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ABSTRACT The integration of Internet of things (IoT) and intelligent transportation system (ITS) is

expected to improve the traffic efficiency and enhance the driving experience. However, due to the dynamic

traffic environment and various types of vehicles, it is a challenge to perform vehicle classification and speed

estimation with a single magnetic sensor. In this paper, based on a single low-cost magnetic sensor, a scheme

is proposed to achieve vehicle classification and speed interval estimation by designing a two-dimensional

convolutional neural network (CNN). Specifically, we extract the magnetic field data of each vehicle and

then convert the collected data into a two-dimensional grayscale image. In this way, the images of vehicle

signals with different types and driving speeds can be used as the input data to train the designed CNNmodel.

With the designed CNN model, we classify the vehicles into 7 types and estimate the speed interval of each

vehicle, where the speeds in the range of 10km/h-70km/h are divided into 6 intervals of size 10km/h. The

performance of the proposed vehicle classification and speed estimation scheme is evaluated by experiments,

where the experimental results show that the accuracy of vehicle classification and the accuracy of speed

interval estimation are 97.83% and 96.85%, respectively.

INDEX TERMS Internet of Things, intelligent transportation system, convolutional neural network, mag-

netic sensor, vehicle classification, speed estimation.

I. INTRODUCTION

The intelligent transportation system (ITS), which aims to

achieve efficient traffic management, is expected to improve

traffic efficiency and traveling experience of drivers [1]–[3].

With the deployment of ITS, the traffic accidents, traffic

congestion and carbon emissions can be significantly reduced

through the sharing of information in the network [4]–[7].

Unlike the conventional transportation system, the key sup-

port for building ITS is the data generated by humans,

vehicles and the dynamic traffic environment [8]. Based on

the collection and analysis of traffic data, the scheduling

strategies can be determined to facilitate different vehicular

applications such as path planing [9]–[11] and autonomous

driving [12]–[15]. As a typical data collection method, vehi-

cle classification and speed estimation can provide the data
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to rationalize the construction of traffic roads and reduce the

driving risks. One one hand, the data of vehicle classification

and speed estimation can be used for setting speed limit

and timing traffic signals [16]. On the other hand, with the

estimation of vehicle speed, the driving speed can be obtained

to guide the behavior of the driver with the target of enhancing

the safety.

To obtain the information of vehicle type and speed in

the dynamic traffic environment, the Internet of thing (IoT)

which can provide various sensors is a promising solu-

tion [17]–[19]. The sensors can be simply classified into two

types, namely, intrusive sensors (e.g., intrusive loop detec-

tors) and non-intrusive sensors (e.g., radar detectors, ultra-

sonic detectors, infrared detectors, and video detectors). The

installation and maintenance of the intrusive loop detectors

require closing lanes, interrupting traffic and causing dam-

age to the road surface. For the non-intrusive sensors, they

have relatively high measurement accuracy and usually do
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FIGURE 1. Architecture of vehicle classification and speed estimation.

not interfere with the traffic. However, the data collection

performance is easily affected by weather conditions. More-

over, these non-intrusive sensors are typically expensive for a

large-scale deployment. Compared with these sensors, mag-

netic sensors have the advantages of sensitive, inexpensive,

small size, convenient installation, and immune to weather

conditions or environmental factors [20]. As shown in Fig. 1,

the basic principle of magnetic sensors is to detect the Earth’s

magnetic field and extract the magnetic field data. The move-

ment of the vehicle containing a large amount of iron mate-

rials (e.g., nickel, iron, and steel) causes disturbance of the

Earth’s magnetic field, where the magnitude and direction

of the disturbance are related to the speed, size, structure

and density of the iron materials of the vehicle. By deploy-

ing magnetic sensor along the roadside, massive amounts

of magnetic field data containing vehicle information can

be collected. Therefore, with the processing and analysis of

these data, the traffic information such as traffic flow, vehicle

types, and vehicle speed can be obtained.

The magnetic sensors have been widely studied for mon-

itoring the dynamic traffic in the ITS, such as vehicle detec-

tion on the road [21], vehicle detection in parking lots

[22], vehicle classification [23]–[26] and vehicle speed esti-

mation [27]–[30]. However, the current vehicle classifica-

tion schemes typically use machine learning methods which

require pre-processing of vehicle signals, such as noise fil-

tering, feature extraction and feature reduction. On the other

hand, the speed estimation schemes are typically based on

the calculation of the cross-correlation between two adjacent

sensors. This method requires the two sensors to frequently

communicate with each other to share the collected data, lead-

ing to high energy consumption. In addition, the requirement

for clock synchronization of the sensors also poses challenge

to design the data collection system.

To this end, in this paper, we develop an effective scheme

to achieve vehicle classification and speed estimation through

a single magnetic sensor. In the proposed scheme, a convolu-

tional neural network (CNN) model is designed to classify

the types of vehicles and estimate the speed range of each

vehicle. Specifically, we first design the method to extract the

magnetic field data of vehicles based on a single magnetic

sensor. Then, we transform the collected vehicle signals into

two-dimensional images, where the images are used as the

input data of the proposed CNN model. As shown in Fig. 1,

the proposed scheme does not require the pre-processing of

magnetic signals (e.g., noise filtering, feature extraction and

feature reduction). In this way, the proposed CNN model can

fully learn the characteristics of vehicle signals with different

types or different speeds. As a consequence, the vehicle

classification and speed interval estimation can be achieved

to facilitate the vehicular applications in the ITS. Our main

contributions are three-fold:

• We propose a vehicle classification and speed estimation

scheme based on CNN. With this scheme, the signals

of each vehicle can be extracted and transformed into a

two-dimensional grayscale image.

• Based on the collected images of various vehicles,

we design a CNN model to divide the vehicle type and

vehicle speed into seven categories and six intervals,

respectively.

• We evaluate the proposed schemewith experiments. The

results show that the accuracy of vehicle classification

and the accuracy of speed interval estimation are 97.83%

and 96.85%.

The remainder of this paper is organized as follows.

Section II presents the related works. Section III describes

the magnetic sensor and introduces the method for extract-

ing vehicle signals. The proposed CNN model for vehicle

classification and speed estimation is detailed in section IV.

Section V evaluates the performance of the proposed scheme

by using experimental results. Section VI closes the paper

with conclusions and future work.

II. RELATED WORK

A. VEHICLE CLASSIFICATION

The problem of vehicle classification using magnetic sensors

has been studied in a number of works. In [31], a group of

magnetic sensors are placed along the roadside for vehicle

detection and classification, where vehicles are classified

into four groups by estimating their magnetic length. Three

magnetic sensors are used in [23] to classify the vehicles

that pass in the adjacent lane, where the types of vehicles

can be classified by jointly considering the magnetic length

and magnetic height of vehicles. With a single-axis magnetic

sensor, the authors in [32] develop a classifier based on the

improved support vector machine for distinguishing the types

of vehicles with three groups. The results show that a 90%

classification accuracy can be obtained with the data set

of 93 vehicles. In [33], the authors propose a feature selec-

tion model for vehicle classification using a single magnetic

sensor. With this model, 10 optimal features are selected
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to divide vehicles into four-groups. In [25], the authors

develop a scheme to achieve vehicle classification according

to a 3-axis magnetic sensor in the low-speed congested traf-

fic environment. With this scheme, five signal features are

extracted to classify vehicles based on a tree-based algorithm.

In [34], the authors propose an algorithm to classify vehicles

into six types, where the classification algorithm is of low

computational requirements.

B. SPEED ESTIMATION

The speed estimation has been extensively studied in recent

years. In [23], based on the calculation of the cross correla-

tion between the signals obtained by two roadside magnetic

sensors, the time interval between the vehicle passing by

two sensors can be obtained. As a result, the speed of the

vehicle can be calculated by dividing the distance between

the two sensors by the time interval. In [27], the authors

design a region-based algorithm for speed estimation by

selecting a region of each signal according to a threshold.

In [35], a single roadside node composed of an accelerometer

and a magnetic sensor is used to estimate vehicle speed by

analyzing magnetic length. The results show that the speed

estimation accuracy of the proposed scheme is 90%. In [29],

the authors propose a scheme for speed estimation using four

magnetic sensor nodes per lane. With this scheme, the error

in speed estimation under low speed test is 10%. In [30],

a speed estimation scheme is designed based on a single

magnetic sensor. This scheme aims to estimate the average

speed of a number of passing vehicles. In [28], two magnetic

sensors are used for speed estimation and one is used for data

fusion, where the results show that the error rate of the speed

estimation is 20%.

In the above schemes, there are mainly two methods for

vehicle classification based on magnetic sensors. One is clas-

sification based on the vehicle magnetic length. This method

relies on the estimation of the speed of the vehicle. The other

is based on the features of the vehicle magnetic field, where

a limited number of features can be extracted to classify

the types of vehicles. In addition, the schemes of vehicle

speed estimation are mainly implemented by using two or

more magnetic sensors. In this way, the speed estimation

system suffers from the burdens of the time nchronization and

the communication consumption. Different from the above

schemes, we propose a scheme to achieve classification

and speed estimation with a single magnetic sensor. In the

scheme, the signals of each vehicle collected by the sensor

are analyzed by using the designed CNN model to achieve

vehicle classification and speed estimation.

III. EXTRACT VEHICLE SIGNALS

In this section, we introduce the magnetic sensor used in

our paper and then design the vehicle detection algorithm to

extract vehicle signals.

The sensor module consists of a central processor and a

RM3100 sensor, where the resolution and the rate of the

sensor are 26nT and 48MHZ, respectively. Fig. 2 shows the

FIGURE 2. Sensor module.

sensor module (i.e., RM3100) which is used to detect the

magnetic signals. With this sensor, the magnetic signals of

three axes (i.e., x, y and z) can be collected [36]. Before

the vehicle classification and speed estimation, the vehicle

signals need to be extracted from the data collected by the

sensor module. The determination of entering and leaving

moments of vehicles have a great impact on the vehicle clas-

sification and speed estimation. To this end, we design a state

machine for vehicle detection based on a dynamic threshold

to determine the state of a vehicle. With the designed state

machine, the time when the vehicle enters the detection range

and the time when the vehicle exits the detection range of the

sensor can be accurately identified. In this way, the vehicle

signals can be effectively separated.

FIGURE 3. Signals of 10 moving vehicles with different axes.

Themagnetic signals can be collected from three directions

(i.e., x, y and z) by using the magnetic sensor. Fig. 3 shows

the variation of the signals of 10 moving vehicles on the three

axes. It can be seen from the figure that themagnetic flux lines

are pulled away from the reference signal when the vehicle

passes the detection coverage of the sensor. In comparison,

themagnetic flux lines are pushed back to the reference signal

when the vehicle leaves the detection coverage of the sensor.

The amplitude and direction of signal fluctuations show dif-

ferent characteristics on different axes. Specifically, vehicles

with different types and driving speeds generate different
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magnetic signals. In addition, the signal characteristics on

different axes of the same vehicle are also different.

We fuse the data collected by the sensor to make full use

of the signals of the three axes, shown as

M (k)

=

√

(Bx(k)−bx (k))2+
(

By (k)−by (k)
)2

+(Bz(k)−bz (k))
2,

(1)

where k refers to the data collected at the k-th time. Bx(k),

By(k), and Bz(k) are the signals of the three axes when a

vehicle is in the detection coverage of the sensor. bx(k),

by(k), and bz(k) are the reference signals of the three axes,

respectively.

After fusing the data, we then extract the vehicle signals

with the following steps: 1) Design a dynamic threshold to

effectively track the baseline. 2) Design a state machine to

determine the arrival and departure moments of the vehicle.

3) Extract vehicle signals.

• Dynamic threshold to track the baseline

The reference magnetic signals are fused as the baseline

which changes with the external factors (e.g., tempera-

ture and weather). Therefore, it is necessary to track the

baseline dynamically to adapt to various traffic environ-

ment. To this end, we set a dynamic threshold Dth(k)

based on the baseline to decide whether a vehicle is in

the detection coverage of the sensor or not. We have

Dth (k) = (1 + λ)Fbas (k) , (2)

where Fbas (k) is the baseline. λ is the coefficient to

adjust the threshold. It can be seen from (2) that the

threshold is updated with the baseline in real time. For

data M (k), if M (k) < Dth (k), it then can be used

to update the baseline. Therefore, the baseline can be

tracked by

Fbas(k)

=

{

(1 − δ)Fbas(k−1)+δM (k), M (k) < Dth(k),

Fbas(k − 1), M (k) ≥ Dth(k),

(3)

where δ is the weighting factor to determine the update

rate of the baseline.

• State machine for vehicle detection

In order to accurately calculate the time points when

the vehicle enters and leaves the detection range of the

sensor, as shown in Fig. 4, we design a state machine

to model the state of the vehicle. Before using the state

machine to make decisions, the value of the collected

magnetic signal M (k) needs to be compared with the

value of the dynamic threshold Dth(k), we have

ID =

{

1, M (k) ≥ Dth(k),

0, M (k) < Dth(k),
(4)

where ID = 0 indicates that the vehicle may leave the

detection range of the sensor. In comparison, ID = 1

FIGURE 4. State machine for vehicle detection.

means that the vehicle may enter the detection range of

the sensor.

In Fig. 4, S0 state initializes the system and sets the

parameters. After the system initialization is completed,

the system enters S1 state and the value of ID is 0.

When the collected data is no smaller than the threshold

(i.e., M (k) ≥ Dth(k)), the vehicle may enter the detec-

tion coverage of the sensor. At this time, the value of

ID is 1 and the state machine moves to S2. In this

state, counter_1 starts counting and the counting result

is compared with the value of N1. If counter_1 ≥ N1,

we consider that a vehicle drives in the detection cover-

age of the sensor. Meanwhile, the state machine moves

to S3. Otherwise, the value of ID is set to 0 and the

state machine returns to S1. In state S3, when the vehicle

signal is lower than the threshold, the vehicle may leave

the detection coverage of the sensor. Then, set the value

of ID to 0 and the state machine moves to S4. In this

state, counter_2 starts counting and the counting result

is compared with the value of N2. If counter_2 ≥ N2,

the vehicle has left from the detection coverage of the

sensor and the state machine moves to S1 state. Other-

wise, the value of ID is set to 1 and the state machine

moves to S3. The vehicle detection result based on the

state machine is shown in Fig. 5.

• Extract vehicle signals

Based on the designed state machine for vehicle detec-

tion, the time points when the vehicle enters and exits

the detection range of the magnetic sensor can be deter-

mined. Therefore, as shown in Fig. 6, the signals gen-

erated by a vehicle which drives through the detection

coverage of the sensor can be effectively segmented

from the magnetic signals.
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FIGURE 5. The result of vehicle detection.

IV. ANALYSIS AND PROCESSING OF VEHICLE SIGNALS

A. ANALYSIS OF VEHICLE SIGNALS

The magnetic signals of a vehicle is not only related to its

structure, but also related to its speed and the cargo loaded,

where the structure of the vehicle includes the position of

its engine, the height of its chassis and the length of the

vehicle. Theoretically, the same vehicles passing by the detec-

tion coverage of the sensor at the same speed and direction

have almost identical vehicle signals. Unfortunately, in actual

traffic scenarios, the speed and position of vehicles passing

by the sensor are not exactly the same. For the vehicles with

the same type, their vehicle structures are basically the same.

However, different vehicle signals are also generated as vehi-

cles usually drive at different speeds. Fig. 7 shows the vehicle

signals of three axes collected by the vehicle when passing

through the magnetic sensor at 20km/h, 30km/h, 40km/h, and

50km/h, respectively. It can be seen in this figure that the

obvious difference is the length of the waveform when the

same vehicle moving at different speeds. For vehicles with

different types, their structures are different, which results in

different vehicle signals. Fig. 8 shows seven different types of

vehicle signals, indicating that each type has its unique signal

characteristics. Consequently, the vehicle can be classified by

collecting and processing the vehicle signals.

B. PROCESSING OF VEHICLE SIGNALS

In this subsection, we convert the data of vehicle signals

into two-dimensional images before introducing the CNN

model for vehicle classification and speed estimation. The

images, which have all the features of the vehicle signals, are

treated as the input data to train the CNN model designed in

our paper. Based on [31], the types of vehicles are divided

into 7 categories which are motorcycles, sedans, SUVs, vans,

cranes, medium trucks and buses. After extracting the signals

of each vehicle, a two-dimensional figure can be drawn by

taking the amplitude of each waveform as the ordinate and

the number of points as the abscissa. We draw the three-axis

signals of each vehicle on two-dimensional coordinates and

FIGURE 6. The extraction of vehicle signals.

then convert the signals into a 224 × 224 grayscale image.

The images transformed by different vehicle signals can be

seen in Fig. 9.

V. CNN MODEL FOR VEHICLE CLASSIFICATION AND

SPEED ESTIMATION

In our paper, vehicle classification is to make classification

labels for vehicle signals according to the type of each vehi-

cle. Similarly, speed interval estimation is to make classifica-

tion labels for each vehicle according to the speed. Therefore,
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FIGURE 7. Signals collected by the vehicle when passing the magnetic
sensor at 20km/h, 30km/h, 40km/h, and 50km/h, respectively.

FIGURE 8. Signals generated by the vehicles with different types.

FIGURE 9. Images converted from vehicle signals.

the CNN models for vehicle classification and speed estima-

tion have the same architecture and optimization technology.

This section describes the proposed CNN model in detail,

including the structure of the model and the optimization

techniques, where the optimization techniques respectively

are Xavier initialization, activation function, loss function

and optimizer, batch normalization and dropout.

FIGURE 10. Structure of the proposed CNN model for vehicle
classification and speed interval estimation.

A. STRUCTURE OF THE PROPOSED CNN MODEL

CNN is a feed-forward neural network, which can directly use

the original image as the input, thereby avoiding the complex

pre-processing of the image [37]–[39]. In our paper, the CNN

model is essentially to learn the characteristics of vehicle

signals with the target of achieving vehicle classification

and speed estimation. After the vehicle signals are extracted,

they will be converted into image data and treated as the

input of the CNN models to train the classification model

and speed estimation model, respectively. Fig. 10 represents

the structure of the proposed CNN model for vehicle clas-

sification and speed interval estimation. It can be seen that

the CNN model contains 3 groups of convolutions, where

each group uses a 3 × 3 convolution kernel. After each group

executes a convolution, a 2 × 2 maximum pooling is per-

formed. As shown in Fig. 10, the CNN model optimizes

various functions to reduce overfitting, thereby showing the

best performance of vehicle classification and speed interval

estimation. The parameters of the proposed CNN model are

summarized in Table 1.

B. XAVIER INITIALIZATION

The purpose of convolution kernel initialization of the CNN

model is to let the neural network learn useful informa-

tion during the training process. However, the initial value

cannot be set arbitrarily, otherwise it will cause the prob-

lem of gradient instability. For example, the gradient con-

tinually decreases with the layer-by-layer transfer of the

chain-derivative and finally approaches 0. As a result, some
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TABLE 1. Parameters of the proposed CNN model.

layers of the CNN model may not be trained. In our paper,

we use Xavier initialization to initialize the convolution

kernel of the CNN model. With the Xavier initialization,

the activation value of each layer and the variance of the state

gradient remain the same in the propagation process. Conse-

quently, the problem of the gradient instability can be avoided

and the speed of the convergence is accelerated. Define the

convolution kernel of the CNN as W , the dimension of the

input data of the layer is n and the dimension of the output

data of the layer is m. Then all the convolution kernels are

initialized in a uniformly manner, shown as

W ∼ U

[

−

√

6

m+ n
,

√

6

m+ n

]

. (5)

Compared with a single large-size convolution kernel,

multiple small-size convolution kernels can greatly reduce

the number of parameters and calculation complexity while

maintaining a constant connection. In comparison, when a

smaller convolution kernel is used, the characteristics of

images may not be able to be expressed. In this paper,

the image data of magnetic signals are relatively sparse. Con-

sequently, we select multiple small kernels for convolution,

where the size of the initial convolution kernel is set to

be 3 × 3. After the operation of the convolution layer, zero

padding is adopted to preserve the original size of the image.

C. ACTIVATION FUNCTION

The activation function is used to remain the features and

increase the non-linearity of the neural networkmodel. In cur-

rent CNN models, the commonly used activation functions

are logistic sigmoid (Sigmoid), hyperbolic tangent (Tanh),

rectified linear units (ReLU), leakage rectified linear units

(LReLU), and exponential linear units (ELU). Although Sig-

moid is more biologically reasonable than Tanh, the latter

is better for training multilayer neural networks. ReLu is

able to achieve the best performance with the unsupervised

pre-training. However, the derivative of the Relu function in

the region of the negative half is 0. This problem can be

addressed by LReLU and ELU. In the experiments which are

carried out in our paper, ELU has better results than LReLU.

Consequently, we select ELU as the activation function,

shown as

ELU (x) =

{

x, x > 0,

α
(

ex − 1
)

, otherwise,
(6)

where α is the adjustment factor.

D. LOSS FUNCTION AND OPTIMIZER

The loss function is used to estimate the degree of the

inconsistency between the predicted value and the real value

of the model. It is a non-negative real value function. The

smaller the value of the loss function, the better the robustness

of themodel. The loss function can beminimized by adjusting

the network parameters of each layer by the optimizer. In our

paper, cross-entropy function is used as the loss function for

vehicle classification and speed estimation, we have

L = −
1

l

∑

x

[y ln a+ (1 − y) ln(1 − a)], (7)

where l is the number of training data, y is the expected value,

and a is the actual value obtained from the output layer.

After deciding the loss function, we then design the learn-

ing rate of the CNNmodel. The current adaptive learning rate

optimization algorithms (e.g., AdaGrad, RMSProp, Adam

and AdaDelta) aim to design independent adaptive learning

rates for different parameters. In our experiments, Adam has

a better performance than the others. Therefore, Adam is

selected to determine the learning rate. Specifically, in our

CNN model, we use the Adam optimizer function with an

initial learning rate of 0.0001, which exponentially decays

the learning rate with a 0.95 decay rate every 1000 steps. The

learning rate can be calculated by

LearnR = LearnR0 ∗ 0.95⌈(GlobalStep/1000)⌉, (8)

where ⌈·⌉ is the ceil function.

E. BATCH NORMALIZATION

CNN involves the superposition of many layers, where the

update of the parameters of each layer will change the distri-

bution of the input data at the upper layer. The distribution of

the input data at the high layers will change drastically with

layer-by-layer superposition, which makes the high layers

need to constantly re-adapt the update of the parameters at

the low layers. As a common and effective method to address

this problem, batch normalization is used to forcibly pull the

distribution of the input value of any neuron in each layer

back to a standard normal distribution with a mean of 0 and a

variance of 1, which can greatly speed up the training speed.

In our paper, the batch normalization layer is placed after the

activation function.

F. DROPOUT

The CNN model used in our paper has a large number of

parameters. In order to reduce the over-fitting of the model,

the dropout technology is used in the model training process.

With this technology, for the neural network unit, it will
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temporarily withdraw from the network according to a certain

probability. For the remaining neurons, they will form a new

network structure. Finally, the estimates or predictions from

different network structures are averaged through a certain

weight to obtain the final result. This technology not only

solves the over-fitting problem brought by the training of a

single model, but also reduces the time consumption when

training multiple models. In this paper, we apply a deletion

with a probability of 0.5 and place it behind the batch nor-

malization layer.

FIGURE 11. The experimental scenario.

VI. EXPERIMENTS AND RESULTS

A. EXPERIMENTAL SCENARIO

In this subsection, we introduce the scenario for carrying

out the simulation experiments. In the experiments, we collect

the data from three different roads in Xi’an, China to train

the CNN model. As shown in Fig. 11, the magnetic sensor

is deployed along the road to collect data, where the x-axis

is along the traffic direction, y-axis is perpendicular to the

traffic direction and z-axis is perpendicular to the ground.

In addition, a camera is used to record the type of each vehicle

and a radar speedometer is used to record the speed of the

vehicle passing by the detection coverage of the magnetic

sensor. After the data of the three axes are collected by the

magnetic sensor, the data will be delivered from the sensor to

the data collection node, i.e., the computer in Fig. 11. Then,

the time points of the vehicle arrival and vehicle departure

from the sensor detection range can be obtained by the vehicle

detection algorithm. After that, the signals of each vehicle

can be transmitted into an image to train the CNN model.

The original data set has a total of 6042 images, includ-

ing 396 motorcycles, 1504 sedan, 1435 SUVs, 1201 vans,

331 cranes, 311 medium trucks and 864 buses. The data is

expanded by the data enhancement method, and finally we

obtain 54378 images of vehicles [40].

B. EXPERIMENTAL RESULTS

1) RESULTS OF VEHICLE CLASSIFICATION

To evaluate the performance of the proposed vehicle classi-

fication scheme, we select the commonly used performance

metrics which are accuracy, precision, sensitivity, specificity,

and area under the ROC curve (AUC). In the experiments,

we use different labels to indicate motorcycles, cars, SUVs,

trucks, cranes, medium trucks, and buses. For a type of

vehicles, we define the following concepts to calculate the

performance metrics.

• True Positive TP: the number of samples which belong

to this type and are correctly classified.

• False Negative FN : the number of samples which do

not belong to this type and are incorrectly classified as

this type.

• False Positive FP: the number of samples which belong

to this type and are incorrectly classified into other types.

• True Negative TN : the number of samples which do not

belong to this type and are correctly classified into other

types.

In this way, the accuracy, precision, sensitivity and speci-

ficity can be calculated by






































Accuracy =
TP+ TN

TP+ TN + FP+ FN
,

Precision =
TP

TP+ FP
,

Sensitivity =
TP

TP+ FN
,

Specificity =
TN

TN + FP
.

(9)

Based on (9), we then define the AUC. For a specific clas-

sifier and a test data set, a series sets of
(

FP
TN+FP

, TP
TP+FN

)

can be obtained by setting different classification thresh-

olds. By plotting these values of
(

FP
TN+FP

, TP
TP+FN

)

in a

two-dimensional coordinate system, the ROC curve can be

obtained, where the AUC is the area under the ROC curve.

TABLE 2. Results of vehicle classification.

With these performance metrics, we then detail the exper-

imental results of vehicle classification, where the results

of vehicle classification are summarized in Table 2. It can

be seen from this Table that the classification performance

of motorcycles is the best with an accuracy rate of 100%.

In addition, the classification accuracy of buses is 99.44%.

The worst performances are sedans and SUVs, their accuracy

rates are both lower than 96%. This is because motorcycle

has small size and the disturbance generated by motorcycle

is weak. As a result, the amplitude of the vehicle signal is

low and the duration is short. Compared with other types of

vehicles, buses have a stronger disturbance to the magnetic

field, a higher signal amplitude and a longer signal duration.

Consequently, the vehicle signals of motorcycles and buses

are quite different from the signals of other vehicle types.
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However, the signals of some sedans and SUVs are similar,

which causes the model to be comparatively fuzzy in the

recognition of these two types. Fig. 12 shows the accuracy

rate and the loss rate of vehicle classification. It can be seen in

this figure that the accuracy rate of the training set is 98.57%

and the accuracy rate of the validation set is 97.83% after

running 80 steps. In addition, the loss of the training set is

0.0612 and that of the validation set is 0.0737 after 80 steps.

FIGURE 12. Accuracy rate and loss rate of vehicle classification. (a) The
accuracy rate of training set and validation set. (b) The loss of training set
and validation set.

FIGURE 13. Accuracy rate and loss rate of speed interval estimation.
(a) The accuracy rate of training set and validation set. (b) The loss of
training set and validation set.

2) RESULTS OF SPEED INTERVAL ESTIMATION

To evaluate the speed of a vehicle, the speed in the

range of 10km/h-70km/h is divided into 6 intervals with a

size of 10 km/h, i.e., [10km/h,20km/h], (20km/h-30km/h],

(30km/h-40km/h], (40km/h-50km/h], (50km/h-60km/h] and

(60km/h-70km/h]. Then, the collected data of each vehicle is

labeled with a classification label according to the speed of

the vehicle. After that, the signals of vehicles are converted

into images and treated as the input of the CNN model for

speed interval estimation. Fig. 13 shows the result of speed

interval estimation with the adoption of the proposed scheme.

It can be seen in this figure that the accuracy of the speed

interval estimation is 96.85%. Furthermore, we can see that

the loss of the training set is 0.098 and that of the validation

set is 0.136 after 120 steps.

VII. CONCLUSION

The vehicle classification and speed estimation are the basic

applications to support the ITS. In this paper, we have

proposed an effective scheme for vehicle classification and

speed interval estimation based on a single low-cost mag-

netic sensor. In the proposed scheme, vehicle signals are first

extracted from the magnetic signals by using the designed

state machine. Then, the collected vehicle signals are con-

verted into 224 × 224 grayscale images. These images

are used as the input to the proposed CNN model. With

the designed CNN model, we have classified the vehicles

into 7 types and divided the speed in the range of 10km/h-

70km/h into 6 intervals with a size of 10km/h. The experimen-

tal results have shown that the accuracy of vehicle classifica-

tion is 97.83% and the accuracy of speed interval estimation

is 96.85%.

For the future work, a vehicle detection system includ-

ing sensor, base station and data analysis platform will be

designed to further enhance the performance of the proposed

vehicle classification and speed estimation scheme.
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