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with Unknown Boundary Demand-Supply: An
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Abstract

As distributed parameter systems, dynamics of freeway traffic are dominated by the current traffic

parameter and boundary fluxes from upstream/downstream sections or on/off ramps. The difference

between traffic demand-supply and boundary fluxes actually reflects the congestion level of freeway travel.

This paper investigates simultaneous traffic density and boundary flux estimation with data extracted

from on-road detectors. The existing studies for traffic estimation mainly focus on the traffic parameters

(density, velocity, etc.) of mainline traffic and ignore flux fluctuations at boundary sections of the freeway.

We propose a stochastic hybrid traffic flow model by extending the cell transmission model (CTM) with

Markovian multi-mode switching. A novel interacting multiple model (IMM) filtering for simultaneous

input and state estimation is developed for discrete-time Markovian switching systems with unknown

input. A freeway segment of Interstate 80 East (I-80E) in Berkeley, Northern California, is chosen to

investigate the performance of the developed approach. Traffic data is obtained from the Performance

Measurement System (PeMS).
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I. INTRODUCTION

Real-time knowledge about the traffic conditions of freeway transportation systems is critical for traffic

management and control. There are many well-established technologies for collecting vehicle speed and

traffic flux, including loop detectors or automatic vehicle identification (AVI) systems. Recently, the novel

ubiquitous sensing technologies, such as dedicated probe vehicles or smartphone-based applications, have

the potential of unprecedented data collection at any positions of large-scale traffic networks. However,

the equipped measurement is typically low and not representative of the urban network as a whole, which

leaves the traffic conditions in most of the network unknown.

Estimate unknown states of freeway traffic with filtering have been extensively studied in the past two

decades. In the literature [1], Wang etc. proposed the extend Kalman filter (EKF) based on the stochastic

version of macroscopic traffic flow model, METANET. A particle filter (PF) is developed in [2] using

the extended stochastic cell transmission model (CTM) [3]-[5]. Sun etc. propose a solution to the traffic

estimation by a sequential Monte Carlo algorithm [6], the so-called mixture Kalman filter. A switching

mode model (SMM) is developed in [7] to represent freeway traffic with two distinct traffic phenomena,

as a free-flow mode and a full congestion mode respectively. A fuzzy observer is designed in [8] based on

SMM model to estimate vehicle densities of a freeway link. Most recently, the PF method is developed

in [9] to real-time estimate traffic states with a jumped Markov traffic model coming from a variant of

CTM. While, all of the above methods assume that the boundary flux of the estimated freeway traffic is

known or available (as system measurement model) in advance.

In practise, however, when using mobile sensing technologies to perform measurement, it is reasonable

difficult to collect the driving-in or the driving-out flux at boundaries of freeway traffic since the detectors

are moving with the traffic flow. These situations are also arising when dealing with traffic big-data by

using the distributed data-fusing methods for the large-scale traffic networks. In this case, the whole

network is usually dynamically divided into several sub-regions for the computation reasons, without

consider whether or not exist fixed detectors between the region boundaries. Moreover, the real-time flux

information is sometimes absent as the communication of the traffic network is limited or the computing

burden for system analysis and control is heavy.

At the same time, as a typical distributed parameter system, the traffic dynamics (system state models)

are dominated not only by the traffic parameters on road, but by the driving-in or driving-out flux at the

network boundaries. In the discrete-time state-space realization of traffic flow model, such as METANET

model, the boundary fluxes are usually formulated as the system input outside. Therefore, develop a
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real-time filtering method without known of the boundary flux information is an important theoretical

supplement to the state estimation of freeway traffic.

In this paper, we estimate the vehicle densities of a freeway link with unknown traffic demand-supply

relationship at the network boundaries. The traffic flow model used for the state predictive is the Markov

switched stochastic cell transmission model (SCTM) [11], with the boundary traffic fluxes as system

inputs. For the state update stage, a novel interacting multiple model (IMM) filtering [14] is developed

to estimate state and input variable, i.e. vehicle density and boundary flux, simultaneously.

Since the CTM model is computationally efficient and preserves many traffic phenomena such as queue

build-up and dissipation and propagation of congestion waves, it has been extensively used for designing

traffic estimators and controllers. The modified cell transmission model (MCTM) [7] and its simplification,

SMM, avoid the triangular or trapezoidal flow-density relationship in CTM by switching among a set of

linear equations which represent different traffic status of the freeway. SCTM extends CTM by explicitly

defining parameters governing the sending and receiving functions between upstream and downstream

segments as Markovian random variables. We take advantage of both the SMM model and SCTM model,

and propose a modified stochastic hybrid dynamic model with boundary input for a freeway link. Only

two distinct traffic phenomena, free-flow mode and full congestion mode, are formulated in the freeway

dynamics as discrete-time subsystems. A mode-based switching rule that is formulated as a stochastic

Markovian process is added to characterize the probability of occurrence of each mode.

Interacting Multiple Model (IMM) filtering [13],[14] is a computationally efficient and well performing

suboptimal estimation algorithm for Markovian switching systems, in which the unknown system structure

is estimated from a set of candidate models. In this paper, we firstly extend the classical IMM filtering to

simultaneous input and state estimate of discrete-time Markovian switching systems, by designing a two-

stages Kalman estimators in the filtering step. State estimation under unknown inputs has a wide range of

applications and received considerable attention in recent decades [17]-[21]. In these applications, inputs

and state variables are often unmeasurable or inaccessible. To the best of our knowledge, simultaneous

input and state estimation for Markovian switching systems has not been studied in the literature.

The outline of the paper is as follows: Section II gives a brief review on the macroscopic LWR

and CTM traffic flow models, and formulates the switched stochastic hybrid traffic flow model. IMM

simultaneous input and state estimation for Markovian switching systems is presented in Section III.

Numerical simulations and comparison results between CTM model and the proposed stochastic hybrid

traffic flow model are provided in Section IV, respectively. Lastly, conclusions and future research issues

are highlighted in Section V.
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II. STOCHASTIC HYBRID TRAFFIC FLOW MODEL

Among the macroscopic traffic flow models, Lighthill-Whitham-Richards (LWR) [22], [23] would be

the most popular and most-cited one. The traffic dynamics of a freeway link modeled by the LWR model

is governed by the following two fluid dynamical equations.

One is the principle of conservation for vehicles,

∂ρ(ξ, t)

∂t
+

∂q(ξ, t)

∂ξ
= 0 (1)

where ρ(ξ, t) and q(ξ, t) denote the traffic density and the traffic flow (as a function of location ξ and time

t, respectively), the other is from the flow-density relationship also known as the fundamental diagram,

q(ξ, t) = v(ξ, t)ρ(ξ, t) (2)

where v(ξ, t) is the traffic speed.

Numerical solutions of equations (1)-(2) could be found using the finite volume method, whereby

each segment in the freeway link is discretized into cells with length ∆li, i = 1, · · · , N , and time is

discretized into intervals with length ∆t, (see Fig. 1). The length of cells ∆li could be chosen based on

the Courant-Friedrichs-Lewy condition [24], such that the numerical solution is stable, i.e.,

∆li ≤ v∆t (3)

where v is the free flow speed of this freeway segment.

Given this discretization, the conservation equation can be rewritten in spacestate form

ρi,k+1 = ρi,k +
∆t

∆li
(qin

i,k − qout
i,k ) (4)

where ρi,k is the vehicle density of cell i at time index k, and qin
i,k and qout

i,k are vehicle flows entering

and leaving cell i during the time interval [k∆t, (k + 1)∆t], respectively.

Following the CTM model (Daganzo [4], [5]) and MCTM model (Muñoz, et al. [7]), the leaving flow

between cell borders is determined by taking the minimum of three quantities:

qout
i,k = min{vρi,k, qmax, ω(ρJ − ρi+1,k)} (5)

where ω is the backward congestion wave speed, qmax is the maximum allowable flow, ρJ is the jam

density of the freeway link. For the adjacent cells, the flow-out of the upstream cell is equal to the flow-in

of the downstream cell, i.e., qout
i,k = qin

i+1,k, for i = 1, · · · , N − 1.

Actual boundary flows of vehicles driving into or out of the freeway segment (boundary conditions of

LWR model (1)-(2)), could also be described with this density-based formulation (5).
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Fig. 2. A trapezoidal fundamental diagram for the cell transmission model.
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For the upstream boundary cell, limited by the maximum allowable flow qmax, the actual entering flow

is determined by comparing the prevailing traffic demand Dk to the maximum flow received by the first

cell of the freeway segment under the congested condition, that is

qin
1,k = min{Dk, qmax, ω(ρJ − ρ1,k)}. (6)

For the downstream boundary cell, also limited by qmax, the actual leaving flow is determined by

comparing the available traffic supply Sk to the maximum flow supplied by the end cell of the freeway

segment under the free-flow condition, that is

qout
N,k = min{vρN,k, qmax, Sk}. (7)

It is important to point out that the actual boundary flows qin
1,k, qout

N,k, are not only dependant on the

available traffic demand-supply Dk, Sk, but on the traffic conditions of the freeway segment, and are

changing dramatically. Therefore, different from the traditional traffic-state based filtering methods [1],

[2], our research objective is trying to estimate vehicle densities and actual boundary flows of the freeway

segment, simultaneously.

In order to further simplify the nonlinear flow-density relationship (5) of the CTM model for filter

design, we propose a stochastic hybrid model (SHM) for a local section of freeway traffic, which combines

the advantages of both the SMM and SCTM models.

When the freeway segment is in free-flow mode, the first term in (5) dominates, and the discrete-time

subsystem is
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When the freeway segment is in full congestion mode, the third term in (5) dominates, and the discrete-

time subsystem is
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(9)

Occurrence probabilities of two modes in the freeway segment could be estimated using the probability

distribution of uncertainties of stochastic traffic demand-supply [12], or empirically assumed which satisfy

Binomial or Gaussian distributions [10]. To this end, the overall traffic dynamics of the freeway segment

are represented as the joint of the free-flow mode and the full congestion mode under the conjunction

of occurrence probabilities of each operational model. Empirical studies using data from the California

Performance Measurement System (PeMS) [26]-[28], have confirmed that the stochastic modeling method

performs well for all traffic conditions ranging from light to very heavy traffic conditions [12].

In general, a discrete-time stochastic hybrid model (SHM) for a local freeway traffic could be described

by

xk+1 = A
σ(k)
k xk + B

σ(k)
k uk + a

σ(k)
k + ε

σ(k)
k (10)

zk = C
σ(k)
k xk + ǫ

σ(k)
k (11)

where xk = [ρ1,k, ρ2,k, · · · , ρN,k]
T is the state vector, uk = [qin

1,k, q
out
N,k]

T is an unknown input, zk are the

system measurements, respectively. Mode switching signal σ(k) ∈ {1, 2} represents the freeway segment

in the free-flow mode or in the full congestion mode, respectively. Ai
k, Bi

k, and ai
k are corresponding

subsystem matrices (8), (9). Observation matrix Ci
k is particular to the spatial location of loop detectors

installed locally on the freeway segment. εi
k, ǫi

k are system modeling error and observation noise,

respectively, assumed to be zero-mean Gussian signals with known covariance matrix Qi
k = E[εi

k(ε
i
k)

T ]

and Ri
k = E[ǫi

k(ǫ
i
k)

T ], for i = 1, 2.
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The mode evolution σ(k) is a Markov chain described by a mode transition matrix

Π = {pij}i,j=1,2 (12)

where pij is the probability of a mode transition from mode i to mode j

pij := Pr{σ(k + 1) = j|σ(k) = i}. (13)

We denote Pr{·|·} a conditional probability density function. The transition probability matrix Π is thus

a second order square matrix, with elements satisfying pij > 0 and
∑2

j=1 pij = 1, for each i ∈ {1, 2}.

Denote the prior probability distribution for each mode j as µ
j
0 = Pr{σ(0) = j}.

III. IMM FILTER OF SIMULTANEOUS STATE AND INPUT ESTIMATE

Basically IMM filter consists of three major steps: interaction (mixing), filtering and combination.

In each time step we obtain the initial conditions for certain model-matched filter by mixing the state

estimates produced by all filters from the previous time step under the assumption that this particular

model is the right model at current time step. Then we perform standard Kalman filtering for each model,

and after that we compute a weighted combination of updated state estimates produced by all the filters

yielding a final estimate for the state and covariance of the Gaussian density in that particular time step.

The weights are chosen according to the probabilities of the models, which are computed in filtering step

of the algorithm.

In this section, we propose a novel simultaneous state and input estimate of IMM filters for the

discrete-time Markovian switching systems (10)-(11) with unknown input.

The equations for each step are as follows:

1) Interaction:

In each time step k, initial conditions are obtained by mixing the state estimates produced at previous

steps by all filters from a set of n models under the assumption that this particular model is the right

model at the current time step.

The mixing probabilities µ
i|j
k for each model i and j are calculated as

c̄j =
n

∑

i=1

pijµ
i
k−1, (14)

µ
i|j
k =

1

c̄j

pijµ
i
k−1, (15)

where µi
k−1 is the probability of model i in the step k − 1 and c̄j a normalization factor.

May 5, 2015 DRAFT



9

The mixing initial condition for each filter as

x
0j
k−1 =

n
∑

i=1

µ
i|j
k xi

k−1, (16)

P
0j
k−1 =

n
∑

i=1

µ
i|j
k × {P i

k−1 + [xi
k−1 − x

0j
k−1][x

i
k−1 − x

0j
k−1]

T }, (17)

where xi
k−1 and P i

k−1 are the state estimated mean and covariance for model i at time step k − 1.

2) Filtering:

The objective of this step is to simultaneously estimate input and state variables given the sequence

of measurements. Major difference from the previous IMM method, in this case no prior knowledge of

the input signal is available and thus can be any type, such as non-Gaussian signals.

Simultaneous input and state estimation for each model i is performed as

x
−,i
k = Ai

k−1x
0j
k−1 + ai

k−1, (18)

ui
k−1 = M i

k(zk − H i
kx

−,i
k ), (19)

x
+,i
k = x

−,i
k + Bi

k−1u
i
k−1, (20)

xi
k = x

+,i
k + Ki

k(zk − H i
kx

+,i
k ). (21)

where x
−,i
k , x

+,i
k represent the state prediction without or with input estimation information, respectively,

and ui
k−1 represents the input estimate for model i.

The optimal gain matrices are obtained as [21]

M i
k = [(Di

k)
T (R̃i

k)
−1Di

k]
−1(Di

k)
T (R̃i

k)
−1, (22)

Ki
k = [P−,i

k (H i
k)

T + Si
k](R̆

i
k)

−1, (23)

where Di
k = H i

kB
i
k−1, Si

k = −Bi
k−1M

i
kR

i
k, and

R̃i
k = H i

k[A
i
k−1P

i
k−1(A

i
k−1)

T + Qi
k](H

i
k)

T + Ri
k,

R̆i
k = H i

kP
−,i
k (H i

k)
T + Ri

k + H i
kS

i
k + (H i

kS
i
k)

T .

The state error covariance matrices at the filtering update step P i
k, and at the prediction step P

−,i
k are

defined respectively as

P i
k = E[ηi

k(η
i
k)

T ], (24)

P
−,i
k = E[η̄i

k(η̄
i
k)

T ], (25)
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where ηi
k = xk − xi

k, η̄i
k = xk − x

+,i
k and are calculated according to

P i
k = P

−,i
k − Ki

k[P
−,i
k (H i

k)
T + Si

k]
T , (26)

P
−,i
k = Ãi

k−1P
i
k−1(Ã

i
k−1)

T + Q̃i
k−1, (27)

where, Ãi
k−1 = (In − Bi

k−1M
i
kH

i
k)A

i
k−1, and Q̃k−1 = Bi

k−1M
i
kR

i
k(B

i
k−1M

i
k)

T .

In addition to estimating the mean and covariance we also compute the likelihood of the measurement

for each filter by the Gaussian distribution

Λi
k = N (ζi

k; 0, P i
k), (28)

where ζi
k is the measurement residual for each model i.

The probabilities of each model i at time step k are calculated as

c =
n

∑

i=1

Λi
k c̄i, (29)

µi
k =

1

c
Λi

k c̄i, (30)

where c is a normalizing factor.

3) Combination

In the final step of the IMM filter, we compute the weighted combination of both input and state

estimates produced by all the filters, to yield the final estimates and covariance of the Gaussian density.

The weights are chosen according to the probabilities of models which are computed in the filtering step

of this algorithm.

The combined estimation for input and state mean are computed respectively as

x̂k =
n

∑

i=1

µi
kx

i
k, (31)

ûk−1 =
n

∑

i=1

µi
ku

i
k−1, (32)

and for the state covariance as

Pk =
n

∑

i=1

µi
k × {P i

k + [xi
k − x̂k][x

i
k − x̂k]

T }. (33)

Remark 1. Compares with the classical IMM algorithm, the developed IMM filtering for simultaneous

state and input estimation make the input estimate (19) for each model by making the two-stages Kalman

filter (22)-(23). As state estiamte, the final input estimate is the weighted combination of each model.

Remark 2. Covariance equations (25)-(26) mean that we obtain the state estimate from the innovation

in an optimal way, and show that the input estimate for each model is unbias and indeed optimal.
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final estimation evaluation

z
k

IE−1 ... IE−n

SE−nSE−1

x
k−1
0j
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u
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interacting

x
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i P

k−1
i µ

k−1
i p

ij

µ
k
i

x
k
i P

k
i

mode weight update

IE: input estimation
SE: state estimatiom

Fig. 3. Algorithm flowchart of IMM filter for simultaneous input and state estimation.

Fig. 3 shows the message passing of the IMM filtering for simultaneous state and input estimation of

the stochastic Markovian jump systems.

IV. EMPIRICAL STUDY FOR FREEWAY TRAFFIC ESTIMATION

In our experiment, the interested freeway link is a section of Interstate 80 East, which is approximately

three miles in length at Berkeley, Northern California, CA. This freeway segment is instrumented with

loop inductance detectors which are embedded in the pavement along the mainline, the HOV lane, and

off ramps, as shown in Fig. 4 (PeMS, [28]).

Fig. 4. A freeway link of I80-E divided into four cells (PeMS).
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Fig. 5. Calibrated flow-density fundamental diagram of the freeway link.

In the empirical studies, this freeway link is spatially partitioned into four cells with lengths ranging

from 0.65, 0.82, 0.59 and 0.71 miles, respectively. The blue points along the freeway link denote where

the loop detectors are installed. Each loop detector gives flux, speed, and occupancy measurements every

30 seconds. The actual flux information is used to validate traffic parameters of the fundamental diagram

and compare with estimated values with filtering. The vehicle densities are calculated using the occupancy

measurements from the detectors inside of each cell divided by the g-factor (about 25 feet in PeMS [26])

in which the g-factor is the effective vehicle length for the detector.

The fundamental diagrams of CTM model are roughly calibrated using linear regression method [12],

based on the historic traffic data of all detectors collecting in this segment of one week in Oct. 2013.

The first validated traffic parameter is the free flow speed v. Then subsequently calibrate the maximum

allowable flow pmax, the critical density ρJ , and the congestion wave speed ω. The calibrated trapezoid

chart of the fundamental diagram is shown in Fig. 5. Some simulation and model calibrated parameters

are displayed in Table I. The noise covariances of system model and observation model are assumed to

be 5 veh/mile per time interval.

In this simulation, we estimate some unknown vehicle densities of cells, and upstream and downstream

boundary fluxes of the freeway link in two cases, the case of using our developed IMM filtering with

stochastic hybrid traffic model, and the case of using EKF filtering based on the CTM model. The utilized

measurements are vehicle occupancy of 4 hours (7:00 am-11:00 am) of cell 1 and 4, including the

morning rush-hour congestion on Oct. 20, 2013. Since our research focus on the algorithm performance

of filtering, we simplify the observation model by changing the direct occupancy measurement into the
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TABLE I

CALIBRATED MODEL AND SIMULATION PARAMETERS

Symbol Name Value Unit

ρJ Critical density 320 veh/mile

qmax Maximum allowable flow 5860 veh/h

v Free flow speed 72 mile/h

ω Congestion wave speed 24 mile/h

∆t Time interval 30/3600 h

Qi

k Modeling error 5 veh/mile/30s

Ri

k Measurement error 5 veh/mile/30s

N Cell number 4 −

T Total time step 240 −

vehicle densities in advance. Besides using the above mentioned g-factor, other transfer method includes

using calibrated speed-density diagram with the speed measurement [10]. Therefore, we may assume the

system observation matrix is

Ck =

[

1 0 0 0

0 0 0 1

]

. (34)

In the simulation of IMM filtering, the prior probability distribution µ0 and the mode transition matrix

Π are firstly solved with system identification methods [11]. The prior probability distribution are set to

be µ1
0 = 0.9 and µ2

0 = 0.1, (model 1: free-flow mode; model 2: the full congestion mode), which are

fitted using the initial vehicle densities of four cells. The mode transition matrix is fitted using the data

of two adjacent sample sets of vehicle densities and set to be

Π =

[

0.92 0.08

0.08 0.92

]

, (35)

which means both modes are most likely to stay and have equal probability to jump to another. According

to the IMM filtering algorithm, µ0 have no effect on the state estimate. So do the input estimate.

In the simulation of EKF filtering with CTM model, since the freeway link is divided into four cells,

the CTM model will include sixteen sub-modes to describe the dynamics of traffic flow [6]. Then, the

predictive model is indeed a piecewise affine nonlinear system with state-induced switching rules. In this

case, as a contrast, we use EKF filtering to estimate vehicle densities of cell 2 and 3, and driving-in and

driving-out fluxes, simultaneously. Filtering algorithm refers to our previous work [20].
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TABLE II

PERFORMANCE EVALUATION OF SIMULTANEOUS VEHICLE DENSITY AND BOUNDARY FLUX ESTIMATION

MAPE RMSE

CTM-EKF SHM-IMM CTM-EKF SHM-IMM

Cell 2 0.0721 0.0997 4.7236 6.2465

Cell 3 0.0946 0.1187 5.0076 7.5531

Driving-In Flux 0.1534 0.2072 5.6124 7.6763

Driving-Out Flux 0.1297 0.1410 5.3648 6.4529

The simulations are performed in MATLAB 7.0 environment using an Intel 2.40 GHz processor with

512 MB of RAM and under Microsoft Windows XP operating systems. The simulations have been

repeated 50 times, and averagely the developed IMM filtering algorithm takes about 0.79 seconds while

the simulation time of EKF filtering with CTM model requires about 2.86 seconds. The estimated traffic

densities and boundary fluxes are depicted in Fig. 6 and Fig. 7, respectively, against the historical data

over the selected time period. The corresponding MAPEs and RMSEs of the traffic densities of cell 2

and cell 3 and the driving-in and driving-out boundary fluxes are indicated in Table 2.

It may be seen that IMM filtering provides a relatively satisfied estimation for both vehicle densities and

boundary fluxes. Although, compared with EKF filtering, predicted with CTM model, the developed IMM

filtering slightly reduces the accuracy of estimation within about 20 percents. An obvious improvement

(with simply model magnitude) is that the algorithm speed is faster than using CTM model.

V. CONCLUSION

In this paper, we have investigated the simultaneous estimate of traffic densities and boundary fluxes

of freeway traffic with the stochastic hybrid traffic model by taking advantages of SCTM and SMM

models. In order to estimate the boundary flux with on-road traffic measurement, we have developed IMM

filtering for simultaneous input and state estimation of discrete-time Markovian switching systems. The

performance of the developed filtering algorithm is investigated in the empirical studies. The developed

approach would has practical implications for the control of freeway traffic, since both on-ramp metering

and variable speed control need real-time traffic information.
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Fig. 6. The estimated traffic densities of freeway traffic.
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Fig. 7. The estimated driving-in and driving-out fluxes of freeway traffic.
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