
Vehicle Detection in Satellite Images by Parallel

Deep convolutional Neural Networks

Xueyun Chen, Shiming Xiang, Cheng-Lin Liu, and Chun-Hong Pan.

National Laboratory of Pattern Recognition

Institute of Automation, Chinese academy of Sciences

Beijing 100190, China

Email: {xueyun.chen, smxiang, liucl, chpang}@nlpr.ia.ac.cn

Abstract—Deep convolutional Neural Networks (DNN) is the
state-of-the-art machine learning method. It has been used in
many recognition tasks including handwritten digits, Chinese
words and traffic signs, etc. However, training and test DNN are
time-consuming tasks. In practical vehicle detection application,
both speed and accuracy are required. So increasing the speeds
of DNN while keeping its high accuracy has significant meaning
for many recognition and detection applications. We introduce
parallel branches into the DNN. The maps of the layers of DNN
are divided into several parallel branches, each branch has the
same number of maps. There are not direct connections between
different branches. Our parallel DNN (PNN) keeps the same
structure and dimensions of the DNN, reducing the total number
of connections between maps. The more number of branches we
divide, the more swift the speed of the PNN is, the conventional
DNN becomes a special form of PNN which has only one branch.
Experiments on large vehicle database showed that the detection
accuracy of PNN dropped slightly with the speed increasing.
Even the fastest PNN (10 times faster than DNN), whose branch
has only two maps, fully outperformed the traditional methods
based on features (such as HOG, LBP). In fact, PNN provides
a good solution way for compromising the speed and accuracy
requirements in many applications.

Keywords—Remote Sensing; Object detection; Deep convolu-
tional Neural Networks;

I. INTRODUCTION

Detecting vehicle in high-resolution satellite images is
a highly challenging task. Hidden in a tree, sheltered by
a building or jammed together in the streets or parks in
very close distances, vehicle detection always arouse human
interests. Many works have been done, various features and
methods have been used [1-8].

Hinz [3] built a hierarchical 3D-model to describe the
prominent geometric features of the cars, Chen et al. [7]
segmented road by its straight line contours and used SVM
to detect vehicle in road. Liang et al. [8] combined the HOG
descriptors and the selected Haar features and used Multiple
Kernel Learning method to detect vehicle in wide area motion
imagery. Zhao et al. [1] showed the boundary of the car body,
the boundary of the front windshield, and the shadow were the
key features for vehicle detection. Ali et al. [2] detected vehicle
by adaboost method based on pose-indexed features and pose
estimators. Grabner et al. [6] used boosting method based on
Haar wavelets, HOG and LBP. They segmented the image into
streets, buildings, trees, etc, discarding vehicle detections that

are not present on the streets. Kembhavi et al.[4] detected
vehicles in San Francisco using the multi-scales HOG features
computed on the color probability maps. They showed HOG
outperformed SIFT. SIFT, HOG and LBP are the most popular
features in object detection or image classification. SIFT is
very similar to HOG, LBP is more suitable for texture feature
such as face recognition [20].

Recently, machine learning intelligence has been reported
enable to match human performance on recognition task of
handwritten digits and traffic signs [9]. The machine is based
on deep convolutional neural networks (DNN). Convolutional
neural networks originates from the study on cats striate cortex
by Hubel and Wiesel [12]. They first proposed the concept of
receptive field. Fukushi [13] proposed Neocognitron, a hierar-
chy model of the multi-layer neural networks. He realized the
concept of receptive field. LeCun [14-15] gave the normal form
of convolutional neural networks (CNN)(LeNet-5, LeNet7),
which has been used in many recognition tasks, include digit
recognition, face detection. Rowley [17] detected face using
a simple CNN which only had three layers but with three
types receptive fields in the first layer. Garcia [16] realized a
LeNet-5 structure CNN for face detection. They showed CNN
outperformed Adaboost method [21] in CMU and MIT test
sets obviously. Compared with CNN, DNN is more deep (6-
10 layers) and wide (40-250 maps per layer). Training and
test DNN are time-consuming works, the former often needs
1-2 days even with the help of a GPU card. For practical
application like object detection in satellite images, speed and
accuracy are the same important, we seek to simply DNN,
increasing its speed while keep its accuracy in a high level.

Reminded by the LeNet-5 structure, where the 6 maps of
the fist max-pooling layer can supply 26 − 1 = 127 different
map-connection manners to the higher layer theoretically.
LeCun only used 15 manners of them. This implies that
selection of the the map-connection manners are variable. In
DNN, all the maps in the above convolutional layer has the
full map-connections to the lower layer. This produced the
maximal number of map-connections, and this is why that
DNN is much slow than the traditional CNN. We simplify
DNN by introducing the concept of branches, we divided all
maps into several parallel branches, each branch has the same
number of maps and the map-connections only occur in the
internal maps of the branch.

Ciresan et al. [9-11] trained different DNNs by different
preprocessed images, using the average of the outputs of all

2013 Second IAPR Asian Conference on Pattern Recognition

978-1-4799-2190-4/13 $26.00 © 2013 IEEE

DOI 10.1109/ACPR.2013.33

181

2013 Second IAPR Asian Conference on Pattern Recognition

978-1-4799-2190-4/13 $26.00 © 2013 IEEE

DOI 10.1109/ACPR.2013.33

181

2013 Second IAPR Asian Conference on Pattern Recognition

978-1-4799-2190-4/13 $26.00 © 2013 IEEE

DOI 10.1109/ACPR.2013.33

181

DNNs. In most situations, such average only increases the
accuracy by 0.5 − 1.0% [9], while adding the expense of
time-consuming of a lot of times. We used four preprocessed
images: gray, gradient, gradient in the image thresholding
at 120, gradient in the negative image thresholding at 60.
Instead of training four DNNs, we divide the maps of the first
convolutional layer into four parts, allocating the same number
of maps to the four images respectively, training the same
PNN on the four images synchronously. Experiments show
that our method increased the accuracy obviously, without
more expense of time-consuming. PNN also outperformed
the vehicle detection rate (about 70%) of [4] in the same
challenging environments of San Francisco city.

II. ARCHITECTURE OF PNN

The layers of PNN can be denoted as: (Input, C1,
M1, · · ·, Cnl , Mnl , H1, · · ·, Hnh , Output). Where Ci

and M i (i = 1, · · · , nl) are the convolutional and max-
pooling layers respectively, they act as the feature extractor. H l

(l = 1, · · · , nh) are the hidden layers, they and the output layer
compose the final Multi-Layer Perceptron (MLP) classifier. For
convenience, suppose all convolutional and max-pooling layers
have the same number of maps, denote Ci = (Ci

1, · · · , C
i
nm

),
M i = (M i

1, · · · ,M
i
nm

), where nm is the number of the
mapping layer. Now divide all the maps of the convolutional
and max-pooling layers into nb branches as the following:

⎧

⎪

⎨

⎪

⎩

Branch = (B1, · · · , Bnb
)

Bj =

{

(C1
jk,M

1
jk, · · · , C

nl

jk ,M
nl

jk) :
k = 1, · · · , bw.

}

j = 1, · · · , nb

(1)

bw = nm

nb
is the branch width. Cl

jk = Cl
(j−1)bw+k

, M l
jk =

M l
(j−1)bw+k

, suppose nm can be divided by nb without

remainder.

Denote I,Dl, Ol as the definition domains of input, con-
volutional and max-pooling layers respectively. R1 = [0, 255]
is the gray range, R = [−1, 1] is the kernel function range.
Then we have:

⎧

⎨

⎩

Input : I− > R1

Cl
jk : Dl− > R

M l
jk : Ol− > R

(2)

Denote flt1jk as the filter which connects C1
jk with input,

fltljpk as the filter which connects Cl
jp with M

(l−1)
jk . Use tanh

as the kernel function, b1jk,b
l
jp are their biases:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

C1
jk(x, y) = tanh(b1jk +

∑

(u,v)∈A1

(flt1jk(u, v)

×Input(x+ u, y + v))

Cl
jp(x, y) = tanh(bljp +

bw
∑

k=1

∑

(u,v)∈Al−1

(fltljpk(u, v)×M l−1
jk (x+ u, y + v))

(3)

where (x, y) ∈ Dl, j = 1, · · · , nb, k = 1, · · · , bw, A1 and Al

are the definition domains of the filters. l = 2, · · · , nl.

From (3) we can see that connections only occur between
maps of the same branch. There is no connection between

branches. The max-pooling layer can be expressed as the
following:
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

T l
jk : Ol− > Dl

T l
jk(x, y) = argmax

(x′,y′)

⎧

⎨

⎩

Cl
jk(x

′, y′) :
mx ≤ x′ < mx+m,
my ≤ y′ < my +m

⎫

⎬

⎭

M l
jk(x, y) = Cl

jk(T
l
jk(x, y))

(4)

T is a map from Ol to Dl, m is a constant positive integer
which determine the size of Ol, in this paper, m=2.

We denote Dim(∗) is the number of all nodes in the
layer ∗, Node(∗, i) as the value of the i-th node of the
layer ∗, nc is the number of classes. Then we define H l =
(hl

1, · · · , h
l
Dim(Hl)),1 ≤ l ≤ nh, Ouput = (out1, · · · , outnc

),

wl
jk, w

o
jk denote the weights of the hidden layers and output

layer respectively, bialj , bia
o
j denote the biases of the hidden

layers and output layer respectively. We have:
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

h1
j = tanh(bia1j +

Dim(Mnl)
∑

k=1

w1
jkNode(Mnl , k))

hl
j = tanh(bialj +

Dim(Hl−1)
∑

k=1

wl
jkh

l−1
k)

outj = tanh(biaoj +
Dim(Hnh)

∑

k=1

wo
jkh

nh

k)

(5)

III. TRAINING PNN

We define the training set as: {(Input(q), Label(q)) :
q = 1, · · · , nsp}, where q is the sample-index, nsp is the

number of all samples in training set. In addition, Label(q) =

(lab
(q)
1 , · · · , lab

(q)
nc), lab

(q)
i = 1, if Input(q) belong to i-

th class, otherwise equals to −1. We denote Output(q) =
PNN(W, Input(q)), where W is the set of all filters, biases
and weights in PNN. Then we have:

⎧

⎪

⎨

⎪

⎩

E = 1
2

nsp
∑

q=1

nc
∑

k=1

(out
(q)
k − lab

(q)
k)2

W = argmin
W

(E)
(6)

By the steepest descent Method, we have:

∆W (t+ 1) = −ε ∂E
∂W

+ γ∆W (t)− βW (t) (7)

Where ε= LearnRate, γ= Momentum, β=WeightDecay,
LearnRate is a very small value, such as 0.001. Sometimes,
Momentum is used to speed convergence, WeightDecay is used
to limit the norms of the Weights.

A. Back Propagation

We compute the error of every layer from output layer to
the first convolutional layer by the back propagation algorithm,
because d

dx
(tanh(x)) = 1−(tanh(x))2, the error of the output

and hidden layers are:
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

δout
(q)
j = (out

(q)
j − lab

(q)
j)(1− (out

(q)
j)2)

δh
nh(q)
j = (

nc
∑

l=1

wout
lj δout

(q)
l)(1− (h

nh(q)
j)2)

δh
l(q)
j = (

nc
∑

k=1

wl
kjδh

(l+1)(q)
k)(1− (h

l(q)
j)2)

(8)

182182182

where 1 ≤ l < nh. We denote the set Setl(x, y)=
{(x′, y′, u, v) : x′+u = x, y′+v = y,(x′, y′) ∈ Cl+1, (u, v) ∈
Al+1}, then the error of the Max-Pooling layers are:
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

δNode(q)(Mnl , i) =
Dim(H1)

∑

k=1

w1
kji × δh

1(q)
k

δM
l(q)
jk (x, y) =

bw
∑

p=1

∑

(x′,y′,u,v)∈Setl(x,y)

δc
(l+1)(q)
jp (x′, y′)fltl+1

jpk(u, v)(1− (M
l(q)
jk (x, y))2)

1 ≤ l < nl

(9)

We define the map F
l(q)
jk : Dl− > Ol as:

F
l(q)
jk (x′, y′) =

{

(x, y), if T
l(q)
jk (x, y) = (x′, y′)

(−1,−1), otherwise
(10)

The error of the convolutional layer is:

δc
l(q)
jk (x, y) =

{

0, if F
l(q)
jk (x, y) = (−1,−1)

δM
l(q)
jk (F

l(q)
jk (x, y)), otherwise

(11)

where 1 ≤ l ≤ nl, 1 ≤ j ≤ nb, 1 ≤ k ≤ bw.

B. Weights Updating

Suppose momentum and WeightDecay are zero, the
weights and biases of the output and hidden layers are updated
as:
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

wo
lj(t+ 1) = wo

lj(t)− εδout
(q)
l h

nh(q)
j

biaol (t+ 1) = biaol (t)− εδout
(q)
l

wl
kj(t+ 1) = wl

kj(t)− εδh
l(q)
k h

(l−1)(q)
j

bialk(t+ 1) = bialk(t)− εδh
l(q)
k

w1
kj(t+ 1) = w1

kj(t)− εδh
1(q)
k Node(q)(Mnl , j)

bia1k(t+ 1) = bia1k(t)− εδh
1(q)
k

(12)

where 2 ≤ l ≤ nh, the filters and biases of the convolutional
layers are updated as:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

fltljpk(u, v)(t+ 1) = fltljpk(u, v)(t)−

ε
∑

(x,y)∈Dl

M
(l−1)(q)
jk (x+ u, y + v)δc

l(q)
jp (x, y)

bljp(t+ 1) = bljp(t)−
∑

(x,y)∈Dl

εδc
l(q)
jp (x, y)

flt1jp(u, v)(t+ 1) = flt1jp(u, v)(t)−

ε
∑

(x,y)∈D1

Input(q)(x+ u, y + v)δc
1(q)
jp (x, y)

b1jp(t+ 1) = b1p(t)− ε
∑

(x,y)∈D1

δc
1(q)
jp (x, y)

(13)

where 2 ≤ l ≤ nl, 1 ≤ q ≤ nsp. In practical training, the
samples are often input in batch, the batch size is in the range
[10,100], and the weights update once after a batch input.

IV. IMPLEMENTATION DETAIL

Vehicles can parked in any spatial place, they have colorful
appearances, method based on gray is not suitable for vehicle
locating. We rely on the gradients to locate vehicle. The normal
gradient is the maximal norm of the gradients in RGB channel
as computed in [18], In order to enhance the borders of the
black and white vehicles, we computing gradients on the two
thresholding images as shown in Figure 1.

A. Object Locating

Fig. 1. Examples of locating vehicles in a large park. We compute three
type gradients as (a), (b) and (c) respectively, locating the objects in the three
images respectively, (d) the set of the location windows, there are 2918 location
widows covering 544 vehicles, 99.2% vehicles are located correctly.

In Figure 1 (a), the border of the black vehicles are too dim
to be locate correctly. In (c), all the borders of the dim black
vehicles are enhanced. In (b), the borders of white vehicles are
also enhanced, the backgrounds are flted, this helps to detect
white vehicles under the trees. The final location windows is
shown in (d). We locate the objects by Algorithm 1:

Algorithm 1 Object Locating

Input: The three gradient images, sliding window size, sliding step.
Output: All location windows.

1: On each gradient image, generate the sliding window grid to
cover the whole image.

2: For each sliding window Wp at position p = (x0, y0), compute
the geometric center p1 = (x1, y1) on Wp, center the Wp on
(x1, y1), denote it as Wp1.

3: Enlarge the size of Wp1 twice, compute the new geometric center
p2 on the enlarged window. Center Wp1 on the new center p2.

4: Output all location windows on the three gradient images.

The sliding window size is 32 × 32, the sliding step is
16. Some repetitive windows are filtered by a small distance
limit (5 pixel). Our database has 63 images, 1368× 972 size,
6887 vehicles at all. Our method generates 197513 location
windows, 3135 windows per image, 99.7% vehicles are located
correctly. To achieve the same locating precision, the normal
sliding window method needs 10400 sliding windows per
image, our methods is more efficient in searching.

In order to get rotation-invariant and scale-invariant neural
networks, we rotate every location window 11 times by: 00,
4.50, 90, · · · , 450, then shrink or enlarge the non-rotating
images into multi-scalings: 0.8,0.9,1.0,1.1,1.2,1.3. For each
location window, we get four preprocessed images: Gray,
Gradient, Gradient1 and Gradient2 (see the (a), (b), (c) of Fig.
1), these preprocessed images are normalized into 48×48 size
and [0,255] gray range. We store all these rotated, shrunk or
enlarged preprocessed images in our database.

Fig. 2 shows some samples in our training database.

183183183

Fig. 2. Partial samples (rotation angle=0) from one image in training set

B. Implementation of PNN

Fig. 3 shows the structure of PNN when using only Gray
input. It has 9-layer: 48x48-80@C42x42,7-80@M21x21,2-
80@C18x18,4-80@M9x9,2-80@C6x6,4-80@M3x3,2-300N-
2N. It means: 48x48 input, a convolutional layer with 80
maps, 42x42 size and 7x7 filters, a max-pooling layer with
80 maps, 21x21 size and 2x2 fields, · · · , · · · , a max-pooling
layer with 80 maps, 3x3 size and 2x2 fields, a full connected
hidden layer with 300 nodes, an output layer with 2 nodes.

Fig. 3. The Structure of PNN (bw=8), input only Gray image

We wrote the PNN codes according to the formulas (3-
13), we trained PNN on the GPU card, initial weights were
set by a uniform random distribution in the range [-0.05,
0.05], all initial biases were set to zero. LearnRate=0.001,
Momentum=0,WeightDecay=0, batch size=50. Training ended
when the validation error was near to zero. The samples with
the same scaling and rotation angle were trained in one epoch,
we changed scalings or rotation angles in the store sequence
when a new epoch began.

V. EXPERIMENT

Our database include 63 images, 6887 vehicles, 197513
samples from google earth at San Francisco city. 31 images,
3874 vehicles, 94858 samples are used as training set, other

32 images and 102655 samples are used as test set. We denote
False Alarm Rate (FAR) and Detection Rate (DR) as:

⎧

⎪

⎨

⎪

⎩

FAR =number of false alarms
number of vehicles

× 100%

DR =number of detected vehicles
number of vehicles

× 100%

(14)

To be fair and objective, some overlapped False Alarms
are fused into one alarm.

TABLE I. FAR OF PNN (INPUT ONLY GRAY IMAGE)

Detection Rate

bw test(s) train(h) 95% 90% 85% 80% 75%

2 35.21 23.10 55.7% 36.4% 23.5% 17.2% 12.9%

4 49.05 28.52 54.0% 34.6% 22.4% 16.5% 12.1%

8 56.43 34.87 53.4% 32.5% 21.3% 15.9% 11.4%

10 75.20 37.58 52.8% 30.4% 20.8% 14.9% 10.7%

16 110.7 46.80 50.9% 28.5% 18.6% 13.6% 9.35%

20 144.6 54.30 47.3% 26.7% 17.3% 12.3% 8.75%

40 237.3 75.23 44.6% 25.6% 16.0% 11.2% 8.25%

80 364.5 102.9 41.2% 23.0% 14.4% 10.5% 7.83%

Table 1 shows the influence of bw. If bw=1, the PNN
training will not converge. In 85% detection rate, from bw=2
to bw=80, the fastest speed is about 10 times of the slowest
speed, with FAR increases no more than 10%. The test and
training time unit is second and hour on GPU cards.

TABLE II. FAR OF PNN (bw=80)

Detection Rate

Input Data 95% 90% 85% 80% 75%

Gray 41.2% 23.0% 14.4% 10.5% 7.83%

Gradient 43.5% 24.8% 15.7% 11.3% 8.20%

Gradient1 48.0% 26.5% 17.5% 12.8% 9.45%

Gradient2 44.6% 24.7% 15.9% 11.4% 8.26%

Table 2 shows the results of different inputs. In contrast
to our expectation, the gradient input does not perform better
than gray input, this is because the gradient image lost many
details information of the object texture. Gradient2 performs
better than Gradient1. Fig. 1 shows that Gradient2 contains
more information than Gradient1.

TABLE III. FAR OF FOUR METHODS (INPUT MULTI-IMAGES)

Detection Rate

Method 95% 90% 85% 80% 75%

PNN(bw=80) 39.63% 21.54% 13.84 % 10.08% 7.52%

PNN(bw=40) 43.01% 24.03% 14.82% 10.67% 7.94%

HOG+SVM 65.21% 40.21% 28.71% 21.81% 15.42%

LBP+SVM 74.35% 46.82% 32.20% 24.72% 17.37%

In Table 3, we input multi-images: Gray, Gradient, Gra-
dient1 and Gradient2. We divided the 80 maps of the first
convolutional layer of PNN into four equal parts, allocate 20
maps for each image. Comparing Table 2 and Table 3, we can
see the result of multi-images is much better than any single
image. It shows that the multi-images are complementary to
each other, they have produced good resonance effect.

HOG feature is computed here as [18], where Gaussian
smoother parameter σ = 2, derivative mask is [-1,0,1], spacial
orientation bins is 9, cell size is 8x8, each overlapped block
include four cells. LBP feature is computed as [19], where P=8,
R=2, using 58 uniform patterns and 1 nonuniform pattern. The
detection window is divided into 1×1 + 2×2 + 3×3 + 4×4
+ 5 × 5 = 55 blocks. We used rbf kernel in SVM, all other
parameters are optimized.

184184184

Fig. 4. False Alarm Rates of four methods on our vehicle test set.

Fig. 4 shows the difference between bw=80 and bw=40
are very subtle. Fig. 5 shows cars in different orientations

Fig. 5. Some detection results by PNN (bw=40) in San Francisco city. Red
frames are the right detection, the yellow frames are the false alarm.

and places are detected correctly, it shows that our PNN has
got scale-invariant and rotation-invariant power by training on
samples with different scaling and rogation angles. However
some black cars are missed, it implies that illumination and
color play important roles in vehicle detection.

VI. CONCLUSION

Practical applications like vehicle detection in satellite im-
ages often have high requirements in speed and accuracy. We
proposed parallel deep convolutional neural network (PNN),
which divides all maps of DNN into different branches, no
direct map-connections between branches. The conventional
DNN becomes a special form of PNN which has only one
branch. Experiments on vehicle detection showed PNN can be
10 times faster than DNN, while keeping a good accuracy. All
PNNs outperformed the traditional methods based on features.
They also outperformed the vehicle detection result of [4] in
the same challenging environments of San Francisco city. Via
adjusting the branch width, PNN provides a good solution
for compromising both speed and accuracy requirements in
practical applications.

ACKNOWLEDGMENT

This work was supported in part by the National Basic Re-
search Program of China (973 Program) Grant 2012CB316300
and the Strategic Priority Research Program of the Chinese
Academy of Sciences (Grant XDA06030300).

REFERENCES

[1] T. Zhao R. Nevatia, Car Detection in Low Resolution Aerial Images,
Proc. ICCV , vol.1, pp. 710-717, 2001.

[2] K. Ali, F. Fleuret, D. Hasler, and P. Fua, A Real-Time Deformable
Detector, IEEE Trans. PAMI , 34(2):225-239, February 2012.

[3] S. Hinz, Detection and Counting of Cars in Aerial Images, Proc. ICIP,
2003.

[4] A. Kembhavi, D. Harwood, L. S. Davis, Vehicle Detection Using Partial
Least Squares, IEEE Trans. PAMI , 33(6):1250-1265 June 2011.

[5] L. Eikvil, L.Aurdal and H. Koren, Classification-based Vehicle Detection
in High-resolution Satellite Images, Journal of Photogrammetry and
Remote Sensing, 64(1):65-72, January 2009.

[6] H. Grabner, T. Nguyen, B. Gruber, and H. Bischof, On-Line Boosting-
Based Car Detection from Aerial Images, ISPRS J. Photogrammetry and
Remote Sensing, 63(3):382-396, 2008.

[7] L. Chen , Z. Jiang, J. Yang, Y. Ma, A Coarse-to-fine Approach for
Vehicles Detection from Aerial Images, International Conference on
Computer Vision in Remote Sensing (CVRS), pp. 221-225, 2012.

[8] P. Liang, G. Teodoro, H. Ling, E. Blasch, G. Chen, L. Bai, Multiple
Kernel Learning for vehicle detection in wide area motion imagery, 15th
International Conference on Information Fusion (FUSION), pp. 1629-
1636, 2012.

[9] D. C. Ciresan, U. Meier and J. Schmidhuber, Multi-column Deep Neural
Networks for Image Classification , Proc. CVPR 2012.

[10] D. C. Ciresan, U. Meier, L. M. Gambardella, and J. Schmidhuber,
Convolutional Neural Network Committees for Hand-written Character
classification, In International Conference on Document Analysis and
Recognition, pp. 1250-1254, 2011.

[11] D. C. Ciresan, U. Meier, J. Masci, L. M. Gambardella,and J. Schmidhu-
ber, Multi-Column Deep Neural Network for Traffic Sign Classification,
Neural Networks, January 23, 2012.

[12] D. H. Wiesel and T. N. Hubel, Receptive fields of single neurones in
the cats striate cortex , J. Physiol., 148:574-591, 1959. 2

[13] K. Fukushima, Neocognitron: A self-organizing neural network for
a mechanism of pattern recognition unaffected by shift in position ,
Biological Cybernetics, 36(4):193-202, 1980.

[14] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning
applied to document recognition , Proceedings of the IEEE, 86(11):2278-
2324, November 1998.

[15] Y. LeCun, F.-J. Huang, and L. Bottou, Learning methods for generic
object recognition with invariance to pose and lighting, Proc. CVPR,
2004.

[16] C. Garcia and M. Delakis, Convolutional Face Finder:A Neural Ar-
chitecture for Fast and Robust Face Detection, IEEE Trans. PAMI,
26(11):1408-1423, November 2004.

[17] H. A. Rowley, S. Baluja, and T. Kanade, Neural Network-Based Face
Detection, IEEE Trans. PAMI, 20(1):23-38, January 1998

[18] N. Dalal and B. Triggs, Histograms of oriented gradients for human
detection Proc. CVPR ,vol. 1, pp. 886-893, 2005.

[19] T. Ojala, M. Pietikainen, T. Maenpaa, Multiresolution Gray Scale and
Rotation Invariant Texture Classification with Local Binary Patterns,
IEEE Trans. PAMI, 24(7):971-987, July 2002.

[20] C. Huang, S. Zhu, K. Yu, Large Scale Strongly Supervised Ensemble
Metric Learning,with Applications to Face Verification and Retrieval
http://arxiv.org/abs/1212.6094, 2011.

[21] P. Viola and M. Jones, Rapid Object Detection Using a Boosted
Cascade of Simple Features, Proc. Intl Conf. Computer Vision and
Pattern Recognition, vol. 1, pp. 511-518, 2001.

185185185

