
RESEARCH Open Access

Vehicle color classification using manifold learning
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Abstract

Color identification of vehicles plays a significant role in crime detection. In this study, a novel scheme for the color

identification of vehicles is proposed using the locating algorithm of regions of interest (ROIs) as well as the color

histogram features from still images. A coarse-to-fine strategy was adopted to efficiently locate the ROIs for various

vehicle types. Red patch labeling, geometrical-rule filtering, and a texture-based classifier were cascaded to locate the

valid ROIs. A color space fusion together with a dimension reduction scheme was designed for color classification.

Color histograms in ROIs were extracted and classified by a trained classifier. Seven different classes of color were

identified in this work. Experiments were conducted to show the performance of the proposed method. The average

rates of ROI location and color classification were 98.45% and 88.18%, respectively. Moreover, the classification efficiency

of the proposed method was up to 18 frames per second.
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1. Introduction
Recently, vehicle color identification has been widely in

demand for video surveillance on urban roads. When an

accident occurs, license plate (LP) numbers are an intui-

tive and direct cue for the escaping vehicle. However,

these cues are ineffective because small LPs can be missed

due to view angle or distance. Witnesses only tend to

remember the escape vehicle’s color or type. Moreover,

the government has installed cameras on roads for traffic

monitoring or crime prevention. The color identification

from video data can assist police both in crime prevention

and later investigation.

Earlier, color feature descriptors have been widely used

in content-based image retrieval (CBIR) [1,2]. High quality

images with less illumination impact were required in

their studies. However, the color identification of vehicles

from outdoor video clips is sensitive to camera installation

and environmental factors. First, the sequential images

captured from outdoor cameras are distorted by chro-

matic polarization and white balance functions. Second,

the performance is influenced by illumination and weather

conditions. As illustrated in Figure 1, classification errors

always occur because the mixed sample distributions of

colors cannot be clearly separated in various color spaces.

Many researchers try to reduce illumination impacts in

classification by two approaches: discriminative feature

extraction and image-based color calibration. Basically,

discriminative features are extracted from the color histo-

gram of an individual color space or the fused spaces.

Histogram is the widely used object representation in color

classification or image retrieval. In MPEG-7 standard, color

channels are encoded and quantized to generate the color

histogram, e.g., scalable color descriptor (SCD). Baek et al.

[3] extracted the two-dimensional histogram features on

the hue (H) and saturation (S) plane. Kim et al. [4] quan-

tized color features on channels H, S, and intensity (I) and

found the best combination of features. In [5], the color his-

tograms on channels H and S are classified to determine

the red, yellow, green, and blue colors, while the normal-

ized features on channels RGB are classified to determine

the black, gray, and white colors. The choice of a color

space is a critical issue in identifying color objects. Tsai

et al. [6] and Chen et al. [7] used the principal component

analysis (PCA)-based technique to calculate the eigenvec-

tors and the corresponding eigenvalues from the training

samples in color space RGB. After the transformations of

color spaces, the classifiers, e.g., multi-class support vector

machine (SVM) [3], k-nearest neighbor (KNN) [4], Bayesian
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classifier [6], or the multiple instance learning (MIL) [7],

were trained to identify vehicles’ colors. Furthermore,

Brown [8] evaluates four color feature descriptors: standard

color histogram, weighted color histogram, variable bin size

color histogram, and color correlogram.

On the other hand, image-based color calibration is an

enhancement method on image quality to reduce illumin-

ation variation. Li et al. [9] propose a classification method

using the template-matching strategy. Before the identifi-

cation process, a color calibration procedure is executed

to adjust the image colors [10]. The relative error dis-

tances in color space HSI are calculated to identify vehicle

colors. Similarly, color compensation is performed for

color calibration in [11]. Shen et al. [12] present an image

correction algorithm which combines synthesized texture

information to recover color information in overexposure

regions. Guo et al. [13] separately recover the color and

lightness of overexposure regions from a single image.

The lightness in channel L is recovered using the exposure

likelihood, and the colors in channels a and b are cor-

rected by the weighted summation of neighborhoods.

However, their methods [12,13] cannot be used in a real-

time surveillance system because of the high computa-

tional loading.

In color histogram-based classification, images with

similar colors are represented in the same color histogram

Figure 1 The sample distributions of seven classes in various color spaces. (a) RGB color space. (b) HSV color space. (c) HLS color space.

(d) Luv color space. (e) YCrCb color space. (f) CIELab color space.
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because similar colors fall into the same bins due to the

quantization. The original color components should be

represented by more bits to keep more details, e.g., 8 bits

of 256 levels. In addition, various color spaces represent

different meanings. It is a hard work to accurately choose

the color space for the classification on various applica-

tions. Stokman et al. [14] propose a fusion scheme to

integrate several color spaces. Twelve color components

are weighted and summarized by a linear programming

method [15]. In this study, six color spaces of 18 compo-

nents, RGB, CIELab, YCrCb, HSV, Luv, and HLS, were

catenated to generate a color histogram. However, the

dimensionality of this histogram-based descriptor is very

high, and samples of the same color are distributed in a

manifold structure. Recently, many manifold learning and

dimensional reduction (DR) approaches are proposed for

face recognition, image classification, image retrieval, etc.

Local linear embedding (LLE) [16], locality preservation

projection (LPP) [17], nearest feature space embedding

(NFSE) [18], ISOMAP [19], and Laplacian eigenmap (LE)

[20] try to preserve the structural locality of samples

which are distributed in a manifold structure. Even though

the objective functions in these methods are different, the

goal, preserving the manifold structure, is the same.

In traffic surveillance systems, cameras are frequently set

up on islands or shoulders of roads. They capture vehicle

images from the front or back view. The safety cameras

commonly set on highways or urban roads face the lanes

and capture the vehicle images of back view. In this study,

vehicle color in multi-lanes was identified outdoors from

the back. The identification procedure consisted of two

modules as shown in Figure 2: The location of a valid ROI

and the color classification. Unlike the traditional back-

ground subtraction methods, which need video sequences

and are very sensitive to illumination changes, the taillight

detection algorithm has been designed to obtain the valid

ROI from video frames. The valid regions of interest (ROIs)

were determined by the detected red patches (e.g., vehicle

taillights) and their corresponding pairs. The unfeasible

taillight pairs were pre-filtered out and eliminated using

geometric rules. It is necessary to identify the vehicle types

because the locations of ROI are different for different

vehicle types. Before the second module, non-panel regions,

e.g., vehicle windows or other reflecting area, were elim-

inated. Second, the color histograms in an ROI were

classified using a trained classifier. A manifold learning

algorithm, called nearest feature line embedding (NFLE)

[18], reduces the dimensionality of color features for redu-

cing the illumination impacts. NFLE discovers the intrin-

sic manifold structure from the data by considering the

relationship among samples. Not only the dimensions are

reduced, but also the illumination impacts are reduced.

Finally, the vehicle colors were determined by the domin-

ant colors in the ROI. Seven colors, e.g., red, yellow, blue,

green, black, white, and gray, were identified in this study.

The contributions of this work are twofold and briefly

summarized in the following: The taillight detection and

pairing algorithms fast locate ROI candidates from video

frames. Foreground objects are found without the con-

struction of background model in various urban roads.

Furthermore, vehicle types are identified to correctly

locate ROI regions. Second, the proposed manifold learn-

ing method, NFLE, preserves the local structures among

samples in manifold distributions. The uncollected color

prototypes are linearly approximated from collected pro-

totypes by the NFL strategy in feature spaces. Both the

high dimensionality and illumination impacts are reduced

under various weather conditions. Comparing with our

previous work in [21], four problems have been solved in

this work. First, the proposed method locates multiple

valid ROIs from video frames in multi-lane. Second, the

vehicle types are identified by an SVM classifier instead of

a heuristic rule for accurately locating ROI. The type

identification also reduces the taillight pairing errors.

Figure 2 The proposed scheme for vehicle color classification.
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Third, the fused color descriptors in multiple color spaces

are adopted rather than a single descriptor in a specified

color space. Illumination impacts are reduced by generat-

ing the virtual prototypes from the linear combination of

collected prototypes. Fourth, manifold learning algorithm

reduces the high feature dimensions to find the discrim-

inative features. In addition, the NFL strategy is embedded

into the transformation. Instead of the template matching

strategy in [21], an SVM classifier has been trained for

classification. The proposed method is executed on the

large-scale surveillance videos in various weather condi-

tions and the color classification performance is signifi-

cantly enhanced.

The rest of this paper is organized as follows: The loca-

tion of valid ROIs is presented in Section 2. Vehicle color

identification using a trained classifier is given in Section 3.

Some experimental results to show the validity of the

proposed method are presented in Section 4. Some conclu-

sions are given in Section 5.

2. Location of region of interest (ROI)
Object detection is widely used in many computer vision

applications. A detector is trained from the collected

training samples, and a window slides an image from left

to right and top to bottom in multi-scales to identify the

objects. Homogenous objects, e.g., license plates and faces,

are frequently detected by a trained detector. It is a chal-

lenge to locate the ROI from various vehicle shapes using

the window-based detection approach. In addition, much

time is needed to check a large number of sliding windows

using brute force searching. Dule et al. [22] manually

assigned the ROIs on vehicle hoods from the detected

foreground objects. However, automatic ROI finding is a

critical issue in surveillance systems. Wu et al. [23] find

the ROIs by integrating the results of background subtrac-

tion and color segmentation. An SVM-based classifier in a

two-layer structure is then applied to classify the pixels in

ROI. Yang et al. [5] find the ROIs by using the geometric

rule-based scheme. In this study, a coarse-to-fine strategy

was adopted for efficiently identifying the ROIs from vari-

ous types of vehicles. Three steps, red patch labeling, tail-

light pair matching, and shape feature verification, were

performed to locate the ROIs from still images. First, red

patches were detected for finding possible taillight candi-

dates using several simple thresholding rules. Then, pos-

sible ROIs were generated from the taillight pairs, and

geometric rules filtered out improbable taillight pairs to

determine the valid ROI areas. Compared with the posi-

tions of taillight pairs, three vehicle types, e.g., sedan type

(sedan, coupe, or Hatchback), SUV type (sport utility vehi-

cles or recreational vehicles), and truck type (caravan,

pickup truck, or autotruck), were defined for color classifi-

cation. After that, shape features in a specified mask were

verified to identify the exact ROI.

2.1 Red patch labeling

Since the sunlight shines vertically on the vehicle hoods,

these are prone to reflect white in image frames. These

overexposure regions generated incorrect results in color

classification. Therefore, the valid color regions were ob-

tained from the back view of vehicles. The ROI identifi-

cation reduced overexposure during color classification.

In our previous work [24], the red pixels of taillights

were detected using color features. The Cr component of

pixels possesses more discriminant power than the other

components in red pixel labeling. Image pixels in color

space RGB were transformed to space YCbCr using Eq.

(1). Each pixel I(x, y) in space YCbCr was next classified as

a red pixel if satisfying the conditions in Eq. (2):
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Here, threshold values θCr and [θCb1, θCb2] were manually

assigned for channels Cr and Cb, respectively. Since yellow

and red pixels in space YCbCr possess similar features,

yellow pixels can frequently be misclassified as red pixels

using the simple rules, i.e., the loose criteria in Eq. (2) and

the pre-defined thresholds. Since yellow and red pixels were

mixed on the CbCr plan, false alarms were frequently gen-

erated (see Figure 3b). When a yellow taxi was checked, a

lot of yellow pixels were misclassified as red pixels. An

SVM-based classifier was further trained to eliminate the

false alarms as shown in Figure 3c.

The coarse-to-fine strategy was adopted in red patch

labeling for efficiency. First, image pixels in space RGB were

converted to space YCbCr. Pixels with features (Cr and Cb)

were checked using the simple criteria. If they satisfied the

simple criteria, eight neighbors around them were further

extracted and encoded to generate the 18-dimensional

vectors in the SVM-based classification [25]. Based on the

coarse-to-fine strategy, a large number of non-red pixels

were filtered out using the simple criteria, and few patches

of 3 by 3 were verified with the complex SVM-classifier.

2.2 Taillight pair matching

A binary image was obtained from the previous step, and

red patches were labeled from the binary image. Three

geometrical rules were tested for selecting the candidate

pairs. The first one was to filter out too small or too large

regions from the labeled results. Two thresholds θs1 and

θs2 were manually set to reserve the red patches whose

sizes fell within the range [θs1, θs2]. Furthermore, if a

labeled patch was larger than θs2 and its compactness was

high, a red vehicle was identified. The density of labeled
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points within a bounded box was calculated for a specified

patch P in the second rule. If the density of a bounded

box was greater than θd, patch P was reserved; otherwise,

it was eliminated. The last rule considered the angle of

taillight pairs. CN
2 possible pairs were checked, where N

was the number of red patches surviving from the first two

rules. The impossible taillight pairs were filtered out by the

line angle and length criteria. The line angle of two patch

centers Ci(xi, yi) and Cj(xj, yj) was calculated, i.e., θ = tan− 1

(yj − yi/xj − xi). A taillight pair was chosen; if its length was

within a range [l1, l2] = [50, 150] and its line angle was close

to zero, e.g., within −5° to +5°. As abovementioned, the can-

didate red patches are detected by Section 2.1; then, each

candidate red path can be paired as taillight pair by using

geometric rules which is described in this section. Thus,

the valid ROI region in the image frame is set with a fix

region according to taillight pair.

2.3 Type classification using shape features

Using the geometrical rules in the previous section, the

remaining pairs were regarded as the taillight pairs. How-

ever, two problems occurred especially in the multi-lane

cases. First, the left taillight of a vehicle matched the right

taillight of another vehicle as shown in Figure 4a,b. The

second problem was that a fixed ROI locating rule was

not suitable for all vehicle types. Different vehicle types

need different ROIs for color classification. Figure 4c,d

illustrates the improper ROI problems for trucks and

SUVs using the generation rule for sedans. In Figure 4c,

the invalid ROI, the chassis shadow and the partial

ground, was generated using the same rule of sedans. On

the other hand, the windshield of SUV was located for the

ROI as shown in Figure 4d. Thereafter, vehicle type classi-

fication is needed for locating the valid ROIs. Thus, ve-

hicle type identification was needed to generate the

desired ROIs using complex features, e.g., shape features.

Three issues were considered for vehicle type identifica-

tion: checked region determination, feature representation,

and classifier design.

The checked window for type classification was deter-

mined by the taillight pair. The reference length of one

taillight pair d determined the size of a verified region

d × d as shown in Figure 5. This region was normalized to

a fixed size of 64 by 64. On average, fewer than ten pairs

were checked in an image frame. This region was next

represented by the histogram of oriented gradients (HOG)

[26]. The HOG features of 1,764 in a verified ROI were

extracted for classification. An SVM classifier of multi-

class was trained using HOG features for vehicle type

classification. One thousand two hundred image samples

of four classes, i.e., sedan type, SUV type, truck type, and

non-vehicle type, were collected for training. Figure 6a

shows several illustrations for training the multi-class

SVM classifier. In the training set, sedans, coupes, or

Hatchbacks are classified as the ‘sedan’ type. Similarly,

sport-utility vehicles and recreational vehicles are classi-

fied as the ‘SUV’ type; and caravans, pickup trucks, and

autotrucks are classified as the ‘truck’ type. Moreover, the

samples of ‘non-vehicle’ type are also collected for train-

ing. After the vehicle type classification, the ROI for a spe-

cified vehicle type was determined by its corresponding

rule. For example, the ROIs of SUVs were located at the

bottom of taillight pairs, while the ROIs of trucks were lo-

cated at the top of taillight pairs. The ROIs of sedan type,

SUV type, and truck type were determined, drawn by the

blue rectangles as shown in Figure 6b-d. The color fea-

tures in these ROIs are classified in the color classification

below.

3. Eigenspace-based color classification
As is generally known, the classification process is

composed of three steps in pattern recognition (PR):

feature representation, feature discriminant analysis,

and classifier design. In this study, a color space fusion

plus dimension reduction scheme was designed for

color classification. Color histograms in ROIs were

extracted, reduced, and classified by a multi-class SVM

classifier.

Figure 3 The red patch labeling for a taxi. (a) A taxi image. (b) The misdetected red pixels using simple rules. (c) The labeled results verified

by an SVM classifier.
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3.1 Feature representation: linear color feature combination

Many color spaces [27], e.g., RGB, HSV, HLS, CIELab,

YCrCb, …, etc., were explored in color classification.

The choice of a color space was critical in identifying ve-

hicle colors. Though color spaces were interpreted in

many different models, no color space could be regarded

as a universal space. A selection and fusion scheme pro-

posed by Stokman et al. [14] combines many color

spaces, and the better results are achieved. Twelve color

components were weighted and summarized with a lin-

ear programming method in [15]. In this study, a color

histogram was extracted from the color pixels in an ROI

Figure 4 Mismatched taillight pairs and invalid ROIs. (a) and (b) is the mismatched taillight pairs. (c) and (d) is the invalid ROIs using the rules

for sedans.

Figure 5 The verified window drawn by a green rectangle. (a) The rule of checked window. (b) The green rectangle is used to identify vehicle type.

Wang et al. EURASIP Journal on Image and Video Processing 2014, 2014:48 Page 6 of 20

http://jivp.eurasipjournals.com/content/2014/1/48



for feature representation. A window of w by w slides

the ROI from left to right and top to bottom; here, w =

20. The color component for each pixel was quantized

into 256 levels. The statistical histogram of length 256

was obtained. Eighteen histograms of six color spaces, i.

e., RGB, CIELab, YCrCb, HSV, Luv, and HLS were com-

bined to represent the ROI’s color. The feature vector of

length 4,608 = 256 × 6 × 3 in this window was extracted

as shown in Figure 7. This descriptor with high dimen-

sions was reduced to a lower dimensional space for re-

ducing illumination impacts.

A toy example is given in the following. In order to

show the reconstruction of intrinsic manifold structure

using eigenspace approaches, 1,400 patches of size 20 by

20 of seven color classes are collected for training. These

patches are drawn by their corresponding colors in six

color spaces RGB, YCrCb, HSV, HLS, Luv, and CIELab as

shown in Figure 1a-f, respectively. In these figures, cross

marks represent the samples of white color due to the

white papers, and circle marks of pink color represent the

samples of gray color for the clear representation. These

samples of seven classes are heavily mixed due to the illu-

mination factors. The features in six color spaces are

catenated to generate a new vector of length 4,608. The

same class patches under various illumination conditions

are represented in different colors, e.g., the ROI templates

of dark yellow, general yellow, and bright yellow colors as

shown in Figure 8. They are classified as ‘class yellow’.

According to the consequences in Li’s approach for face

recognition [28], they claimed that ‘the feature line

approximates variants of the two prototypes under varia-

tions in pose, illumination, and expression’. A linear model

virtually interpolates an infinite number of prototypes of

the class in feature spaces. Similarly, the features of general

yellow color are obtained from the linear combination of

features of dark yellow and bright yellow features.

3.2 Feature discriminant analysis: dimension reduction (DR)

LPP [17] and LLE [16] are two popular manifold learning

algorithms which are applied to keep the manifold

Sedans

SUVs

Trucks

Non-vehicles

(a)

(c)(b) (d)

Figure 6 Vehicle type training samples and ROIs location. (a) The training samples of four vehicle type classes. (b-d) The ROIs of sedan type,

SUV type, and truck type drawn by the blue rectangles.
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Figure 7 The color histogram of six color spaces for a window in an ROI.

Figure 8 The ROI templates of yellow color under different illumination conditions. (a) Dark yellow, (b) general yellow, and (c) bright

yellow samples.
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structure of samples. They try to minimize the objective

functions to obtain the best transformation for DR. Though

their objective functions are represented in different forms,

their goals are the same. Moreover, the two objective func-

tions have been proved to be equivalent in [29]. Both of

them were represented in a Laplacian matrix form. The

best transformation matrix was composed of the eigenvec-

tors with the smallest corresponding eigenvalues by solving

the general eigenvalue decomposition problem. Two neigh-

boring samples in a high-dimensional space were neighbors

in a low-dimensional space in the LPP-based minimization.

The NFLE transformation [18] was a new manifold learn-

ing method based on the point-to-line (p-2-l) distance

measurement which was originated from the nearest linear

combination (NLC) approach [28]. The NFLE method tried

to find a discriminative subspace for reducing the histo-

gram dimensions of six color spaces for feature extraction.

The reduced subspace had more discriminative power than

any one specified color space. Before the classifier training,

the PCA and NFL processes were used to reduce the

feature dimensions. The NFLE transformation is briefly

described below.

Given N training samples x1, x2 … xN ∈ RD constituting

C classes, new samples y1, y2 … yN ∈ Rd, m < < M, were

obtained in a low-dimensional space with a linear projec-

tion yi =WTxi. Consider a specified point yi in the trans-

formed space; the distance from point yi to a feature line

was defined as ||yi − fm,n(yi)||, in which fm,n(yi) was the

projected point of line Lm,n. Point fm,n(yi) is a virtually con-

structed point which is generated by points ym and yn. In

the training phase, it is a hard task to collect all possible

prototypes in various outdoor illuminations. The NFL

strategy creates more virtual points to efficiently represent

the vehicle colors. For example, ym and yn can be regarded

as the samples of bright yellow and dark yellow, respect-

ively. Point fm,n(yi) is considered as the general yellow

sample by linearly weighting samples ym and yn.

The scatter computation of feature points to feature

lines were calculated and embedded during the discrimin-

ant analysis phase. CN−1
2 possible generated lines for point

yi were more than N − 1 points in the conventional point-

to-point (p-2-p) methods, e.g., LPP and LLE. Thus, the

p-2-l method retained much more scatter information

than the conventional p-2-p-based methods. In addition,

the NFL metric was embedded into the transformation

through the discriminant analysis phase instead of in the

matching phase [22]. The objective function of NFLE is

defined as follows:

W � ¼ arg min
W

X

i

X

m≠n

yi−f m;n yið Þ
�

�

�

�

�

�

2

wm;n yið Þ ð3Þ

Here, weight wm,n(yi) represents the connectivity strength

for point yi and line Lm,n. Since the objective function in

Eq. (3) was represented as a Laplacian matrix, the topology

of samples could be preserved. Furthermore, the within-

class scatter matrix Sw was calculated as follows:

Sw ¼
X

C

p¼1

X

xi∈Cp

Lm;n∈FK1
xi;Cp

� �

xi−f m;n xið Þ
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A
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where FK1
xi;Cp

� �

represents the K1 nearest feature lines

within the same class Cp of point xi. The within-class scat-

ter matrix Sw was minimized to obtain the projection

matrix W*, which consisted of the eigenvectors with the

corresponding smallest eigenvalues. In general, since the

NFL metric generalized the representative capacity of pro-

totypes during the discriminant analysis phase, the NFLE

preserved much more information than the conventional

p-2-p-based methods. More details are given in [18].

One thousand four hundred feature points are reduced

to a new space of dimension 3 after the projecting transfor-

mations, e.g., PCA, PCA plus LDA, PCA plus LPP, and

PCA plus NFLE. Similar to Figure 1, 1,400 transformed

samples of seven classes are drawn in Figure 9 by their cor-

responding colors. In this figure, red stars denote the patch

windows (red rectangles) of an ROI which are projected

onto the new spaces by the transformations. In Figure 9c,d,

a specified sample could be represented by the linear com-

bination of other samples of the same class in the trans-

formed space. For example, the sample of general yellow

color is represented by the linear combination of samples

with the dark and bright yellow colors. Points of the same

class are as close as possible, while samples of different clas-

ses should be separated as far as possible. In summary,

manifold learning methods, LPP or NFLE, discover the

more intrinsic manifold structure than the global eigen-

space methods, PCA and LDA. Besides, manifold learning

algorithms not only reduce the feature dimensions but also

preserve the sample relationship of the same classes under

various illumination conditions.

3.3 Classifier design: 1-NN, SVM, and SRC

When discriminant features in an ROI were extracted by

the DR process, the classifier was trained to classify the

ROI’s colors. In this study, the nearest neighbor classifier

(1-NN), one-vs-all SVM classifier, and sparse representation

classifier (SRC) [30] are adopted for color classification.

The seven most used different classes of color in commer-

cial vehicles were chosen for classification. They included

red, yellow, blue, green, black, white, and gray. Classified

with the trained classifiers, the vehicle colors were deter-

mined in the following steps. A valid ROI was obtained for

color classification in Section 2. A window of 20 by 20
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slides the ROI from left to right and top to bottom. The

color histogram of six color spaces in this window was

generated and reduced to a lower dimensional vector in

feature discriminant analysis. This reduced vector was

classified with the trained SVM classifier or the 1-NN clas-

sifier to determine the color class. Finally, the classification

results of sliding windows in an ROI were counted, and the

ROI color was determined using the voting strategy.

SRC is a discriminative nature of sparse representation

for classification. The designed SRC classifier in this

study is briefly described as following: (1) Similar to the

SVM classifier, a window of 20 by 20 slides the ROI

from left to right and top to bottom. The color histo-

grams of each sliding window in six color spaces are

generated. The reduced features in the low-dimensional

space are obtained by the eigenspace transformation. (2)

After feature extraction, the N training samples A = [A1,

A2, …, A7] are collected for seven color classes, in which

Ai ¼ ai;1; ai;2; ::::; ai;ni
� �

∈Rd�ni is the sample of class i

and N ¼
X7

i¼1
ni . The columns of A are normalized to

be unit ℓ2 norm. (3) When a test sample y ∈ Rd, a reduced

vector of fusing color histogram on a sliding window, is

verified, solve the ℓ
1-minimization problem via a primal-

dual algorithm for linear programming based on [31,32]:

x̂1 ¼ arg minx xk k1 , subject to Ax = y. The residual errors

for each class are calculated: ri yð Þ ¼ y−Aδi x̂1ð Þk k2; i ¼ 1;

2;…; 7 , where δi is the characteristic function which

selects the coefficient associated with the i-th class. The

test sample y is classified as the i-th class, if the residual

error ri(y) is the smallest. Finally, the color classification

results of sliding windows in an ROI were counted, and

the ROI color was determined using the voting strategy.

4. Experimental results
In this section, the experiments conducted to show the per-

formance of the proposed method are discussed. A station-

ary CCD camera was set up on the shoulder of roads.

Eighteen video clips were captured in various weather con-

ditions, e.g., in sunny, cloudy, or rainy. Due to the varied

outdoor illumination from different weather conditions, the

captured images are illustrated as shown in Figure 10.

Fifteen video clips of 320 by 240 were grabbed from the

scenes in a single lane as shown in Figure 10a-j. On the

other hand, three clips of an image of 720 by 480 were

also grabbed from the senses in multi-lanes as shown in

Figure 10k-n. The ROIs of the vehicles were incomplete

when a vehicle moved in or out of the image frame. Two

lines were set to obtain the complete rear view of vehicles.

(a)

(b)

(c)

(d)

Figure 9 The sample distributions of seven color classes after

various eigenspace transformations. (a) PCA transformation,

(b) PCA + LDA transformation, (c) PCA + LPP transformation,

and (d) PCA + NFLE transformation.
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Figure 10 The vehicle color classification results in single and multiple lanes. (a-j) The classification results in a single lane. (k-n) The classification

results in multiple lanes.
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The data set consisted of 18 clips for evaluation. More

than 42,000 vehicles were segmented from the clips. The

ground truths (GTs) of taillight locations, vehicle types,

and color classes were manually labeled in the data set. In

this study, the locations of ROIs in a still image were first

identified. The color histograms of blocks in an ROI were

next classified for color classification. For a specified block

in a valid ROI, a histogram-based feature vector of length

4,608 was extracted from the 20 by 20 window in six color

spaces. This vector with high dimensionality was reduced

to the lower dimensional subspace by PCA plus NFLE.

The block color was classified by an SVM classifier. The

ROI’s color was determined using voting of the classifica-

tion results. Two experiments were conducted to evaluate

the performance of ROI location and color classification.

The proposed method was implemented in a PC-based

machine with a CPU model i7-920 in 2.67 GHz using the

Microsoft Visual C++ 2008 and OpenCV 2.1 tool kits.

4.1 ROI location

Before color classification, the ROI for each vehicle had

to be accurately located. To achieve this goal, a coarse-

to-fine strategy was adopted to locate the valid ROIs

from still images. In the first experiment, three results

were reported showing the performance of ROI location.

First, simple rules in Eq. (2) were employed to label

the red patches. An SVM classifier was further trained

to classify the confused pixels: yellow and red. Initially,

the GT regions were manually labeled. The accuracy

rates of red patch labeling were calculated by comparing

the detected regions with the GT ones. When the over-

lapping region was larger than 1/10 of the corresponding

GT region, the detected red patch successfully hit the

taillight. The average hit rate of red patch labeling was

more than 98% for 18 evaluation clips, as shown in

Table 1. Using the simple rules with loose thresholds,

taillight patches were labeled with high accuracy rates.

In video clip 14, a low labeling rate was achieved be-

cause images were captured in the gradually dimming

light of dusk. A lot of noise was generated in image

frames due to the white balance function of cameras.

Table 1 The correct rates of taillight pairs for the evaluation data set (%)

Video clips Times Weathera Number of red patches
(ground truth)

Number of hit
patches

Hit rates (%) The average numbers
of taillight pairs

1 8:00–10:30 Sun: through cloud/haze 424 424 100.00 3.91

2 13:30–15:00 Overcast sky 476 476 100.00 4.68

3 7:30–9:00 Overcast sky 468 468 100.00 3.05

4 9:30–11:00 Overcast sky 182 182 100.00 4.82

5 15:30–17:00 Partly cloudy sky 1,144 1,144 100.00 4.42

6 14:30–16:30 Sun: through cloud/haze 1,104 1,104 100.00 4.53

7 9:30–14:30 Outdoor shade areas 1,762 1,762 100.00 2.79

8 10:00–15:00 Outdoor shade areas 3,222 3,094 96.02 2.67

9 13:30–16:00 Outdoor shade areas 2,790 2,772 99.35 2.46

10 15:00–17:00 Sun: through cloud/haze 894 894 100.00 2.60

11 16:00–17:00 Partly cloudy sky 188 188 100.00 4.17

12 13:00–15:30 Sun: through cloud/haze 2,318 2,300 99.27 2.74

13 15:00–17:00 Overcast sky 2,038 2,038 100.00 2.54

14 15:30–18:00 Sun: through cloud/haze 1,810 1,620 89.5 3.54

15 9:00–16:00 Rainy day 10,600 10,452 98.60 3.86

16 (multi-lanes) 8:00–15:00 Daylight(sun + sky) and
partly cloudy sky

17,094 16,924 99 6.89

17 (multi-lanes) 8:00–15:00 Daylight(sun + sky) and
partly cloudy sky

18,850 18,556 98.45 8.03

18 (multi-lanes) 10:00–17:00 Daylight(sun + sky) and
partly cloudy sky

21,160 20,892 98.73 11.45

Total 86,524 85,290 98.57 —

ahttp://www.3drender.com/glossary/colortemp.htm.

Table 2 The confusion matrix of classification using

texture features

Sedan SUV Truck Non-vehicle Accuracy rates (%)

Sedan 31,509 712 0 0 97.8

SUV 245 5,796 0 0 95.9

Truck 0 0 4,179 204 95.3

Non-vehicle 863 587 2,547 257,657 98.5
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Figure 11 The vehicle type misclassified examples. (a) Sedans were misclassified as type ‘SUV’. (b) SUVs were misclassified as type ‘sedan’. (c)

Trucks were misclassified as the ‘non-vehicle’ regions. (d) The non-vehicle regions were misclassified as type ‘sedan’. (e) The non-vehicle regions

were misclassified as type ‘SUV’. (f) The non-vehicle regions were misclassified as type ‘truck’.
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The geometric rule-based filter was then employed to

determine the taillight pair candidates. All taillight pairs

were reserved in the second results. On average, less

than five pairs in a single lane and less than 12 pairs in

multi-lanes were needed for the further process as listed

in the last column of Table 1.

The third results were the ROI verification using HOG

features. HOG is an efficient feature descriptor for ob-

ject representation because it is robust to illumination

and geometric distortion. Not only were both the vehicle

and non-vehicle regions verified, but the vehicle types

were also classified. Four classes, sedan, SUV, truck, and

non-vehicle, were identified for vehicle type verification

and classification. Three hundred images for each class

were collected for training. A multi-class SVM classifier

was trained using HOG features for vehicle type classifica-

tion. In testing, more than 300,000 ROIs, including 32,221

sedans, 6,041 SUVs, 4,383 trucks, and 261,654 non-vehicle

regions, were classified to determine the vehicle types.

The accuracy rates and confusion matrix are tabulated in

Table 2 for 18 video clips. The correct rates for classes,

sedan, SUV, truck, and non-vehicle region, were 97.8%,

95.9%, 95.3%, and 98.5%, respectively. The proposed

method could effectively identify the valid vehicle ROIs in

different types and multi-lanes. In addition, the proposed

method is robust to the weather conditions. For an

example, the reflected regions of taillights, the dark red

regions in Figure 10b-e, are efficiently filtered out by the

proposed method in rainy days.

In addition, some misclassification results are also given

in Figure 11. In Table 2, the regions of sedan and SUV

were misclassified due to the similar shapes as shown in

Figure 11a,b. The regions of trucks were misclassified as

the non-vehicle regions because the planar plates of the

truck were similar to the ground regions as shown in

Figure 11c. Similarly, the non-vehicle regions were fre-

quently misclassified as the truck class, as shown in

Figure 11d. On the other hand, the non-vehicle regions, the

Figure 12 The accuracy rates of the NFLE-based feature reduction and a trained SVM classifier. (a) The linear kernel SVM classifier. (b) The

RBF kernel SVM classifier.
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false alarms, were misclassified as the regions of sedan and

SUV were generated due to cluttered backgrounds as

shown in Figure 11e,f. From the experimental results, more

than 98.3% accuracy rate was achieved using HOG features

and SVM classifiers. Therefore, 42,645 vehicles’ ROIs sur-

vived from 43,262 vehicles after the ROI location step.

4.2 Color classification

After the ROIs of vehicles in the rear view were located,

seven most used color classes were classified, including

red, yellow, blue, green, black, white, and gray. The color

histograms of blocks of 20 by 20 were extracted from an

ROI. Since the dimensionality of the color histogram

was very high, i.e., 4,608, PCA was performed to find the

best representation for avoiding the small-sample-size

problem. The best discriminative projections were next

found by the NFLE method. The color histograms of

4,608 were reduced to the vectors of dimensions DPCA

and DNFLE by PCA and NFLE, respectively. Two thou-

sand one hundred samples of seven classes were col-

lected to train the multi-class SVM classifiers, and the

linear and RBF kernel functions are used during the

training. Each block was classified to determine its color.

All classification results of blocks in an ROI were counted

and the ROI’s color was determined by a voting strategy.

To evaluate the proposed method, more than 42,000 vehi-

cles from 18 video clips were identified according to color

features. Figure 10 shows the classification results of the

testing video clips in a single-lane and in the multi-lane

cases, respectively. The red patches and ROIs were drawn

by the green and blue rectangular boxes. They also show

that the proposed method was effectively performed on

urban roads in various weather conditions. Moreover, the

classification rates for various reduced dimensions are

shown in Figure 12. Three curves represent the classifica-

tion results in which DPCA is the reduced dimensions of

300, 200, and 100 by PCA, and DNFLE is the reduced

dimension from 10 to 100 by NFLE. From the results in

Figure 12, the classification results were very similar for

these three curves. After DR, the SVM classifiers with a

linear kernel function and an RBF kernel function were

trained for color classification. The best classification rates

are 87.93% and 88.67% for the linear SVM classifier and

the RBF kernel SVM classifier, respectively. The RBF ker-

nel SVM classifier with 1,594 support vectors obtains the

best classification rate which DPCA is 200 and DNFLE is 20.

Two parameters (c and γ) are 2.0 and 0.0078125 which

were obtained from the LIBSVM tool kit [25]. The other

parameters were initialized as the default values for train-

ing the classifier. The best accuracy rates for each video

clip are tabulated in Table 3, and the average classification

rate for the 18 clips was 88.67% by the SVM classifier with

a RBF kernel function.

To show the performance of color space fusion plus the

DR scheme, two experiments were implemented for com-

parison. First, the original histograms of color spaces

RGB, LAB, HSV, and fused space were fed to the SVM

classifier for training and testing. According to the results

in Table 4, the fused space outperformed the other color

spaces. In the second experiment, the original histograms

were reduced to new vectors of dimensions 200 and 20 by

PCA and NFLE before the SVM training. The reduced

vectors were classified by the trained classifier. The accur-

acy for all color spaces was improved. These implied the

discriminative features had been extracted from feature

discriminant analysis.

Similarly, the confusion matrix of color classification is

tabulated in Table 5 for the testing video clips. The correct

rates for color classes, red, yellow, blue, green, black, white,

and gray, are 91.34%, 93.73%, 90.34%, 91.62%, 90.17%,

85.22%, and 87.8%, respectively. Illumination impacted the

classification performance is given in Table 5, especially

with classes ‘black’, ‘white’, and ‘gray’. The worst results

occurred at class ‘white’ in Table 5. The samples in class

‘white’ were misclassified as classes ‘gray’ and ‘black’ at

nightfall. Similarly, the samples in class ‘black’ were misclas-

sified as classes ‘gray’ and ‘white’ due to the sunlight. Several

misclassification cases are given in Figure 13. The vehicle in

Figure 13a was misclassified as ‘black’ due to the dark red

pixels. The misclassification for Figure 13b,c occurred

Table 3 The classification rates using the SVM classifier

Video clips Correct
classification

Number
of vehicles

Accuracy
rates (%)

1 191 212 90.01

2 209 238 87.82

3 196 234 83.76

4 78 91 85.71

5 501 572 87.59

6 498 552 90.22

7 779 881 88.42

8 1,355 1,547 87.59

9 1,155 1,386 83.33

10 391 447 87.47

11 94 94 1

12 956 1,150 83.13

13 835 1,019 81.94

14 749 810 92.47

15 4,551 5,226 87.08

16 (multi-lane) 7,583 8,462 89.61

17 (multi-lane) 8,266 9,278 89.09

18 (multi-lane) 9,428 10,446 90.25

Average accuracy
rate

88.67
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because of the bumper color. The misclassification results

as given in Figure 13g,h. These were generated from the

illumination impacts. Most misclassification occurred at

classes ‘white’ and ‘gray’. In addition, the performance of

this system was 18 frames per second.

In order to show the effectiveness of the proposed

method, several state-of-the-art algorithms [3-5,22,23] are

implemented for the comparison. Color histogram-based

features are widely used in color classification. Bin

quantization is the simplest skill for DR in many papers.

Kim et al. [3,4] quantize the color bins in space HSI. The

color histograms of lengths 360 and 128 are next classified

by an SVM classifier and the 1-NN classifier. Dule et al.

[22] list ten possible histograms for classification. These

ten histograms are evaluated and randomly fused to find

the best combination, i.e., HS-SV-ab-La-Lb-gray. The

combined histogram of length 328 is classified by a

neural-network classifier. Yang et al. [5] designed a two-

layer classifier: HS color histogram for color classification

in layer one and normalized RGB features for the block-

gray-white classification in layer two. A two-stage classi-

fier is proposed for color classification in [11,23]. Color

(i.e., red, yellow, blue, and green) and monochrome (i.e.,

black, gray, and white) classes are first classified in the first

stage. In stage two, different features are classified by

two SVM-based classifiers for color and monochrome

classes, respectively. Wu et al. [23] use color features on

channels HS in stage 1. The features on channels HV

and SV are respectively classified for the four color and

the three monochrome classes in stage two. On the

other hand, Hsieh et al. [11] construct a Gaussian mixed

model (GMM) for color/monochrome classification in

stage one. Four color classes and three monochrome

classes are identified by two trained SVM classifiers.

Features in color space Lab plus features in normalized

space RGB are classified for four color classes, and fea-

tures in normalized space RGB are classified for three

monochrome classes. The configurations for the com-

pared algorithms are tabulated in Table 6. The quan-

tized bin numbers are written in the parentheses. Two

thousand one hundred samples of seven classes, 300

samples per class, were collected to train the classifier,

and 42,645 vehicle ROIs from 18 video clips were col-

lected for performance evaluation in this comparison.

The training and testing sets are two disjoint datasets

which were independently collecteda. The training sam-

ples are also collected from video clips which are cap-

tured in different locations and time of testing ones. In

order to show the effectiveness, the same evaluation

process has been run five times, where 2,100 × 5 patches

were randomly selected for training and 42,645 ROIs

were evaluated by five trained classifiers. The average

accuracy rates and the standard derivations are listed in

Table 6. From the compared results, the proposed method

outperforms the other methods.

On the other hand, several eigenspace methods for DR

have been implemented for comparison. After DR, three

classifiers are trained for evaluation, e.g., k-NN classifier,

Table 5 The confusion matrix of color classification

Red Yellow Blue Green Black White Gray Accuracy rates (%)

red 1,677 38 0 0 121 0 0 91.34

yellow 81 3,168 0 0 0 69 62 93.73

blue 0 0 1,357 21 57 27 40 90.34

green 0 22 13 1,312 51 0 34 91.62

black 0 0 0 0 10,232 483 632 90.17

white 0 0 0 0 68 8,399 1,389 85.22

gray 0 0 0 0 691 931 11,670 87.8

Table 4 The comparison of accuracy rates for various color spaces

Experiments Color space Histogram dimensions Reduced dimensions (PCA/NFL) Accuracy rates (%)

I RGB 768 Nil 73.88

LAB 768 Nil 77.79

HSV 768 Nil 79.31

Six color spaces 4,608 Nil 81.98

II RGB 768 200/20 75.66

LAB 768 200/20 82.15

HSV 768 200/20 81.63

Six color spaces 4,608 200/20 88.67
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SRC, and SVM classifier with an RBF kernel function.

The recognition results of three classifiers are compared

as shown in Figure 14. In this experiment, the parame-

ters for each classifier are set in the following: Value k is

set as 1 in classifier k-NN, and the RBF kernel is applied

in the SVM classifier. The reduced feature dimensions

are set from 10 to 100 for the DR methods PCA, PCA +

LDA, PCA + LPP, and PCA +NFLE. The reduced dimen-

sion of PCA is set to be 200 for preserving more than

99% information of training samples. Since the reduced

Table 6 The accuracy rates for the proposed method and the state-of-the-art algorithms (%)

Methods Features Classifiers Average accuracy rates Computational time (ms)

Baek [3] H (36)*S (10) SVM 73.88 (±1.0) 18

Kim [4] H (8)*S (4)*I (4) 1-NN 71.04 (±1.12) 824

Yang [5] Layer 1: H (16) + S (8) Two-layer rule-based classifier 64.03 (±1.3) 34

Layer 2: normalized RGB

Hsieh [11] Lab + transformed RGB GMM+ two-stage SVM 84.77 (±0.83) 58

Dule [21] HS (64) + SV (64) + ab (64) Neural network 76.12 (±1.41) 1,210

+La (64) + Lb (64) + Gray(8)

Wu [22] HS (256) + HV (256) + SV (256) Two-stage SVM 80.66 (±1.5) 33

The proposed method Six color spaces (4,608) NFL (20) + SVM (RBF-kernel function) 88.18 (±0.89) 18

PCA reduction (200)

Figure 13 The color misclassified examples. (a) Red cars were classified as black ones. (b) Yellow taxis were classified as white ones. (c) Blue cars

were classified as gray ones. (d) Green cars were classified as white ones. (e) Black cars were classified as white ones. (f) Black cars were classified as

gray ones. (g) White cars were classified as gray ones. (h) Gray cars were classified as white ones.

Wang et al. EURASIP Journal on Image and Video Processing 2014, 2014:48 Page 17 of 20

http://jivp.eurasipjournals.com/content/2014/1/48



dimensions of LDA depend on the class number, the

recognition results of LDA method only show the results

of dimension 5 in the experiments. The best recognition

rates and average processing time for three classifier and

four DR methods are tabulated in Table 7. The numbers

in the parentheses are the reduced dimensions of the

best recognition rates. The best recognition rates of clas-

sifier 1-NN for DR methods PCA, PCA + LDA, PCA +

Figure 14 The recognition rates on 18 video clips for various feature extraction and classifiers. (a) 1-NN, (b) SVM (RBF kernel), and (c) SRC.
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LPP, and PCA +NFLE are 75.36%, 80.23%, 85.07%, and

85.84%, respectively. Similarly, the best recognition rates

for classifiers SVM and SRC are tabulated in Table 7.

From this figure, manifold learning-based DRs (LPP or

NFLE) outperform the global learning-based methods

(PCA and LDA). Though the recognition rates of SRC

are higher than those of SVM classifier a little bit, the

classification time of SRC is more expensive than SVM

classifier. Practically, classifier SVM is adopted instead

of SRC in designing a real-time surveillance system.

5. Conclusions
In this paper, a novel method is proposed for real-time ve-

hicle color classification. Two modules: ROI location and

color classification constituted the classification process.

Unlike the traditional background subtraction methods

which are sensitive to illumination change and the back-

ground models, the ROIs of vehicles taken from the back

were located/determined using still images. To meet real-

time requirements, the coarse-to-fine strategy was used in

classifying from the simple pixel level to the complex

region level. Six color spaces were fused to generate a

histogram-based feature vector for the representation of

ROI color. High-dimensional feature vectors were reduced

to the lower ones in feature discriminant analysis. The best

recognition rate in Table 7 is 90.51% by using PCA+NFL

for DR and SRC for classification. Though the best per-

formance is achieved by the SRC, it needs much computa-

tional time. Practically, the SVM-based method, PCA +

NFL for DR and SVM for classification, is recommended

for color classification. A multi-class SVM classifier was

trained for color classification in a real-time surveillance

system. Experimental results have shown that the vehicles’

colors were effectively identified using the proposed

method.

Endnote
aThe color features are available in a website http://www.

csie.nuu.edu.tw/#/personal/labadd/lab404.
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