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Abstract—This paper presents a stereo vision system for the de-
tection and distance computation of a preceding vehicle. It is di-
vided in two major steps. Initially, a stereo vision-based algorithm
is used to extract relevant three-dimensional (3-D) features in the
scene, these features are investigated further in order to select the
ones that belong to vertical objects only and not to the road or back-
ground. These 3-D vertical features are then used as a starting
point for preceding vehicle detection; by using a symmetry oper-
ator, a match against a simplified model of a rear vehicle’s shape
is performed using a monocular vision-based approach that allows
the identification of a preceding vehicle. In addition, using the 3-D
information previously extracted, an accurate distance computa-
tion is performed.

Index Terms—Extraction of three-dimensional (3-D) edges of ob-
stacle, platooning, stereo vision, vehicle detection.

I. INTRODUCTION

I
N THE past few years, extensive research has been carried
out in the field of driver assistance systems in order to

increase road safety and comfort when driving. For instance,
the adaptive cruise control (ACC) and the electronic stability
program (ESP) are already installed in many recent vehicles.
Prototypes of intelligent vehicles dedicated to road following

have been designed and tested in real conditions on highways
[1]–[3], in urban environment [4], on country roads [5], and
off-road [6]. Furthermore, in order to assist drivers in urban
traffic environment, some other promising work has been
performed on automatic parking functionality [7]–[9], on the
challenging Stop&Go system [10]–[12] and on traffic sign

recognition [13]–[15].
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Concerning automatic platooning (the automatic following of
the preceding vehicle), processing can be based on:

• the use of radar only (ACC);
• the fusion of an active sensor (laser, radar, lidar) and

monocular vision [16];
• monocular vision only.

A widely used approach for monocular vision-based vehicle de-
tection is the search of specific patterns [17], for example: shape
[18], [19], motion [20], color [16], [18], symmetry [16], [21],
[22], shadow [16]–[22], texture [22], or the use of a specific
model [23]. These specific patterns are usually associated to ex-
tract regions of interest in the image. These regions of interest
correspond to potential vehicles of the observed scene which
are identified by using bounding boxes. Usually, this two-di-
mensional (2-D) detection is not sufficient and other processing
methods are often useful to validate the presence of a vehicle or
reject false detection. They are for example: classification of the
regions of interest, their localization with respect to the road or
their tracking. However, a major problem still remains open: the
distance to the detected vehicles cannot be accurately computed
without the cooperation of other sensors.

This paper is the result of four years of joint research collab-
oration between the Institut National des Sciences Appliquées

of Rouen (France) and the Dipartimento di Ingegneria dell’

Informazione of the University of Parma (Italy). It is derived
from a number of activities that date back to the late 1990s. This
paper introduces a stereo vision algorithm specifically tailored
for Vehicle Detection. Compared to a traditional stereo-vision
algorithm, the discussed approach is not aimed at a complete
three–dimensional (3-D) world reconstruction but to the mere
extraction of 3-D features potentially belonging to a vehicle,
namely only 3-D vertical edges. The list of 3-D features is
used by a monocular vision system that performs Vehicle
Detection by means of a match with a simple vehicle model.
As a consequence, the system draws advantages from having
additional information on edges’ distances from the camera and
from working on actual vertical characteristics, i.e., without
misinterpretations caused by artefacts or road infrastructures.
In addition, besides a more reliable detection, an accurate
estimation of vehicle distance is also obtained.

This article is organized as follows. Section II introduces the
two main steps of the Vehicle Detection process which are de-
scribed in Sections III and IV. Some experimental results are
presented in Section V. Finally, a Conclusion ends the paper.
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II. VEHICLE DETECTION ALGORITHM

The vision-based algorithm discussed below has been explic-

itly designed to support automatic platooning based on the lo-

calization of the preceding vehicle only.

The Vehicle Detection algorithm is divided in two major

steps: Three-Dimensional features extraction and preceding

vehicle detection. In the first step, a stereo vision approach is

used to identify 3-D features that belong to potential obstacles

on the scene. In the second stage, a symmetry-based algorithm

is used to identify elements among all extracted 3-D features

that may belong to the preceding vehicle, i.e., to specifically

detect that vehicle.

In a previous paper, a monocular approach for feature extrac-

tion was used [24]. Anyway, there were cases in which a com-

plex scenario led the algorithm to false detections or to group

together objects at different distances [25]. Since the 3-D fea-

ture extraction is now able to discriminate 3-D vertical edges

and compute edges’ distance from the camera, this knowledge

is exploited to filter out features that do not belong to potential

obstacles (i.e., features belonging to the road) so that the detec-

tion of the preceding vehicle can be computed only on edges

that actually represent 3-D vertical objects. At the same time,

features that do not lie at similar distances will not be used to-

gether for detecting the same vehicle. Moreover, a first check on

vehicle’s size with respect to its distance can be performed at an

early stage: candidates of vehicles’ left and right vertical edges

can be filtered out if they represent an object too narrow or too

large with respect to a vehicle lying at the distance estimated by

the stereo-based procedure.

The two following sections describe these two main steps.

III. 3-D FEATURES EXTRACTION

Within the framework of road obstacle detection, road fea-

tures can be classified into two classes: Nonobstacle and Ob-

stacle. An obstacle is defined as something that obstructs or may

obstruct the intelligent vehicle driving path. Vehicles, pedes-

trians, animals, security guardrails are examples of Obstacles.

Lane markings, artefacts are examples of Nonobstacles.

The vehicle detection functionality (Section IV) is based on

a monocular pattern analysis and the extraction of 3-D features

of obstacles. It is used to enhance the robustness and reliability

of the monocular pattern analysis.

The extraction of 3-D features of obstacles starts with the

construction of a 3-D sparse map of a specific area of the image.

This area of interest is identified on the basis of road position and

perspective constraints. Then, 3-D edge shapes are constructed

from the 3-D sparse map. Finally, the 3-D shapes are identified

as edges of obstacles or edges of nonobstacles. The 3-D shapes

of the class Obstacle are extracted.

A. Construction of 3-D Sparse Maps

The algorithm for the construction of 3-D sparse maps is a

line by line processing designed for a specific configuration of

vision sensor: the optical axes of the two camera-lens units are

parallel, and the straight line joining the two optical centers

is parallel to each image horizontal line in order to respect an

epipolar constraint (cf. Fig. 1).

Fig. 1. Configuration of the stereo vision system.

In the first step of the algorithm, the edge points of the right

and left images are segmented by a self-adaptive and mono-di-

mensional operator, called declivity (check [26] for the original

definition). In a second step, the edge points of the right image

are matched with the edge points of the left image, using a dy-

namic programming method. The matching algorithm provides

3-D information, based on the positions of left and right edge

points. The coordinates of a 3-D point of an

object are given by (1)

(1)

where is the distance between the two optical centers, is the

width of the CCD pixel, is the focal length of the two lenses,

is the disparity of . , , and are

the coordinates of the projections of respectively in the left

image and in the right image.

The result of the matching algorithm is a 3-D sparse map.

An evaluation of this algorithm applied on the entire image is

described in [27] which first introduced the algorithm: 92.6%

of the right edge points are associated with a left edge point;

among these associations, 98% are correct. For an inside scene,

the number of edge points are about 15 000 in each of the two

stereoscopic images whose resolution is 512 512 8 bits. For

an outside scene, they are about 21 000. An example of experi-

mental result is presented in Fig. 2.

B. Construction of 3-D Shapes

A 3-D shape is defined as a chain of connected 3-D points

belonging to the same object in the scene. Like 3-D points, a

3-D shape is characterized by its projections in the right and

in the left image. Then, the projection in the right image of an

actual 3-D shape is a chain of connected right edge points; and

the projection in the left image of this actual 3-D shape is a chain

of left edge points.

The construction of 3-D shapes [28] starts with the construc-

tion of their projections in the right image using connecting,

depth and uniqueness criteria. They are the projections of ac-

tual 3-D shapes in the right image. The result of the matching

algorithm provides the estimation of their projections in the left

image: a constructed 3-D shape may be partially false as the
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Fig. 2. Experimental results: (a) left image; (b) right image; (c) left edge points; (d) right edge points; and (e) 3-D sparse map coded with grey-level values and
its depth scale. (Color version available online at http://ieeexplore.ieee.org.)

depth criterion allows a constructed 3-D shape to contain a cer-

tain number of 3-D points resulting from wrong matchings. It

may also be incomplete as the construction allows a constructed

3-D shape to contain a certain number of 2–D right points which

have not been matched.

C. Detection and Correction of Wrong Matchings

In order to increase the robustness and the reliability of the

extraction of 3-D shapes that belong to obstacles, the estima-

tion of the actual 3-D shapes (i.e., the constructed 3-D shapes)

must be improved. Because road environment is structured, the

edges of road scenes are smooth 3-D shapes. Then, wrong edge

points associations are isolated 3-D points. They are detected

and corrected taking the constraint of disparity continuity into

account (check [29] for the original definition).

In the first step of the algorithm [28], small 3-D shapes are

deleted. This operation eliminates most of wrong edge points

associations. In a second step, we suppose that most edge point

associations of remaining 3-D shapes are correct. And if the co-

ordinates of a 3-D point belonging to a 3-D shape do not validate

a criterion of disparity continuity, then this 3-D point is detected
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Fig. 3. Result of the detection and correction of wrong matchings of the 3-D
map of Fig. 2. (Color version available online at http://ieeexplore.ieee.org.)

as the result of a wrong edge points association. Finally, the cor-

rection step is applied on each right edge point that has not been

matched or that has been wrongly matched: for each of these

points, we look for a left edge point that has not been matched

or wrongly matched and that validates a criterion of disparity

continuity.

Usually, errors in disparity measurements are modeled by

a stochastic component (which usually has a magnitude of 1

pixel) and a wrong matching component (which can have a mag-

nitude of many pixels). We consider that the steps described in

this section eliminate the wrong matching component.

The benefit of the detection and correction of wrong match-

ings of the 3-D map in Fig. 2 is presented in Fig. 3. The pair

of stereoscopic images of Fig. 2 has been intentionally chosen

because of the grill in the background that creates a lot of false

matchings in the 3-D map of Fig. 2. In Fig. 3, most of them have

been erased.

D. Identification of 3-D Shapes

The identification of the 3-D shapes as edges of obstacles or

not has been conceived as a cooperation of two methods. The

first one selects 3-D shapes by thresholding the disparity value

of their 3-D points. The threshold values are calculated based

on the detection of the road. We chose to model the road by

a plane even if this modeling is not always valid, particularly

due to dynamic pitching of the vehicle or when approaching

uphill or downhill roads. The second method selects 3-D straight

segments by thresholding their inclination angle with respect to

the road plane. From these two selection results, 3-D shapes that

are edges of obstacles are identified. The 3-D shapes that do not

belong to the Obstacle class, belong to the Nonobstacle class.

The following sections describe the three steps of identifica-

tion of 3-D shapes. The first one presents the method of de-

tection of the road plane. The two other ones present the two

methods of selection of 3-D shapes.

1) Detection of the Road Plane: Our method of detection of

the road plane derives from the research work of the LIVIC [30]:

the authors have introduced an original representation called

V-Disparity (V means the coordinate of a pixel in the right

image coordinate system). This method requires information in

Fig. 4. Inclination angle � of the road plane and heightH of the stereo vision
system.

the image such as lane markings, road edges, shadows, any

sign belonging to the road plane. Let be a 3-D point whose

disparity is . Let be the coordinates of its projection

in the right image. The coordinates and of are transferred

to a grey level map. This operation is repeated for each point

of all 3-D shapes to construct a grey level map : an accu-

mulator accumulates the points with the same disparity

that occurs on a given line of the image. In a case of a planar

road, its representation in the grey level map is a straight line.

It is extracted using a Hough Transform. Then, we compute the

height of the stereo vision system and the inclination angle

of the road plane with respect to the referee of the stereo vision

system (cf. Fig. 4. Note that we do not take the roll angle into

account.

2) Selection of 3-D Shapes by Thresholding Disparity Values:

Using the principles of the homographic transformation and the

specific configuration of our stereo vision system, we associate

each line of the right image to a disparity value . The

function represents the disparity of the road. It is computed

from the inclination angle of the road plane , the height of

the stereo vision system and the calibration of the stereo vision

system. It is equal to

if

otherwise

(2)

with

where is the distance between the two optical centers,

and are the width and height of the CCD pixel, is the focal

length of the two lenses, and is the resolution in pixels of

the cameras. The function is used as a threshold function to

select 3-D shapes that are supposed to belong to obstacles: if the

disparity of a 3-D point of line is higher than , then it

is considered to be above the road plane. The 3-D shapes above

the road plane are selected and supposed to belong to obstacles.

Fig. 5 shows an experimental result of extraction of 3-D

shapes by thresholding the disparity values of their 3-D

points. The computed height of the stereo vision sensor is

. The computed inclination angle of the road plane is

. The static calibration of the stereo vision sensor gave

m and

3) Selection of 3-D Segments by Thresholding Their Inclina-

tion Angle: As road environment is structured, the constructed

3-D shapes can be approximated by means of one or several 3-D

straight segments. By an iterative partition method, 3-D shapes

are decomposed into 3-D segments. In order to select 3-D seg-

ments that belong to obstacles, we calculate and threshold the in-

clination angles of 3-D segments with respect to the road plane.

The inclination angle of a 3-D segment with respect to the
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Fig. 5. Experimental results of extraction of 3-D shapes by thresholding disparity values: (a) right image; (b) 3-D sparse map coded with grey level values;
(c)(v; �) representation; and (d) extracted 3-D shapes superimposed in blue on the right image. (Color version available online at http://ieeexplore.ieee.org.)

Fig. 6. Inclination angle � of a 3-D segment.

road plane (cf. Fig. 6) is a pattern that can be used to detect ob-

stacles. Indeed, if the inclination angle of a 3-D segment tends

towards , then the 3-D segment usually belongs to the road

plane (road markings, road borders, etc.). If this angle tends to

, then it belongs to obstacles.

In a first step, we compute the vector of the straight line

which contains the 3-D segment in the referee of the stereo vi-

sion system [cf. Fig. 6 and (3), shown at the bottom of the page].

, , , and are calculated by a least square method and

are such that

(4)

where and are, respectively, the equations of the projec-

tions of the 3-D segment in the right and in the left image.

In a second step, the inclination angle of a 3-D segment is

computed with respect to the road plane by using geometry

properties.

• Case 1: if and

(5)

• Case 2: if and

(6)

(3)
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Fig. 7. Experimental results of the extraction of 3-D segments by thresholding their inclination angle: (a) 3-D sparse map coded with grey level values and
(b) extracted 3-D segments superimposed in blue on the right image; the predefined threshold of extraction is 17 . (Color version available online at http://ieeex-
plore.ieee.org.)

Fig. 8. Contribution of the second step of the cooperation of the two methods to the extraction of the 3-D edges of obstacles: (a) extracted 3-D shapes superimposed
in blue on the right image; (b) extracted 3-D segments superimposed in blue on the right image; the predefined threshold of extraction is 30 . Due to a higher
threshold, 3-D edges of obstacles are missing compared to Fig. 7(b). (c) extracted 3-D edges of obstacles. The extraction is robust and reliable despite a poor
extraction of the second method on this image. (Color version available online at http://ieeexplore.ieee.org.)

Finally, we extract the 3-D segments whose inclination angle is

higher than a predefined threshold. Fig. 7 shows an experimental

result of extraction of 3-D segments by thresholding their incli-

nation angle.

4) Extraction of 3-D Edges of Obstacles: In this section, a

cooperation of the two previous methods is proposed. The first

method (Section III-D.2) has the advantage of being insensitive

to noise in disparity measurements, but the robustness and the

reliability of this method of extraction depends on the modeling

and the method used to detect the road.

This is not the case with the second method (Section III-D.3)

which does not suffer from approximate modeling and detection

of the road, but some 3-D edges of the obstacles can have a null

inclination angle (trailer, trucks with no loading, safety railings

along highways, etc.). In addition, this method is sensitive to er-

rors in disparity measurements. As mentioned in Section III-C,

the detection and correction of wrong matchings eliminate the

wrong matching component. Then, we consider that the second

method of extraction is sensitive to the stochastic component

only.

These two methods for the extraction of 3-D edges of obsta-

cles do not have the same sensitivity. Considering their different

sensitivity, a cooperation of these two methods is proposed as

follows. The cooperation is performed is two steps. The first

step has been designed to increase the reliability of the extrac-

tion of 3-D edges of obstacles (compared with the two methods

of extraction used separately). The second step, concerns the ro-

bustness of the cooperation.

Let be the set of 3-D shapes that have been selected by the

first method (Section III-D.2). Let be the set of 3-D segments

that have been selected by the second method (Section III-D.3).

And, let be the set of 3-D shapes identified as edges of obsta-

cles. In the first step of the construction of , is constructed

so that . As a result, contains 3-D segments

(that are portions of 3-D shapes) that have been identified as ob-

stacles by the two methods. Then, for each 3-D shape , if

(7)

then belongs to . At the end of this fist step, contains 3-D

shapes considered as edges of obstacles.

In a second step, is completed with 3-D shapes of or

exclusively with respect to the following considerations. If

a 3-D shape of is:

• an actual 3-D edge of obstacle in the scene;

• at the same height with respect to the road as a 3-D shape

of ;

• closer to the stereo vision system than the 3-D shape of ;
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Fig. 9. Steps of the computation of combined symmetry: (a) 3-D shapes computed in the area of interest of the image; (b) 3-D edges of obstacles superimposed in
black on the right image; (c) symmetry map computed on 3-D features; (d) combined symmetry map; (e) symmetry map computed on 3-D features superimposed
on the right image; and (f) combined symmetry map superimposed on the right image. (Color version available online at http://ieeexplore.ieee.org.)

then it is at the same height in the image as the 3-D shape of

On the contrary, a 3-D shape of which is:

• an actual 3-D edge of the road in the scene (which has

therefore been wrongly extracted by one of the two

methods);

• closer to the stereo vision sensor than a 3-D shape of ;

is under the projection of the 3-D shape of in the image.

The second step concerns the robustness of the cooperation.

It has been designed to compensate a poor extraction by one of

the two methods (cf. Fig. 8).

The extraction of 3-D edges of obstacles is robust and reliable

due to the cooperation of two methods of extraction which do

not have the same sensitivity [31].

IV. PRECEDING VEHICLE DETECTION

The detection of the vehicle ahead is based on the assump-

tions that a preceding vehicle (framed from the rear) is generally

symmetric, characterized by a nearly-rectangular bounding box

which satisfies specific aspect ratio constraints, and placed in a

specific area of the image. Initially, an area of interest is iden-

tified on the basis of road position and perspective constraints.

This area is searched for possible vertical symmetries. Once the

width and position of the symmetrical area have been detected, a

new search begins, aimed at the detection of the two bottom cor-

ners of a rectangular bounding box. Finally, the top horizontal

limit of the vehicle is searched for, and the preceding vehicle is

localized.

The following tracking phase is performed through the max-

imization of the correlation between the portion of the image

contained in the bounding box of the previous frame (partially

stretched and reduced to take into account small size variations

due to the increment or reduction of the relative distance) and

the new frame.

A. Symmetry Detection

To determine the symmetry content inside the area of interest,

a symmetry map is used, namely an image whose pixels encode

the symmetry content.

Each possible symmetry axis within the area of interest is

considered. For each axis, different widths for the symmetry

area around the axis are in turn examined; the result is a new

image (the symmetry map) in which the vertical coordinate of

each pixel is related to the horizontal width of the image area
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Fig. 10. Detection of the lower part of the bounding box: (a) correct position and size, taking into consideration perspective constraints and knowledge on the
acquisition system setup, as well as typical vehicles’ size and (b) examples of incorrect bounding boxes if the previous considerations are not taken into account.
(Color version available online at http://ieeexplore.ieee.org.)

Fig. 11. Bounding box detection: (a) detection of the lower part of the bounding box superimposed on the right image; (b) the search area for the upper part of
the bounding box. It is delimited by the black rectangle. It takes into account knowledge about the typical vehicles’ aspect ratio, and (c) the resulting bounding box
superimposed on the right image. (Color version available online at http://ieeexplore.ieee.org.)

considered for computing the symmetry and the horizontal co-

ordinate refers to the position of the axis within the area of in-

terest. The brighter the pixel, the higher the symmetry content.

A combined symmetry map is built as a weighted sum of the

symmetry maps of four monocular images [25] (a symmetry

map obtained from the grey level image and the ones obtained

by the analysis of horizontal and vertical edges) and the sym-

metry map of 3-D features.

In the first step of the construction of the symmetry map of

3-D features, 3-D points that belong to 3-D shapes whose dis-

parity variance is lower than 1 pixel are examined. Indeed, a

3-D shape whose disparity variance is low is more likely to be-

long to an obstacle than a 3-D shape whose disparity variance

is high. In the second step, all pairs of examined 3-D points that

are symmetrical with respect to the axis and that have a sim-

ilar distance from the vision system are matched. Candidates of

vehicle’s left and right 3-D edges are not considered if they rep-

resent an object which is considered larger than a vehicle lying

at the distance estimated by the stereo vision sensor. Otherwise,

a symmetry content is computed. The symmetry content is pro-

portionally increased if one or both candidates are 3-D edges of

obstacles.

Fig. 9 illustrates steps of the computation of combined sym-

metry map.

B. Bounding Box Detection

The symmetry axis and symmetry width corresponding to

the maximum value into the combined symmetry map are an-

alyzed to detect the presence of a vehicle shape, namely of a

bounding box. Initially, the presence of two corners representing

the bottom of the bounding box around the vehicle is checked; a

traditional pattern matching technique is used. In addition, size

constraints are used to speed up the search: potential bounding

boxes too large or too small to be a vehicle at the distance com-

puted thanks to the 3-D features are discarded without checking

the presence of the corners. This process is followed by the de-

tection of the top part of the bounding box, which is looked for

in a specific region whose location is again determined by per-

spective and size constraints.

Fig. 10 shows possible and impossible bottom parts of the

bounding box, while Fig. 11 presents the results of the lower

corner detection and shows the search area.

C. Backtracking

Sometimes it may happen that, when considering the sym-

metry maximum, no correct bounding boxes exist. Therefore,

a backtracking approach is used: the symmetry map is again

scanned for the next local maximum and a new search for a

bounding box is performed. Fig. 12 shows a situation in which

the first symmetry maximum, generated by a building, does not

lead to a correct bounding box; on the other hand, the second

maximum leads to the correct detection of the vehicle.

D. Tracking

Once a preceding vehicle has been detected, a monocular

tracking procedure is used to speed up the computation. Since

there will be a high correlation between the vehicle’s rears in
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Fig. 12. A case in which the background symmetry is higher than the vehicle
symmetry: (a) original image; (b) first symmetry map; (c) second symmetry
map after the backtracking process has removed the peak near the maximum;
and (d) final bounding box detection. (Color version available online at http://
ieeexplore.ieee.org.)

two subsequent frames, a simple correlation is used. Anyway,

area-based tracking is sensitive to window size [32]. In order

to take into account fluctuations in size of the detected vehicle

due to the increment or reduction of relative distance, a number

of templates are computed expanding and reducing the portion

of image that contains the vehicle (namely the bounding box).

Each template is matched against the new frame and the corre-

lation ( ) is computed using the formula

where:

• and are the pixel relative coordinates within the tem-

plate;

• and represent the template size;

• functions and return pixel intensity;

• and are varied by shifting the template on the new

frame in a area where the vehicle is expected to be found.

The minimum value of identifies an area into the new frame

where the vehicle is looked for.

E. Distance Computation

The distance to the leading vehicle can be computed by ex-

amining the 3-D features inside the bounding box. Since, the

rear side of the vehicle can be approximated to a vertical plane,

they should present similar values for the distance from the vi-

sion system.

Unfortunately, it may happen that some noisy 3-D features

due to other objects than the vehicle can be found inside the

bounding box. For this reason, a simple average is of no use.

A histogram of the distances of the 3-D features is built. For

each distance from the vision system (inside an interest interval

0–100 m), the corresponding 3-D features inside the bounding

box are counted. Therefore, the histogram shows how many 3-D

features at a given distance are present inside the bounding box.

A local average operator is used to smooth the histogram. Then

the peak of the histogram is detected, it refers to the most fre-

quent distance that can be found in the 3-D features, and thus is

assumed as the distance to the preceding vehicle. The absolute

accuracy of this measured distance is obtained from (1) and

is given by (8)

(8)

where is the distance between the two optical centers, is

the width of the CCD pixel, is the focal length of the two

lenses, is the absolute accuracy of disparity. The accuracy

of declivity position is subpixel [26]. Then, is better than 2

pixels.

V. EXPERIMENTAL RESULTS

The algorithm of vehicle detection has been tested in a

number of different situations. Fig. 13 shows some exper-

imental results. The stereo images have been acquired and

processed by GOLD, the stereo vision system of the Dip. di

Ingegneria dell’ Informazione of the University of Parma. The

two synchronous cameras were installed in a prototype vehicle

of the University of Parma, behind the top corners of the

windscreen and feature a 6-mm focal length. The stereo images

come from daylight highway sequences. They have been ac-

quired in real time (50 Hz) at the format of bits.

They have been processed at the format of bits.

Thanks to stereo-based 3-D feature extraction, which is able

to discriminate between features that belong to the road or back-

ground and features of vertical objects, the tests demonstrated

that the system is reliable and robust with respect to noise caused

by shadows, different road textures, varying illumination condi-

tions, or complex scenarios.

The efficiency of the stereo approach used for 3-D feature

selection and the exploitation of specific vehicle characteristics

in the following detection phase allowed to obtain robust search

and tracking. The system has been tested on a AMD Athlon

2.8 GHz with 1-GB memory; the average time required for the

whole processing is 95 ms. Table I shows performance results.

As shown on Fig. 13, the vehicle detection system can face

different complex situations. The most critical situations, pre-

sented in Fig. 14, are due to an incorrect bounding box selection.

Other edges than the vehicle’s ones [Fig. 14(a)–(c)] as well as

internal vehicles edges [Fig. 14(d)–(g)] may cause an incorrect

bounding box displacement. Occasionally, 3-D feature extrac-

tion can also be confused by a complex background, thus pro-

voking false detections [Fig. 14(h)]. Moreover, since the algo-

rithm has been designed for platooning functionality, it is tai-

lored for finding only one vehicle; unfortunately, the closest ve-
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Fig. 13. Results of the preceding vehicle detection in different situations, the detected vehicle is shown using a red bounding box superimposed onto the original
image. The four red corners indicate the area of interest when no vehicle is being tracked; anyway, when in tracking mode, vehicles can be detected outside this area.
As shown, even vehicles coming toward the vision system are detected as well. The range distance of the vehicle is shown below the red box. If the number of the
3-D points of the detected vehicle is below a predefined threshold, then its distance is not computed. (Color version available online at http://ieeexplore.ieee.org.)

TABLE I
PERFORMANCE RESULTS FOR THE DIFFERENT ALGORITHMS STEPS

hicle is not necessarily the one featuring the highest symmetry

content [Fig. 14(i)].

VI. CONCLUSION

In this paper, a stereo vision-based algorithm for vehicle de-

tection and distance computation has been presented. In the first

stage, 3-D edges of obstacles are extracted. The second stage ex-

ploits the vertical symmetry characteristics of a vehicle when it

is framed from the rear: a symmetry operator investigates the

3-D features previously computed, the grey level image and the

ones obtained by the analysis of horizontal and vertical edges.

Then, a match against a simplified model of a vehicle’s rear

shape allows the detection of a preceding vehicle and the com-

putation of its distance. It is performed in a specific area of

the image computed by the symmetry operator and using per-

spective constraints. Finally, a following tracking phase is per-

formed.

In this research work, techniques of image processing have

been highly used. The intensive tests performed proved that the

detection is robust and reliable. However, image processing has

its own limits: depth accuracy depends on an precise calibra-

tion of the stereo vision sensor. In addition, it is inversely pro-

portional to depth, to put it another way, it rapidly decreases

with depth. Reduced visibility conditions like fog, rain, or snow

limit also the performance of a system based on vision only.

In order to improve our system of vehicle detection based on

stereo vision, a fusion with another kind of sensor could be in-

vestigated. The use of an active sensor, like radar or lidar, could

be a promising solution considering the research work already

done on the fusion of monocular image and these kinds of active

sensor [16], [33].

The vehicle detection system based on stereo vision is the

result of a joint research collaboration between the Institut Na-

tional des Sciences Appliquées of Rouen (France) and the Dip.

di Ingegneria dell’ Informazione of the University of Parma

(Italy).
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Fig. 14. Critical situations: (a)–(c) the bounding box detection fails in finding the upper part of the vehicle; (d)–(g) only a portion of the vehicle is detected; (h) a
complex background fools the algorithm causing a false detection; and (i) a far vehicle features a bigger symmetry content that a closer one.
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