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Abstract—This paper describes a vehicle detection system fus-
ing radar and vision data. Radar data are used to locate areas
of interest on images. Vehicle search in these areas is mainly
based on vertical symmetry. All the vehicles found in different
image areas are mixed together, and a series of filters is applied in
order to delete false detections. In order to speed up and improve
system performance, guard rail detection and a method to manage
overlapping areas are also included. Both methods are explained
and justified in this paper. The current algorithm analyzes images
on a frame-by-frame basis without any temporal correlation. Two
different statistics, namely 1) frame based and 2) event based,
are computed to evaluate vehicle detection efficiency, while guard
rail detection efficiency is computed in terms of time savings and
correct detection rates. Results and problems are discussed, and
directions for future enhancements are provided.

Index Terms—Fusion, radar, vehicle detection, vision.

I. INTRODUCTION

D IFFERENT preventive safety functions are now intro-

duced on road vehicles to assist the driver and to reduce

the risk of accidents. Key points for improved operation are the

effectiveness and the information content in the perception of

the surrounding scenario, including road features and obstacles.

Radar–vision fusion is an interesting approach that is often

based on complementary devices, which can provide several

advantages: in particular, improved reliability from multiple

detections and the merging of position measures with good

longitudinal and lateral accuracy. The purpose of this paper is

to investigate how the results of different sensors can be fused

together, benefiting from the best performance of each sensor.

The advantages and problems of fusing radar and camera

data for vehicle detection are well known [1]. The methods

differ mainly for the fusion level: Low-, intermediate-, and

high-level fusions have all gotten good results. Low-level fusion

combines several sources of raw data to produce new raw data
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that are expected to be more informative and synthetic than the

inputs [2]. In intermediate-level fusion, various features such

as edges, corners, lines, texture parameters, etc., are combined

into a feature map that is then used by further processing stages.

In high-level fusion, each source of input yields a decision, and

all the decisions are combined [3].

This paper is developed using high-level fusion and focuses

on the validation of radar targets, as shown by Sole [4]. In this

context, radar targets can correspond to a vision target, in our

case a vehicle, or not: Different vision algorithms can be used

for this purpose.

Some methods use models to identify a vehicle. Many dif-

ferent models have been used, ranging from trivial models to

complex ones, for example, deformable models that add details

of the car approaching the camera [5], or three-dimensional

(3-D) models that take into consideration vehicle misalignment

with the camera [6]. All these methods need models that match

different vehicle types.

The search for vehicle features provides a simplified way of

localizing vehicles. For example, symmetry is a characteristic

that is common to most vehicles. Some research groups have

already used symmetry to localize vehicles [7], [8] and tested

a variety of methods to find symmetry on images using edges,

pixel intensity, and other features.

The vehicle detection algorithm used in this paper is based on

symmetry [9] and uses radar data in order to localize areas of

interest. Data fusion operates at high level: The vision system

is used to validate radar data and to increase the accuracy of the

information they provide.

Two different setups, with two different radars, have been

tested. The first one is a long-range radar with a 77-GHz

frequency that is not capable of data classification. This kind

of radar provides a large number of nonvehicle objects (mainly

guard rails). A guard rail detection system is then mandatory in

order to reduce false positives and speed up the processing.

The second setup uses two scanned radars with a 24-GHz

frequency mounted above the front bumper and connected to

a dedicated Electronic Control Unit (ECU). In this case, only

obstacles up to 40 m can be detected with an accuracy of

0.25 m. The radar can compute the relative speed and position

of the object, while the ECU can compute the absolute speed

using Controller Area Network (CAN) data. The radar azimuth

angle is 30◦, but the field of view of the complete system is

nearly the same as the camera.

In both setups, a progressive grayscale camera is mounted

inside the cabin close to the rearview mirror. The camera hori-

zontal aperture is about 45◦. The image resolution is 640 × 480,
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Fig. 1. Algorithm flow chart.

but only 640 × 300 pixels are used by the vision system,

because the remaining rows contain useless information (sky

and hood).

Radar and camera calibration are performed separately, and

then the two outputs are double-checked together using an

obstacle in a known position.

This paper is organized as follows: In Section II, some con-

siderations about radar performance and fusion levels are pre-

sented. In Section III, the proposed fusion method is explained.

In Section IV, vision processing is presented. Finally, some

results and conclusions are presented in Sections V and VI,

respectively.

Fig. 1 shows the algorithm flow chart. Interest areas are

generated on images using radar data. The possible presence

of a guard rail is searched in the interest areas that refer to slow

objects. The interest areas that refer to fast objects or that refer

to slow objects where no guard rail was found are the candidates

for the search of vehicles.

II. RADAR PERFORMANCE AND FUSION LEVELS

Radar reliability and provided features must be taken into

account in order to choose the appropriate fusion level.

Different radar performances suggest different fusion levels.

High-level fusion needs good radar reliability, while low- or

medium-level fusion can be performed even in the case of

nonhighly reliable radar data. A fusion system driven by radar,

such as the one proposed here, needs a very reliable radar

because any radar miss cannot be recovered by vision. Anyway,

although the radars used in this paper do not feature a 100%

Fig. 2. Radar object position (a) in the world reference system and (b) in the
image reference system. Note that (a) is rotated 90◦.

detection rate, they have been demonstrated to be able to detect

all the most dangerous obstacles.

Radar can supply different object features. Relative position

and speed are the most commonly supplied features, but other

ones, such as classification and tracking identification number,

can be returned as well. A large number of object features make

high- and medium-level fusion easier.

Another aspect that must be taken into account is the sensor’s

field of view. Sensors with perfectly overlapping fields of

view can be managed more easily since all obstacles detected

by a sensor are also potentially detectable by the other one.

Otherwise, it is required that different approaches be developed

to manage both obstacles that lie in areas covered by just one of

the two sensors and obstacles that lie in areas covered by both

sensors.

III. FUSION

The first step of the algorithm converts radar objects into the

image reference system using a perspective mapping transfor-

mation that projects the radar points onto the objects base. This

transformation is performed using calibration data achieved by

fine intrinsic and extrinsic camera parameter measurements as

well as radar calibration.

Fig. 2(a) and (b) shows the radar data on an inverse perspec-

tive mapping of the image and the radar objects converted into

the image reference system, respectively.

Since parameter measurement is performed only once, at

system setup, and no stabilization is currently applied, errors

may occur when extrinsic parameters change (mainly due to

vehicle pitch) due to road roughness or vehicle speed up (see

Fig. 3). Moreover, radars may intrinsically provide an incorrect
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Fig. 3. Camera miscalibration caused by pitch variation. The radar point is
not correctly placed on the vehicle base (i.e., the object base).

Fig. 4. Lateral radar error. The radar data falls outside of the object shape.

lateral position: Points may not be centered onto the obstacle

shape or even fall outside it, as shown in Fig. 4.

In the definition of the image area used by vision to validate

radar objects, wide margins are used on its left and right sides in

order to compensate for possibly inaccurate radar data (lateral

offset): Values between 2.5 and 4 m have been tested. The area

height is defined to be half of its width, and the area base is

positioned below the radar points for 30% of area height, in

order that the vehicle should be included even in the case of

strong pitch variations. As mentioned in Section VI, an image

stabilization system (hardware or software) may reduce the

need of working on overdimensioned search areas. Only radar

data that refer to points inside the image are considered. Since

the chosen radars’ horizontal angular field of view are smaller

or approximately the same as the camera one, almost all the

radar points can be remapped into the image. Nonetheless, a

radar point can be remapped to an image point very close to

the left or right margin. In such situation, a part of the search

area, built as previously explained, may lie outside the image.

In order to solve this problem, two different approaches have

been tested. The first one is based on moving the search area

horizontally until the whole area fits inside the image. This

solution may not be very efficient because this new search

area may contain a part of the image very distant from the

radar point. The use of this area for vehicle search can cause

false detections. The second approach is based on cropping the

search area. In this case, only the useful part of the image is

processed.

In order to simplify and speed up the following steps of the

algorithm and to delete details of too close vehicles, all the areas

are resampled to a fixed size. To avoid image deformations, all

the areas are reduced, preserving their original aspect ratio.

Fig. 5. Symmetry computation. Arrows indicate where the symmetry value
is stored for (a) a single column width and (b) the largest width. Symmetry is
computed in the area enclosed in the bright rectangle and using the dark vertical
line as an axis.

IV. INTEREST AREA EVALUATION

Vehicle detection is the main vision algorithm. It is preceded

by a preprocessing step aimed at filtering out radar data given

by echoes on the guard rail. The main goal of guard rail

detection, which is extremely fast, is the algorithm speed up

toward real-time execution. Moreover, the guard rail detection

algorithm adds new information about the environment. Guard

rail detection is applied first in order to classify radar data that

represent a guard rail and remove them from the further analysis

of the vehicle detection algorithm. Nonetheless, the vehicle

detection algorithm is presented first as it is the main part of

this paper.

A. Symmetry Computation

Symmetry computation is the basis of the algorithm and the

most time consuming part as well. Only binarized edges are

used in order to reduce the execution time. Gray-level symme-

try is time consuming and does not provide more information

than edge symmetry. First of all, the Sobel operator is used to

compute edge module and orientation. Then, two images are

built: one containing the almost-vertical edges and the other

with the almost-horizontal edges. The idea is to detect all

vertical and horizontal edges: even the weakest one. Therefore,

a very low threshold is used on edge modules; vertical edges

are labeled considering their orientation.

Symmetry is computed for every column of the vertical edge

image on different-sized bounding boxes whose height matches

the image height and with a variable width ranging from one

pixel to a predetermined maximum number of pixels. The com-

puted value is saved in a two-dimensional (2-D) data structure

(hereinafter referred to as an image) whose coordinates are

determined as follows: The column is the same as the symmetry

axis, and the row depends on the considered bounding box

width (Fig. 5).

Symmetry is computed as

simm =

s
2

n

where s is the number of symmetrical vertical edge points with

respect to the considered axis, and n is the number of all vertical

edge pixels. This operation is used on the vertical edge image.

Two vertical edges are considered symmetrical when featuring

an opposite orientation. Since this operation has to be executed
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Fig. 6. Interesting columns evaluation. A column with a high value in the
symmetry image (white pixels) is considered as the center of a vehicle only if
the value of symmetry is low for narrow symmetry areas (top rows) and high
for wide ones (bottom rows).

Fig. 7. (a) Original image. (b) Vertical edges. (c) Symmetry image. In the
symmetry image, two columns are bright: The left one refers to the vehicle left
border, and the right one refers to the vehicle center. The first column is entirely
bright because symmetry is due to edges close to each other, namely it could
represent a thin object like a pole. The second column is only partially bright.
The upper rows are dark because they correspond to narrow symmetry areas,
where no symmetrical edges are present. The lower rows that correspond to
large symmetry areas are bright. The analysis of the symmetry image can in
fact also provide the object size. The vehicle right border does not generate a
peak in the symmetry image since its edges are too thin.

for a large number of times, it must be as simple and as quick

as possible. This image is then used to search for interesting

columns.

B. Columns Evaluation

An interesting column is defined as having a high value in

the symmetry image. A columnwise histogram is then used to

locate candidate columns. In correspondence to these columns,

the vertical edges symmetry is checked to obtain the expected

vehicle width. More specifically, if a high value of symmetry is

also present for smaller widths, it means that the algorithm has

detected a small object; in this case, the column is discarded.

Fig. 6 shows an example. The leftmost vertical peak is

discarded because it presents a high symmetry value (bright

pixel) for both large (bottom rows) and small widths (top rows).

Fig. 8. Box width computed from peak height.

On the other hand, the rightmost peak presents an appreciable

symmetry value only for widths above a certain size (the same

behavior is also shown in Fig. 7).

C. Bounding Boxes Generation

Up to now, the algorithm provides information about the

vehicle’s center position, but since vehicles need to be de-

tected with high accuracy, a precise bounding box detection is

mandatory. Each peak in the vertical edges symmetry image

that survived the previous filterings is used. The width of the

symmetry box is given by the distance between the peak itself

and the top of the symmetry image. The box is then centered

within the column (Fig. 8).

The shadow under the car is a strong invariant that is always

present even in dark days. The algorithm looks for the vehicle

shadow in order to find its base. Since other shadows are present

on the road as well (e.g., bridges), the algorithm looks for a high

concentration of edges above the horizontal edge. If no base

can be detected in correspondence to the peak, the column is

discarded.

During sunshine or sunset, shadows are elongated, and the

vehicle shadow may fall distant from the vehicle. This might be

a cause for errors. In order to solve this problem, the vehicle

base is searched for in all the lower half of the interesting

area. In such a way, the bumper edge can be detected as well.

Although the misrecognition of a bumper as a vehicle base can

cause errors in distance estimation, these errors are solved by

using the distance measurement provided by the radar, which is

highly reliable.

The search for the vehicle top is performed as well, but the

box is validated even if the top is not found because sometimes,

it can be very hard, or actually impossible, to spot it. Truck tops

often fall outside the search area or even outside the image. If

the top cannot be found, a box with a fixed ratio between width

and height is used [see Fig. 18(b)].

D. Filters

The algorithm is designed to return only one vehicle for each

radar point, but more than one possible vehicle can be detected
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Fig. 9. Intermediate results. Vision is able to refine the lateral position of the
object detected by the radar.

in a single area. A filter that determines which vehicle has to

be validated is mandatory. This filter simply chooses the most

central box. This filter, anyway, can be critical in heavy traffic

situations, where many vehicles may be running very close to

each other.

E. Results Merging

When all radar data have been examined, all the boxes fram-

ing the detected vehicles are resampled to their original size and

mixed together. Overlapping vehicles are also managed.

Using an inverse perspective mapping transformation, the

real width and position of vehicles can be computed. In the

computation of these values, the radar provides distance while

vision provides position and width so that the radar precision

on distance measurement and the vision refinement ability are

capitalized together.

Unfortunately, not all detected boxes are correct. Some false

positives, caused by road signs or other objects in the scene,

can be present as well. A filter is used to discard some false

positives: it removes too large or too small boxes that are

unlikely to represent a vehicle.

It is also possible that a vehicle is detected in more than

one search area, so overlapping results may be present. Only

one box per vehicle is expected as a final result, so a further

step is required to merge similar boxes and eliminate redundant

ones. When two boxes have different sizes, the largest box is

preferred since the smallest one is often generated by vehicle

parts. Furthermore, when two rectangles with similar size have

their base approximately at the same height in the image, an

average is computed, and this new box is considered.

Fig. 9 shows an intermediate result. The cross represents the

radar point, the large rectangle represents the interest area, and

the small rectangle represents the detected vehicle.

F. Guard Rail Detection

The guard rail detection method is divided into two parts. The

first one deals with the preprocessing of the input image. The

second one, i.e., the main section, is based on line searching.

First of all, an image in which only the edges of potential guard

rails are present and well connected is built. Then, the algorithm

analyzes the edges and, according to their length, determines

whether the object is a guard rail. The algorithm is applied

Fig. 10. Guard rail edge orientation in acquired images.

Fig. 11. Structuring elements for (a) erosion and (b) dilation.

Fig. 12. Priority of the first white pixel search. 1 means the highest priority
and 14 the lowest. This priority list was defined experimentally in order to
follow the line nearest to the border of the interest area and nearest to the middle
of the interest area.

only to objects with a real speed (measured by the radar) lower

than 5 m/s.

1) Preprocessing: A Sobel filter is applied to the input

image. In order to reduce the number of edges where the

search must be performed, only the ones with an orientation

approximately matching a guard rail are considered (Fig. 10).

The Sobel image is binarized with a very low threshold on

module, and then morphological operations are applied.

Guard rail edges are generally almost horizontal; therefore, a

morphological erosion is applied using the structuring element

shown in Fig. 11(a), which maintains horizontal components

and erases isolated points and vertical segments. On the other

hand, a morphological dilation reinforces both vertical and

horizontal components, with a higher intensity for the last

ones, in order to preserve the horizontal shape of guard rails

[Fig. 11(b)].

This sequence of operations allows to achieve robust and

continuous edges and to reduce noise.

2) Line Searching: The algorithm is designed to have a

different behavior according to the side of the image where the

object is detected (left or right). In this section, some examples

of left guard rail detection are presented.

The algorithm searches for the leftmost pixel of a possible

guard rail that should be found in the first few columns of the

image. The search is performed starting from the middle-height

pixel to the bottom of the image. A white pixel is searched

for in a rectangular neighborhood area according to the priority

shown in Fig. 12.



100 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 8, NO. 1, MARCH 2007

Fig. 13. Area A: first white pixel search area.

Fig. 14. Pixel priority for contiguous edge search. 1 means the highest priority
and 5 the lowest. Since guard rails are represented by a slightly oblique line, the
priority list is made in a way that the search continues almost horizontally.

The search continues by moving the neighborhood structure

by three pixels down at a time until all the area A, shown in

Fig. 13, has been covered or a white pixel is found.

Then, when a possible guard rail is detected, the main

search step starts. If area A includes an obstacle (a car, a road

signal, . . .), which occludes the visibility of the guard rail, then

the guard rail may not be detected. Anyway, guard rails usually

give a large number of radar points that are close to each other

and in sequence, thus creating a set of overlapping boxes (see

Fig. 17). Each area of interest is then used to search for the

presence of the guard rail, and although it could be occluded

in the closest area, it may get detected in other farther areas

of interest. A future backtracking step might allow to help the

detection in the closest areas.

The search for contiguous edge pixels gives priority to the

pixels that most probably belong to a line with an orientation

matching the model of a guard rail (according to the priority

shown in Fig. 14).

Some guard rail edges may be noncontiguous due to either

noise or small obstructions. In order to avoid to miss the

line, the algorithm needs to compensate for short interruptions

of the oblique line; therefore, the algorithm also continues

horizontally (as shown in Fig. 15) if there are no edge pixels

in the neighborhood of the last edge pixel. A maximum of five

holes is allowed in this implementation.

The algorithm ends if more than five holes are found or if the

right border of the search area is reached. If the detected line is

longer than 50% of the search area, the object will be labeled

as a guard rail. As experimentally demonstrated and shown in

Fig. 16, a threshold of 50% seems to be a good tradeoff. Radar

points that match guard rails quite always reach over 50% of

the image width, even if it contained a part of a vehicle moving

on the road.

An interrupted guard rail could not be identified, even if it is

detected by the radar, because it could be shorter than the fixed

threshold. Anyway, this is not a great problem because guard

rail detection is developed in order to speed up the algorithm

and not as a standalone guard rail detector.

Fig. 15. Guard rail with noncontinuous edges is correctly detected. The line
represents the identified guard rail.

Fig. 16. Two correctly detected guard rails (lines).

Fig. 17. Overlapping interest area management. If a guard rail is detected in
an area (the white–black dashed boxes), all the areas overlapping with it are
labeled as a guard rail (bright boxes).
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Fig. 18. Examples of correct results. (a) The algorithm works reliably in simple cases. (b) It detects both vehicles moving away and approaching. It works even
in hard cases, such as (c) rainy and (d) noisy scenarios (note the double radar detection). It can detect (e) multiple cars and (f) trucks.

G. Overlapping Box Management

A single guard rail may generate more than one radar

point, so many overlapping areas of interest may be present.

Searching for guard rails in all the areas is time consuming, so

overlapping areas are discarded without applying the complete

algorithm. In Fig. 17, the white–black dashed boxes represent

objects identified as guard rail, and the bright ones represent

boxes overlapped with a box already labeled as containing a

guard rail.

In order to discard boxes overlapping with a box identified

as a guard rail, the areas referring to slow objects are sorted

according to their distance from the vehicle, from the nearest

to the furthest, and then, the guard rail algorithm is applied to

the closest. If a guard rail is detected in the closest area, and if

the following area is overlapped with the first one more than a

threshold, the object appearing in the second area is then labeled

as guard rail as well without any further processing. This

process is iterated until no other overlapping area is detected.

Guard rail detection is then applied to the first nonoverlapping

area, and this process is iterated again.

V. RESULTS

Performance assessment heavily depends on many aspects,

such as the hardware system and setup, the scenarios ex-

amined, and the final goal of the application. In the litera-

ture, many works dealing with this topic can be found, e.g.,

[2]–[4] provide some results too, but a quantitative comparison

between results obtained applying different approaches is very

difficult to perform: It will be an important topic for future

research.

In this paper, we made every effort to identify critical situa-

tions and assess the performance with the final goal of improv-

ing the accuracy of the lateral position of detected vehicles.

This vehicle detection system has been tested in rural and

highway environments with good results. To evaluate system

performance, ground truth was manually collected by annotat-

ing the presence of each vehicle in more than 12 000 images.

For each vehicle, a human operator annotated its position, size,

and shape. The annotated sequences represent a mix of all the

possible scenarios: high and low traffic, rural and highway, fast,

slow, and stopped vehicles, sunshine, cloudy, and rainy. It is
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Fig. 19. Examples of errors. (a) and (b) The most frequent errors are due to traffic, but some errors may also happen in simple cases. (c) A vision false negative
due to low contrast on the left border. (d) A radar false negative (the oncoming vehicle). (e) An inaccurate detection. (f) A false positive due both to vision and
the radar.

important to remember that no tracking is used at the present

moment as it will be introduced at a later stage of the project.

The percentage of vehicles whose position and size are

detected with an extremely high precision (with an error lower

than 40 cm) independently in every frame is about 50%. This

number also includes sensor-related issues, such as radar misses

and vision misses due to bad environmental conditions (such

as rain or darkness). Five different performance indexes were

defined for these statistics, namely 1) refined detections (RD),

2) false negatives (FN), 3) radar false negatives (RFN), 4) false

positives (FP), and 5) nonvehicle obstacle (NVO).

RD vehicles detected by radar and validated and refined

by vision;

FN vehicles detected by radar but not validated or not

correctly refined by vision;

RFN vehicles not detected by radar or detected with a too

low precision;

FP nonvehicle obstacles detected by radar and validated

by vision;

NVO nonvehicle obstacles detected by radar and not vali-

dated by vision.

Although the definition of refined detections is straight-

forward, the other indexes need an explanation. Radar false

negatives are defined as vehicles not contained, or not entirely

contained, in any search area. This value obviously depends on

the search area size. The chosen interest area width is 2.5 m.

The RFN is 39% of framed vehicles. This value can be de-

creased by raising the area width, but this change will likely

increase false positives as well. More than half of the radar

false positives refer to vehicles partially contained in a search

area. The same consideration can be made for false negatives.

The false negative density is about 13%, but only 5% is due to

actually missed vehicles. The remaining 8% is due to vehicles

detected with a low precision. The number of false positives is

low. In all the test sequences, only one persistent false positive

is present.

Event-based statistics were computed as well, considering

an event as a vehicle present in more than ten frames. Radar
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TABLE I
RESULTS ON DIFFERENT SEQUENCES

Fig. 20. Examples of correctly detected guard rails. From (a) easy edges to (d) noncontiguous dashes.

completely misses 13% of the events (mainly due to traffic),

while vision is not able to refine 23% of the events. According

to these data, 64% of the events are correctly detected and

refined, and 73% of the object supplied to vision are then

correctly refined.

Figs. 18 and 19 show, respectively, good results and errors

obtained in different scenarios. Fig. 19(a) and (b) shows traffic

cases. In the first image, a single radar point is generated by

the vehicles close to each other. Its position is not suitable to

detect any vehicle. The second image shows a delivery van

individuated by two radar points and some other nondetected

vehicles.

Event-based statistics obtained on different sequences are

proposed in Table I. Radar misses are present only in heavy

traffic or complex scenarios. The main issues are traffic and

environment complexity together with shadow or general illu-

mination problems.

As already mentioned, nonprecise detections, due to traffic

or low visibility conditions, may happen. In our performance

analysis, these cases are classified as false negatives since the

final goal of this system is to estimate the vehicle shape with

very high accuracy.

Heavy traffic is a hard scenario for this method because

the detection of occluded vehicles can be difficult (or even

impossible) using symmetry. Anyway, not occluded vehicles

can be detected even in such a situation.

The guard rail detection system was tested as well. Urban

roads were not considered since no guard rail is present. Inter-

esting results in critical conditions of high traffic and irregular

Fig. 21. Guard rails starting (a) in the lower half of the image (detected) and
(b) in the upper half (not detected).

or fragmented guard rails are reached in exurban roads (see

Fig. 20).

The method was tested on ten image sequences (totally about

25 000 images) and proved to reach satisfactory results.

The number of false negatives (guard rail not detected)

is very low. It is not possible to give their exact number

because in some circumstances it is not possible to clearly

understand whether the obstacle returned by the radar refers to

a guard rail or to another object in the box (cars, road signals,

vegetation, . . .). The false positives (something not a guard rail

erroneously labeled as a guard rail) are even lower and are

limited to objects close to road edges and are very similar to

guard rails. Only once, during the test, was an object in the

background labeled as a guard rail.
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Fig. 22. Beltway. Guard rail is almost horizontal and is not identified.

TABLE II
EXECUTION TIME ON HIGHWAYS. VD STANDS FOR VEHICLE DETECTION

ALGORITHM ONLY, GRD STANDS FOR GUARD RAIL AND VEHICLE

DETECTION ALGORITHMS, AND OBM STANDS FOR OVERLAPPING

BOXES MANAGEMENT, GUARD RAIL, AND VEHICLE DETECTION.
THE DECREMENT OF OBM WITH RESPECT TO VD IS

SHOWN IN THE REDUCTION COLUMN

TABLE III
EXECUTION TIME ON EXURBAN ROADS. LOW TIME REDUCTION

PERCENTAGE IS DUE TO POOR PRESENCE OF GUARD RAILS

Some false negatives occurred in correspondence to very tall

guard rails (see Fig. 21). In these cases, the guard rail edges lie

in the upper half of the image and do not enter in area A, as

shown in Fig. 13; therefore, the initial searching step fails.

Some critical cases were found in beltways or in narrow

curves where false negatives may occur, when the guard rail

appearance in the image is quasi-horizontal (Fig. 22).

The average algorithm execution times for different image

sequences are reported in Tables II and III.

The more guard rails are detected, the more time is saved.

In sequence 12, many guard rails are present and detected,

and the time saved is about 36%. The average time saving is

about 20% for highways environment, where a larger number

of guard rails is present, and may drop to as low as about 2% or

even 0% in exurban roads. No wasting-time cases are reported

due to the very high speed of the algorithm. The overlapping

management system contributes to these results for about 30%.

A reduction of 4–5 ms is definitely significant in real-time

applications, especially when other algorithms may run on the

same processing engine.

False positives produced by the vehicle detection algorithm

alone are reduced by the introduction of guard rail detection.

Fig. 23. Correct results reached in a traffic scene.

Fig. 24. Coexistence of the guard rail detection and vehicle detection algo-
rithms. The vehicle is anyway detected also when the guard rail detection is
running.

Fig. 25. Correctly detected stopped vehicle. No guard rails are detected.

For example, in a beltway, where the guard rail is generally in

front of the camera, the vehicle detection algorithm may return

a high number of false positives. The proposed method reduces

them of about 25%. The average false-positive reduction can be

rated at about 10%.

No cases of vehicles labeled as guard rail occurred. All boxes

related to moving vehicles are not considered by the guard rail

detection algorithm, but, as shown in Figs. 23 and 24, guard

rails between two vehicles can also be correctly detected.

Moreover, vehicles parked on the edge of the road are not

considered by the guard rail algorithm so they can be correctly

detected as vehicles. The best results are reached when side

vehicles are quite close and frontal (see Fig. 25).

VI. CONCLUSION

In this paper, a method to fuse radar data and vision is

described. The method was tested with two different radar

sensors.
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This method gets good results in both rural and highway

environments. Even if not all vehicles are detected in all images,

the system is promising for safety applications because all the

closest and most dangerous vehicles are correctly and precisely

detected.

The strength of the proposed approach is that it is composed

of simple operations only. The computational complexity is

extremely limited, and its current implementation can reach

video rate performance (about 40 Hz).

A hardware or software image stabilization might provide

a more precise perspective mapping transformation. The radar

points might be remapped to the correct image row, thus making

detection easier and reducing the height of the search area.

A tracking step might be very helpful to increase the robust-

ness of the system and the detection persistence and will be

introduced in the future.

The use of other methods to generate areas of interest and

the search for more than one vehicle in an interest area may

solve some radar sensor problems, such as its inability to

detect all vehicles and to distinguish vehicles close to each

other.

The guard rail detection method gets good results both in

time savings and in false-positive reduction. The Hough trans-

formation can be used to detect guard rail as well, but while

Hough is time consuming, the proposed method is faster and

easier.

Guard rail detection could be improved using tracking as

well. Moreover, if vehicle yaw rate and speed are known, it

would be possible to detect whether the vehicle is driving along

a curve, and the algorithm thresholds could then be modified in

order to also detect almost horizontal guard rails.
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