed by qRT-PCR in the retinas of op/op pups and

op/+ pups at P5 (n = 5 op/op and 3 op/+ pups). Scale bars, 100 μm (a,k) and 50 μm (i,j). * P

< 0.05, ** P < 0.01, ***P < 0.001. Error bars, s.e.m.
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Figure 6.

VEGF-C promotes Notch signalling in endothelial cells through VEGFR-3 and PI(3)K. (a–

d) Fold changes in Notch target gene and DLL4 levels in hBECs stimulated with 200 ng

ml−1 VEGF-C, and treated with Dll4-Fc conditioned medium (a), transfected with VEGFR3

siRNA or control siRNA (b), in conditions where 50% of hBECs express membrane-bound

Dll4 (Dll4-TM; c) or treated with the PI(3)K inhibitor LY294002 (d). Cells were stimulated

for 1 h before lysis. Expression of GAPDH was used as the normalization control. Note the

successful transduction of hBECs with retroviruses encoding Dll4-TM in c, as evaluated by

qRT-PCR. (e) Fold increase in PI(3)K activity in VEGFR3 versus control silenced hBECs

after stimulation with VEGF-C (100 ng ml−1) for 15 min. Data pooled from 2 individual

experiments, each containing 3 replicates. * denotes P values versus control group (*P

<0.05, **P <0.01, ***P <0.001) and # denotes P values between groups (# P <0.05, ## P

<0.01). Error bars, s.e.m.
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Figure 7.

VEGFR-3 interacts with the transcription factor FoxC2 to control angiogenesis. (a) Fold

change in the level of FOXC2 mRNA expression following stimulation of hBECs with 200

ng ml−1 VEGF-C (n = 3 plates per group). (b) Immunostaining for FoxC2 (red) and isolectin

B4 (iB4; green) in Vegfr3iΔEC and wild-type littermate pups at P5. Arrowheads indicate

FoxC2-negative tip cells. (c) Quantification of FoxC2-positive nuclei from the retinas shown

in b. Nuclei in the area of iB4-positive endothelial cells were quantified at the angiogenic

front (n = 3 pups per group). (d,e) Fold change in the level of Foxc2 mRNA expression in

Vegfr3iΔEC and wild-type littermate retinas (d), and in Vegfc+/− or wild-type littermate

retinas (e) at P5 (n = 3 pups per group). (f) iB4 staining (white) in Foxc2+/−; Vegfr3+/−,
Foxc2+/−, Vegfr3+/− or wild-type littermate retinas at P5. Yellow dots in the lower panels

indicate filopodia. (g–i) Quantitative analysis of the retinas shown in f. (g) iB4-positive

surface area normalized to total area. (h) Number of vessel branching points. (i) Filopodia

per length of vascular front. Data pooled from 2 litters; n = 3 Foxc2+/−; Vegfr3+/−, 4
Foxc2+/−, 4 Vegfr3+/− and 4 wild-type pups. Scale bars, 50 μm. *P<0.05, **P<0.01, ***P<

0.001. Error bars, s.e.m. (j) Schematic of VEGF-C-expressing macrophages in vessel

anastomosis and branch maintenance during developmental angiogenesis. Initially, 2 tip

cells that lead vascular sprouts are chaperoned to fuse by a macrophage (green). VEGF-C

expression (purple) ensues in the macrophage, activating VEGFR-3 in the tip cells, which

leads to the expression of Notch target genes and decreased sensitivity to the VEGF gradient

in the cells. Vegfr3 loss-of-function (LOF) leads to decreased Notch signalling. A simplified

summary of the ‘active’ (green) and ‘passive’ (red) signalling pathways originating from

VEGFR-3 is shown in the upper left corner. Only the ‘active’ pathway is targetable by

inhibitors.
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