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 

Abstract—This paper presents two torque estimation 
methods for vehicle engines: unknown input observer (UIO) 
and adaptive parameter estimation. We first propose a novel 
yet simple unknown input observer based on the crankshaft 
rotation dynamics only. For this purpose, an invariant 
manifold is derived by defining auxiliary variables in terms of 
first order low-pass filters, where only one constant (filter 
coefficient) needs to be tuned. These filtered variables are used 
to calculate the estimated torque. Robustness of this UIO 
against sensor noise is studied and compared to two other 
estimators. On the other hand, since the engine torque 
dynamics can be formulated as a parameterized form with 
unknown time-varying parameters, we further present several 
adaptive laws for time-varying parameter estimation. The 
parameter estimation errors are derived to drive these adaptive 
laws and time-varying adaptive gains are introduced. The two 
proposed estimators only use the measured air mass flow rate 
and engine speed, and thus allow for improved computational 
efficiency. Both estimators are verified via a dynamic engine 
simulator built in a commercial software GT-Power (Ricardo 
Wave), and also practically tested via experimental data 
collected in a dynamometer test-rig. Both simulations and 
practical results show very encouraging results with small 
estimation errors even in the presence of sensor noise. 

Index Terms— Engine torque estimation, mean value engine 
model, unknown input observer, time-varying parameter 
estimation. 

I. INTRODUCTION 
In the past decades, many efforts have been made on the 

integration and development of modern vehicular systems 
driven by internal combustion (IC) engines and electric 
motors. The complexity of such vehicular systems has 
created challenges in the engine management system (EMS), 
especially for sensor integration. In the new generation of 
EMS and other vehicle powertrain control, the effective 
engine torque has been found as one of the crucial variables, 
which has been used in various automotive applications, e.g. 
online estimation of in-car parameters such as mass [1], brake 
torque control [2], speed control [3], on-board diagnostics [4], 
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and even hybrid electric vehicle applications [5, 6]. 
 In a laboratory environment, the effective engine torque 

can be calculated by using the measured cylinder pressure 
with an in-cylinder pressure sensor [7]. However, this idea is 
usually impractical in commercial cars due to the high sensor 
cost and the complicated configuration. Hence, it is necessary 
to exploit indirect methods to measure engine torque, i.e. 
estimate the unknown engine torque based on the other easily 
measurable variables. 

Among various torque estimation strategies, the most 
commonly used ones are lookup tables with engine speed, 
intake manifold pressure, spark advance, and injected fuel, 
etc., which have been built via time-consuming offline 
calibrations [7]. To reduce the cost and period of offline 
calibrations, the relationship between the engine torque and 
other engine variables, e.g. throttle angle and speed, are 
further considered, and various observer designs have been 
used. On this topic, early-stage work was carried out using a 
sliding mode observer based on the crankshaft model [8-10], 
where the engine speed fluctuations are used to determine the 
effective torque based on an electrical circuit model [8]. 
Recently, the principle of high order sliding mode observer 
designed based on a super-twisting algorithm has also been 
studied in [11]-[12] for estimating the engine parameters that 
are related to engine torque, i.e. friction torque and load 
torque. Chauvin et al. [13, 14] proposed two different torque 
estimation approaches for diesel engines using an adaptive 
Fourier basis decomposition observer [13] and a time-varying 
Kalman filter [14]. The estimators only used the engine speed 
sensor, however, the engine dynamics were assumed to be 
known, which may not be true in practical applications. To 
address unknown parameters, an adaptive Kalman filter was 
proposed in [3] to estimate the load torque for SI engines. In 
the work of Falcone et al. [15, 16], the torque estimation was 
reformulated as a tracking control problem and solved using a 
linear quadratic (LQ) optimal control. To further diminish 
sensitivity to the crankshaft model uncertainties, Helm et al. 
[4] proposed a PI-like observer. In Hong et al. [17], a cascade 
estimator was proposed to estimate the real-time torque by 
using available information from the stock engine sensors, 
e.g. intake pressure, engine speed. In this observer, the 
difference between the measured engine speed and the 
observed speed is derived to online modify the torque, and 
the intake pressure is used to calculate a nominal torque. 
These observers either require precise engine models or 
impose coupled observers with many tuning parameters, and 
thus the estimation results may not be accurate and fast 
during transient conditions. 

On the other hand, another approach to estimate the engine 
effective torque is to take this torque as a virtual input of the 
torque production dynamics, and then to use the principle of 
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unknown input observer (UIO) [18]-[19]. In particular, 
Stotsky et al. [18] investigated several UIOs, and their 
application to engine torque estimation is also studied with 
cascade schemes. The adaptive version of a high gain 
observer given in [18] was presented in [19], where the 
unknown parameters of engines are estimated and then used 
to calculate the engine torque. In this case, the engine torque 
estimation problem can be studied via parameter estimation 
schemes because the engine torque generation dynamics can 
be appropriately parameterized in a quasilinear form, which 
is also used in [17]. However, the parameters involved in this 
quasilinear formulations are time-varying rather than constant, 
i.e. the thermal efficiency and volume efficiency are not 
constant. Consequently, the classical parameter estimation 
methodologies (e.g. gradient descent, least squares [20]-[21]) 
are not able to deal with the engine torque estimation due to 
the fast time-varying parameters in the torque production 
dynamics. In fact, the time-varying parameter estimation has 
not been fully solved in the filed [22]. A recent solution was 
proposed in [23], where a set-membership algorithm was 
incorporated into the input observer. However, the estimation 
performance depends on the knowledge of precise bounds for 
the unknown parameters. To tackle above mentioned issues, 
our preliminary work [24] presented an improved UIO and a 
parameter estimation with guaranteed convergence. 

In this paper, we address the engine torque estimation by 
proposing two fast and robust estimation algorithms: 
unknown input observer and adaptive time-varying parameter 
estimation. The first algorithm is designed based on the 
engine rotation dynamics only. Low-pass filter operations are 
first applied to the measured engine speed and load torque; 
these filtered variables then indicate an implicit relationship 
between the filtered variables and the unknown engine torque 
based on the idea of an invariant manifold [27]. This provides 
a simple and robust UIO, which guarantees exponential error 
convergence. Theoretical analysis of the ultimate error 
bounds and the robustness of three different UIOs are also 
provided. The second method is designed by considering the 
fact that the unknown torque is a function of some engine 
variables as [17], which can be easily measured (e.g. air mass 
flow rate and engine speed), and thus it can be reformulated 
in a quasilinear form [24] subject to time-varying parameters). 
Then, we can calculate the engine torque by using the 
estimates of these time-varying parameters. Thus, this 
proposed estimator is developed by modifying a recent idea 
for adaptive parameter estimation [28, 29]. In particular, we 
use the parameter estimation error to drive the adaptive laws 
and suggest time-varying learning gains, such that the 
convergence can be trivially proved under a generic 
persistent excitation (PE) condition [30], and faster 
convergence response can be achieved. It is noted that the 
proposed algorithms are very generic; they can be used for 
different engines including naturally aspirated port fuel 
injected petrol engine, turbocharged direct fuel injected petrol 
engine and turbocharged direct fuel injected diesel engine. 
These three engine types represent the majority of the 
passenger vehicles while the latter two represent the trend for 
future engines.  

For the theoretical development, the widely-used mean 
value engine model (MVEM) proposed by Hendricks et al. 
[25, 26] is considered. However, the two proposed estimators 

are verified based on different simulation and experimental 
data sets. Thus, we first test our methods in a 1D environment, 
where a port fuel injected Spark Ignition (SI) engine model 
built in a professional engine simulation software, GT-Power 
[31] is used. This model is more realistic than the MVEM 
because the real torque oscillations as a result of the firing of 
each cylinder are simulated. Finally, we demonstrate the 
effectiveness via experimental data sets from practical tests 
based on a dynamometer test-rig of direct injection Diesel 
engine. These tests includes the real torque oscillations and a 
number of measurement inaccuracies. Artificial measurement 
noise is also adopted to verify the sensitivity of the proposed 
algorithm against noise. Both simulation and practical results 
show very good results with small estimation errors. 

The paper is organised as follows. Section II describes the 
engine dynamics. Section III proposes a UIO design and 
comparisons to other two methods. Section IV gives the 
robustness analysis. Section V presents several adaptive laws 
for time-varying parameter estimation. Simulations based on 
a well-calibrated GT-Power engine model are provided in 
Section VI and practical results are given in Section VII. 
Section VIII gives discussion and Section IX provides some 
conclusions. 

II. VEHICLE ENGINE MODELING AND PROBLEM STATEMENT 

This section will introduce the dynamics of IC engine 
systems. Note that the general work principle of both Spark 
Ignition (SI) and Compression Ignition (CI) engines is that 
the combustion of air-fuel mixtures in the chambers produces 
the driving torque for crankshaft rotation. The air mass flow 
and the injected fuel into the intake manifold and engine 
chamber can be controlled accordingly (e.g. stoichiometric 
for SI engines or lean mixture for CI engines). Nevertheless, 
the crankshaft dynamics will be the basis to the estimation 
schemes in the paper. Hence, to demonstrate this we present 
here the major blocks of a port-injected engine as in Fig.1. 

 
Fig. 1 Simplified sketch of SI engine systems 

It can be found from Fig. 1 that the engine system can be 
divided into several sub-systems: air path system, fuel path 
system, torque production system and crankshaft system [25, 
26]. In general, modelling of engine system is not a trivial 
task because of its nonlinear and time-varying behaviours. 
Among various modelling methods, a physical based model 
called mean value engine model (MVEM) has been widely 
used [25, 26], which can calculate the average variables 
accounting for the thermodynamics, fluid mechanics and 
rigid body dynamic over engine operation regimes. This 



  

model is relatively simple but can describe the major time- 
varying characteristics. Thus, it can effectively balance the 
accuracy and complexity of the engine system models. The 
main engine variables used in the model are given in Table I.  

TABLE I. ENGINE VARIABLES USED IN THE MODEL 
Symbol Variable Symbol Variable 

[bar]
m

p  
Intake manifold 

pressure [ ]
m

T K  Manifold 
temperature 

[deg]  Throttle angle [ ]aT K  Ambient 
temperature 

[kg/s]aim  Air mass flow rate 
into manifold 

[kg/s]aom
 

Air mass flow 
rate into cylinder

vol
  Volumetric 

efficiency 
[RPM]N  Engine speed 

[kg/s]fm  Injected fuel mass 
flow rate i

  Thermal 
efficiency 

[N m]f   Friction torque [N m]
e
   Effective torque

[N m]
i
   Indicated torque [N m]

l
   Load torque 

In the following, we will briefly introduce the engine 
model, which will be used in the subsequent torque 
estimation. To represent an application example, we model a 
naturally aspirated port fuel injected engine. We refer to [25, 
26] for more details. 

A. Air Path Dynamics 

For the purpose of modelling, we consider the intake 
manifold as an adiabatic system, i.e. the pressure and 
temperature is assumed as constant throughout the manifold. 
Thus, the pressure variation can be determined based on the 
ideal gas law and the conservation of mass [25] as 

 m ai a ao m

m

R
p m T m T

V


        (1) 

where m
V  is the manifold volume,   is the ratio of 

specific heats ( 1.4   for air), and R  is the gas constant. 
The air mass flow into the manifold, ai

m , is a function of 
the throttle angle   determined by the driver via the 
acceleration pedal [25], which is governed by 

( ) ( )
ai m

m MAX TC PRI p      (2) 
where MAX  is a physical constant related to the throttle 
size; ( )TC   is the throttle characteristics depending on the 
throttle angle  ; ( )

m
PRI p  is the pressure ratio influence 

function of the intake manifold pressure m
p . 

The air mass flow rate out of the manifold, ao
m , can be 

calculated as 

120
m d vol

ao m

a m

T V
m Np

T RT


     (3) 

where d
V  is the engine displacement, vol

  is the volumetric 
efficiency which depends on the engine speed N . 

B. Fuel Path Dynamics 

The fuel mass flow fm  injected into the cylinder is 
controlled to regulate the air-fuel equivalence ratio   at 

the desired value. Therefore, we have  
ao

f

th

m
m

L


      (4) 

where th
L  is the stoichiometric value (e.g. 14.7

th
L   for 

petrol engines).  

C. Torque Production Dynamics 

The combustion of the air-fuel mixture generates the 
indicated torque i

 , which is a function of the engine speed   
N  and the fuel mass flow rate fm  as 

2 /60
u i f

i

H m

N








    (5) 

where u
H  is the fuel energy constant and the thermal 

efficiency i
  is exponentially dependent on the engine 

speed N as in [17, 26]. Thus, the indicated torque i
  

can %be taken as a function of the engine speed N  and air 
mass flow rate ai

m  based on (1)-(5), and denoted as 
( , )

i ai
N m  .  

The friction dissipation f  is mainly determined by the 
engine speed N  as [26] 

2
0 1 2( )

f
N a a N a N        (6) 

where 0a  accounts for the static friction, 1a N  represents 
the hydrodynamic or viscous frictions, 2

2a N  denotes the 
turbulent dissipation. 

Then, the effective engine torque e
  can be written as 

( , ) ( ) ( , )e i ai f aiN m N f N m          (7) 

where e
  can be taken as a lumped function ( )f   of the 

engine speed N  and air mass flow rate ai
m .  

D. Crankshaft Dynamics 

The crankshaft dynamics can be easily modelled using 
Newton’s second law as 

e l
JN        (8) 

where J  is the scaled moment of inertia of the engine, l


is the load torque. These dynamics together with the torque 
model (7) are the basis to the estimation schemes in this 
paper, which are generic to SI and CI engines. 

It is noted that the torque production in (5)-(7) is also 
weakly dependent on the manifold pressure m

p , the spark 
advance SA

  and the air-fuel ratio  . The resultant error 
due to the neglected effect of such factors can be taken as the 
modeling uncertainties or sensor noise as [17]. Simulation 
and practical results will show this is valid over fairly large 
engine transient operating conditions. 

E. Problem Statement 

The problem to be addressed is to estimate the effective 
engine torque e

  by using easily measured variables, e.g. 
engine speed, air mass flow rate. Considering the previous 
engine model, it is straightforward to calculate e

  either 



  

from the torque model (7) or from the crankshaft dynamics 
(8). However, such calculations rely on the knowledge of the 
engine dynamics and parameters. For (7), ( , )

i ai
N m   and 

( )f N  cannot be exactly known for commercial engines 
due to the nonlinearities and unknown coefficients involved 
in (5)-(6). For (8), it is difficult to obtain the engine 
acceleration N  although one may argue that N  can be 
calculated by directly differentiating the engine speed N . 
However, the performance of such differentiation 
approximations can be very poor due to sensor noise. 
Moreover, in these direct calculation methods, the 
uncertainties would inevitably lead to estimation error, 
especially when the engine is running in highly time-varying 
conditions. 

To address above issues, there has been a number of 
publications [2-10], which have been proposed by exploiting 
various observers, where different variables are assumed to 
be measurable or cascaded observers [17] should be used. 
This may limit their applicability in practice. This fact drives 
the motivation of developing simple yet efficient estimators, 
which uses easily accessed variables (e.g. engine speed N , 
and air mass flow rate ai

m ) with commercial sensors 
equipped in cars, and avoids noisy sensitive calculations (e.g. 
differentiation of N ).  

In this paper, we first estimate the effective torque from 
the crankshaft dynamics (8) by introducing a new unknown 
input observer. Moreover, since the function ( , )

ai
f N m  in 

(7) can be further formulated as a parameterized form with 
unknown time-varying parameters associated with ai

m  and 
N , we can also estimate the torque e

  by investigating 
novel adaptive laws for estimating time-varying parameters. 
In these two approaches, we only use the engine speed N  
and air mass flow rate ai

m , which can be easily measured 
via standard sensors configured in commercial cars. 

III. UNKNOWN INPUT OBSERVER FOR TORQUE ESTIMATION 

This section first presents theoretical developments of a 
new unknown input observer to estimate the effective engine 
torque e

  based on (8). We also compare it with two other 
methods: a sliding mode estimator and a dirty differentiation 
estimator. In this case, we only use the moment of inertia J , 
the measured engine speed N  and the load l

 .  

A. Unknown Input Observer Design 

From the crankshaft model (8), the effective torque e
  is 

taken as the unknown ‘input’. Thus, the principle of unknown 
input observer [18] can be further revisited. In this case, we 
assume the derivative of e

  is bounded by 0sup
t e

    
for a constant 0 . This assumption has been widely used 
[23], which is practically feasible for engine applications. 

We first define the filtered variables fN  and lf  with 

respect to N  and l
  as 

,               (0) 0
,                 (0) 0

f f f

lf lf l lf

kN N N N

k   

   


  




   (9) 

where 0k   is a filter parameter. 
Then an ideal invariant manifold [27] is constructed, 

which will be used to design the unknown input observer. 

Lemma 1: Consider the crankshaft model (8) and the filter 
operation (9), the manifold ( ) / 0f lf eJ N N k       and 
the coordinate variable  

( )
f lf e

J
N N

k
          (10) 

is bounded and decreases exponentially for any finite 0k  . 
Moreover, we have 

0
lim lim ( ) / 0f lf e
k t

J N N k  
 
        (11) 

Thus, 0   is an invariant manifold for any 0k  . 
Proof: The derivative of   with respect to time t is 
calculated from (9)~(10) as 

 
 1f

lf e e

J N N
k

k k
    


     

 
     (12) 

We first prove the boundedness of  . Select a Lyapunov 
function as 2 / 2V  , such that 

2 2 2

2

1 1 1
2 2

1    
2

e e

k
V

k k k

k
V

k





          

  

  


 (13) 

By solving the inequality (13), one can easily verify that 
/ 2 2( ) (0) / 2t k

V t e V k 
   . Thus, ( )t  will exponentially 

converge to a small compact set bounded by 
2 / 2 2( ) 2 ( ) (0) t k

t V t e k      , where its size is 
determined by the filter parameter k  and the upper bound 
  of e

 , i.e., lim ( )
t

t k


  , which vanishes for sufficiently 

small k  and/or constant torque e
  (i.e. 0 ). 

Moreover, for infinite 0k  , it can be verified that 

0
lim[lim ( )] 0
k t

t
 

 , which implies that ( )t  converges to 

zero for any bounded (0)  and thus 0   is an invariant 
manifold for 0k  .      ◇ 

It is shown that the above invariant manifold provides a 
mapping from the variables ( , , )f lfN N   to the unknown 
torque e

  without knowing the angular acceleration N . 
Thus, based on the manifold dynamics (10), a feasible 
estimator of e

  is  
( )

ˆ f

e lf

J N N

k
 


      (14) 

Before proving the convergence of estimator (14), we first 
provide an insight of this estimator. Thus, we apply a 
low-pass filter 1/ ( 1)ks  on both sides of (8) and have 

f ef lf
JN         (15) 

where ef  is the filtered version of the unknown torque, 



  

which is given by  
, (0) 0ef ef e efk         (16) 

On the other hand, from the first equation of (9), we can 
verify that ( ) /

f f
N N k N   . Then, it follows from (14) - 

(15) that ê ef  , which means that the derived estimate is 
equivalent to the filtered version of the unknown torque. In 

this case, we can verify that 1 1ˆ ˆ( ) ( )e ef e ef e e
k k

           . 

We now define the estimation error as ˆ
e e e
    , then 

the error dynamics are given as  
1ˆ

e e e e e
k

               (17) 

Based on (17), it is clear that the estimation error e
  will 

converge to a small compact set with an arbitrarily faster 
exponential speed for any small k . Specifically, it can even 
vanish when the torque e

  is constant, i.e. 0
e
  . This can 

be summarized as 

Theorem 1: For the crankshaft dynamics (8) with UIO in 
(14), the estimation error e

  exponentially converges to a 

small set given by the relation 2 / 2 2( ) (0) t k

e e
t e k      , 

so that ê e
   holds for 0k   and 0 . 

Proof: We select a Lyapunov function 2 / 2
e

V   , then 
calculate its derivative along (17) as  

2 21 1
2e e e e e

k
V V

k k
                   (18) 

Then, similar to Lemma 1, we can again derive the fact that 
2 / 2 2( ) 2 ( ) (0) t k

e e
t V t e k       , which implies that 

( ) 0
e

t   holds for 0k   and 0 .    ◇ 

Remark 1: The proposed torque estimator (14) is simple as it 
only requires the knowledge of the engine inertia J , the 
engine speed N  and load torque l

  considering the torque 
production dynamics only. Furthermore, there is only the 
filter constant k  to be tuned, which is set small in practice. 

Remark 2: It should be noted that the load torque applied on 
the engine is known as assumed in [17]. This assumption has 
been widely used in the literature for torque estimation [4, 17, 
24]. In a laboratory, the load torque l

  can be measured 
using a dynamometer. In practice, this load torque can be 
estimated by using a polynomial approximation [32], or 
considering the vehicle powertrain dynamics [33], [34] but 
assuming again a further set of parameters and variables to be 
known. Hence, this increased complexity for online 
estimation of engine load will not be addressed in this paper 
due to the limited space. 

B. Comparison to Other Methods 

In this subsection, we will compare the estimator (14) and 
two other well-known UIOs as presented in [18] with respect 
to their convergence property. 

1) Sliding mode estimator 

The sliding mode estimator is based on the principle of the 
equivalent control [18, 35]. Thus, the following variable 
structure observer can be constructed 

1
ˆ ( )

l
JN sign N        (19) 

where ˆN N N   is the observer output error and 1    
is a positive constant. Then the output error dynamics can be 
given as 

1 ( )
e

JN sign N        (20) 

For any 1   , it can be proved that N  will reach the 
sliding mode surface 0N   in finite time. Using the notion 
of the equivalent control [18, 35], we know 1 ( )

e
sign N   . 

However, it is clear that the estimation 1ˆ ( )
e

sign N    
suffers from the chattering problem due to the use of the 
signum function ( )sign N . To accommodate for this issue 
and provide a smoother estimator, one can include a low pass 
filter and propose the following estimator 

1
1ˆ ( )

1e sign N
ks

    
    (21) 

where  1
1ks 
  with bracket    in (21) denotes the filter 

operation of the low pass with transfer function 1/ ( 1)ks 

applied to the temporal signal 1 ( )sign N  . 
Then it can be reformulated as 

 1
1 1 1 1ˆ ˆ ˆ

e e e esign N
k k k k

            (22) 

The estimator error ˆ
e e e
     of the sliding mode 

estimator (21) can be obtained from (22), which is identical 
to (17). Then, we have: 

Lemma 2: For the crankshaft dynamics (8) with sliding 
mode estimator in (21), the error e

  exponentially 

converges to a set defined by 2 / 2 2( ) (0) t k

e e
t e k      , 

and thus ê e
   holds for 0k   or 0 . 

Proof: The proof is the same as that of Theorem 1 and thus 
will not be repeated. 

Remark 3: The estimator (21) is designed according to the 
principle of equivalent control. From (20), the sliding mode 
observer (19) enforces an invariant manifold 0N   by 
using discontinuous action 1 ( )sign N  with high-frequency 
switching. A low-pass filter 1/ ( 1)ks  is used in (21) to 
remedy the chattering phenomenon. However, the bandwidth 
of this low-pass filter should be set to make a trade-off 
between the convergence performance of the error e

  and 
the smoothness of ê

 . Thus, the constant k in (21) cannot 
be set arbitrarily small. 

2) Dirty differentiation estimator 
The unknown torque in (8) can also be obtained by using 

the idea of the so-called ‘dirty derivative’ [18], where the 
derivative of N  can be approximated by 



  

 
1[ ] [ ]

1 1
s N

N N N
ks k k ks

  
 

    (23) 

for a sufficiently small positive constant 0k  . Note again 

the filter operations [ ]
1

s

ks



 and 

 
1 [ ]

1k ks



carried out 

for the temporal signal of N  as for (21).  
When the derivative N  in (8) is approximated as (23), 

the unknown torque e
  can be estimated as  

 
ˆ [ ]

1e l

JN J
N

k k ks
   


   (24) 

From (8) and (24), we get the estimation error 
2

ˆ [ ] [ ]
1 1e e e

Js Jks
Js N N

ks ks
           
  (25) 

This can be represented in the time-domain as 

 1
e e JN

k
          (26) 

The analysis for this results can be summarized as: 

Lemma 3: For the crankshaft dynamics (8) with the 
estimator in (24), the estimation error e

  exponentially 
converges to a small set defined by 

2 / 2 2 2( ) (0) t k

e e
t e k J       with 0supt N   , so that

ê e
  holds for 0k  and 0 . 
Proof: Select the Lyapunov function as 2 / 2

e
V   , then its 

derivative along (26) can be obtained as  
2 2 21 1

2e e e e

k
V JN V J

k k
                (27) 

Then similar to the proof of Theorem 1, one may obtain 
/ 2 2 2( ) (0) / 2t k

V t e V k J
   , which implies the estimation 

error converges to a set in ( )
e

t given by the inequality 
2 / 2 2 2( ) (0) t k

e e
t e k J      . ◇ 

Remark 4: One may find from Lemma 3 that the estimation 
error of (24) depends on the upper bound of the second order 
derivative of the engine speed (e.g. 0sup t N   ) and the 
inertia J . Thus, the estimator (24) may be very sensitive to 
sensor noise. In contrast, the estimation errors of (14) and (21) 
depend only on the upper bound of the first order derivative 
of the unknown input e

  (e.g. 0sup
t e

   ). Moreover, 
one may find that the engine speed N  is filtered by a low 
pass filter in (9) to avoid the derivative approximation in (23). 
The inclusion of such filters can lead to better convergence 
response than (24). 

IV. ROBUSTNESS OF UNKNOWN INPUT OBSERVERS 

In practice, the engine speed N  and the load torque l
  

that are used to facilitate the above torque estimators are 
measured by sensors. Thus, the measurements may contain 
unavoidable sensor noise. In this section, we will further 
compare the robustness of the above estimators against 
measurement noise. In this case, we define 1 2,w w  as the 

noise signals perturbing the engine speed N  and the load 
torque l

 , respectively. Then the measured variables used in 
the torque estimators are 

1 2,
l l

N N w w        (28) 
Without loss of generality, we assume that the noise 

signals are all bounded, i.e. 1 1 2 2 1 3 2 4, , ,w w w w         
holds for constants 1 2 3 4, , , 0     . 

1) Unknown Input Observer 
The estimator (14) with (28) is reformulated as 

,               (0) 0

,                 (0) 0
f f f

lf lf l lf

kN N N N

k   

   


  




   (29) 

( )
ˆ f

e lf

J N N

k
 


 

 
   (30) 

From (8) and (28)-(30), one can verify that  
1 2ˆ

e f lf f f lf f
JN JN Jw w            (31) 

where 1 fw  and 2 fw  are the filtered version of 1w  and 

2w  in terms of the filter 1/ ( 1)ks . Then we can further 
verify the following equation 

1 2
1 1ˆ ˆ ( )e e Jw w
k k

          (32) 

In this case, the estimation error of (30) can be given as 

1 2
1 1 ( )e e e Jw w
k k

             (33) 

Similar to Theorem 1, we have 

Theorem 2: For the crankshaft dynamics (8) with 
measurement noise 1 2,w w  in the engine speed N  and load 
torque l

 , then the estimation error of UIO (30) 
exponentially converges to a set defined by 

 22 / 2
3 2( ) (0) ( ) /t k

e e
t e k J k         . 

Proof: The proof can be conducted by calculating the 
derivative of Lyapunov function 2 / 2

e
V    along (33). The 

detailed analysis is similar to that of Theorem 1, and we will 
not repeat it again.    ◇ 

In the presence of sensor noise 1 2,w w , the convergence 
property ê e

   does not hold even for 0k   and 
0 . However, a constant measurement offset of N  due 

to the sensor drifts (i.e. 1 const.w   and 3 0  ) can be 
compensated without knowing the offset magnitude. 

2) Sliding mode estimator 

From (8) and (28), the measured system dynamics can be 
described as 

1 2e l
JN Jw w         (34) 

Thus, we can construct a sliding mode observer for (34) by 
using the measured variable as 



  

1
ˆ ( )

l
JN sign N   
     (35) 

where ˆ
N N N   is the observer output error, which can 

be given as 1 2 1+ ( )
e

JN Jw w sign N     . We can select 
the observer gain such that 1 2 3J     , and then verify 

that 0N   can be achieved in finite time. In this case, the 
equivalent control is 1 2 1+ ( )

e
Jw w sign N    . 

The estimator error of (21) is modified as 

1 2 1 2
1 1[ + ] [ ] [ + ]

1 1 1e e e e

k
Jw w Jw w

ks ks ks
       

  
    (36) 

which is in the time-domain represented as (33).  
Consequently, the convergence property of this sliding 

mode estimator (21) can be summarized as 

Lemma 4: For the crankshaft dynamics (8) with 
measurement noise 1 2,w w  in the engine speed N  and load 
torque l

 , the estimation error of estimator (21) with the 
modified sliding mode observer (35) will converge to a set 

defined by  22 / 2
3 2( ) (0) ( ) /t k

e e
t e k J k         . 

Proof: The proof is the same as that of Theorem 2 because its 
error dynamics are the same as (33). 
Remark 5: From Theorem 2 and Lemma 4, it is shown that 
the robustness property of the proposed estimator (14) is 
comparable to the sliding mode estimator (21). However, in 
contrast to the sliding mode estimator (21), the proposed 
estimator (14) does not employ a switching element, i.e. it 
does not have the chattering problem, and thus it provides a 
smooth response even for small k . 

3) Dirty differentiation estimator 

When there are sensor noise signals 1 2,w w  in the engine 
speed N  and load torque l

 , the estimator (24) can be 
reformulated as follows 

 
ˆ [ ]

1e l

JN J
N

k k ks
   


    (37) 

which equals to 

1 2ˆ [ ] [ ]
1 1e l

Js Js
N w w

ks ks
    

 
   (38) 

Consequently, the estimation error of (37) is obtained as 
2

1 2[ ] [ ] [ ]
1 1 1e

Js Jks Js
Js N N w w

ks ks ks
          
   (39) 

To facilitate the convergence analysis, the error equation 
(39) is further represented as 

2 2 1
1 1 ( )e e JN w w Jw
k k

              (40) 

Then we can prove the following lemma, which 
summarize the convergence property of estimator (37).  

Lemma 5: For the crankshaft dynamics (8) with 
measurement noise 1 2,w w  in the engine speed N  and load 
torque l

 , the estimation error of (37) converges to a set 

defined by  22 / 2
4 3 2( ) (0) ( ) /t k

e e
t e k J J k           . 

As shown in Lemma 5, the ultimate bound of the 
estimation error of the dirty differentiation estimator (37) 
depends on also the upper bound 2 4w  , which defines 
the magnitude of the derivative 2w . Consequently, the 
estimator (37) is more sensitive to sensor noise than the other 
two estimators. This will be verified in the simulations and 
experiments. 

4) Comparative Discussion  
From the above analysis, we have the following observations: 
1) The estimation error of the proposed UIO (14) is 
comparable to that of the sliding mode observer (21), even in 
the presence of measurement noise. In fact, theoretical 
analysis indicate that the convergence and robustness of them 
are the same. However, the sliding mode observer (21) 
suffers from the well-known chattering issue, which leads to 
nonsmooth estimation response, while the suggested UIO (14) 
can provide smooth estimation response.  
2) The estimation error of the dirty differentiation estimator 
(24) depends on the second order derivative of the engine 
speed N  , which can be very large in the dynamic engine 
scenarios. Moreover, it is also sensitive to sensor noise in 
comparison to other methods, i.e. high-frequency noise may 
deteriorate its performance. 
3) In terms of parameter tuning, the proposed UIO (14) and 
the dirty differentiation estimator (24) have only one constant 
(e.g. 0k  ) to be selected by the designers. This filter 
coefficient can be set small to allow for higher bandwidth of 
the low-pass filter (9). However, the response of the 
derivative approximation in (23) will show significant 
oscillations when k is too small, in contrast to the UIO (14). 
4) The sliding mode estimator (21) needs to set the observer 
gain 1   , which depends on the knowledge of the upper 
bound of the torque variation 0sup

t e
   . Moreover, the 

requirement for the smoothness of the sliding mode estimator 
results (21) does not allow a too small 0k  . 

The convergence, the robustness property and key features 
of these three estimators can be summarized in Table II. 

TABLE II. COMPARISONS OF THREE ESTIMATORS 

Methods Ultimate error 
bound Chattering Noise 

sensitivity 

UIO 0sup
t e

    No 1 2,w w  

Sliding mode 0sup
t e

    Yes 1 2,w w  
Dirty 

differentiation 0sup
t

N    No 1 2 2, ,w w w 

V.  ADAPTIVE TIME-VARYING PARAMETER ESTIMATION 

In Section III, we take the unknown effective engine torque 
e
  as an unknown input (time-varying signal) of crankshaft 
dynamics (8), and then solve the torque estimation problem 
via the principle of UIO. However, the estimation of this 



  

effective engine torque can be significantly facilitated if other 
engine dynamics associated with measurable data are 
considered. In this section, we will study the engine torque 
estimation problem from another perspective: time-varying 
parameter estimation. This method will facilitate a deeper 
understanding of the engine dynamics. Moreover, the 
theoretical developments to be presented also provide a 
feasible method for the estimation of time-varying parameters 
for other applications. It is noted that adaptive parameter 
estimation for time-varying parameters has not been fully 
solved in the field [20]. 

Thus, we revisit the torque model (7) and find that the 
effective torque e

  can be taken as a function of the engine 
speed N  and the air mass flow rate ai

m , which has been 
also used in [4, 10, 17]. Hence, we can present (8) in a 
parameterized form with time-varying parameters 

  1

2

( )
( , )   ( )

( )ai l ai l l

t
JN f N m N m t

t


    


 

        
 

  

 

(41) 
where    

ai
N m    is the known regressor vector. 

 1 2( ) ( )( ) T
t tt     is the unknown vector to be estimated, 

which contains time-varying parameters, and   defines the 
effect of bounded disturbances or approximation errors. The 
problem of estimating the effective torque ( )

e
t   can 

be achieved provided that the time-varying parameters ( )t  
can be precisely estimated. It is assumed in this section that 
the derivative of ( )t  with respect to time t is bounded by 

( )t  
 
for a positive constant 0  .  

For a linearly parameterized system (41), if the unknown 
parameters are constant, i.e. const.  , the gradient 
descent algorithms [21] can be used. However, as pointed 
out in [20], the ability of the gradient method to track 
time-varying parameters and their robustness are limited. In 
this section, we will propose a new parameter estimation 
scheme by further exploiting the parameter estimation error 
based adaptation algorithm in [28, 29].  

We define the filtered variables fN , lf in (9) and f as 

,        (0) 0
f f f

k         (42) 
where 0k   is the same constant as in (9).  

Then similar to Lemma 1 in Section III, an ideal invariant 
manifold [27] can be constructed, such that  

Lemma 6: Consider system (41) with filters (9) and (42), 
then the manifold ( ) / ( ) 0

f lf f
J N N k t        is 

bounded for any finite 0k  . Moreover, the manifold 

0
lim ( ) / ( ) 0

f lf f
k

N N J k t

       is invariant for 0  . 

Proof. The detailed proof is similar to that of Lemma 1. 

The manifold variable ( ) / ( )
f lf f

N N J k t         
is independent of the engine speed derivative N . Moreover, 
it provides an implicit information of the unknown 

parameter ( )t  with available variables ( , , , )f lf fN N   . 
To further show this fact for any finite 0k  , we apply a 
filter 1/ ( 1)ks  on both sides of (41), then 

1 1 1[ ] [ ( )] [ ] [ ]
1 1 1 1l

Js
N t

ks ks ks ks
    

   
 (43) 

Consider the first equation of (9) and the Swapping 

Lemma [21] for the term 1 [ ( )]
1

t
ks




, we rewrite (43) as 

 
( )f

lf f

J N N
t

k
 


       (44) 

where the residual term [ ]
1 f f

k

ks
    


  comes from 

the filtering operation of error   and ( )t  when the 
parameter ( )t  is time-varying. For const.  and 0  , 
we have 0  . 

Since   is bounded in engine systems, its filtered 
version f  is also bounded, i.e. 

f
   for a constant 

0  . This together with the fact ( )t    implies that 

  is bounded for any 0k  , (i.e.    for a positive 
constant  ). In this case,   can be considered as a 
‘disturbance’ perturbing the ideal manifold in Lemma 6. 

Thus, we define the auxiliary variables P , Q  as 

,                                 (0) 0

( ) / ,   (0) 0

T

f f

T

f f lf

P P P

Q Q J N N k Q

     


        

 
 

 (45) 

where 0  is another positive constant serving as the 
forgetting factor to retain the boundedness of P  and Q . 

Then by using P  and Q , we can further define vectors 

1W  and 2W  as 

1
ˆW P Q           (46) 

2
ˆ ( ) ( ) /T T

f f f f lf
W t J N N k           (47) 

where ˆ ( )t  is the estimate of ( )t , which will be online 
updated by the following adaptive laws. 

We define max min( ), ( )    as the maximum and minimum 
eigenvalues of the corresponding matrices and first prove the 
following facts: 
Lemma 7: The variables in (46)-(47) are equivalent to 

1W P             (48) 

2
T T

f f f
W             (49) 

where ( )

0
( ) ( )

t
t T

f
e d

         is a bounded residual 

error satisfying / /
f

      , and ˆ  
is the estimation error. 
Proof. The proof can be carried out by solving the matrix 
equation (45), and substituting (44) into (46)-(47). ◇ 

Lemma 8 [28, 29]: The matrix P  defined in (45) is 



  

positive definite (i.e. min 1( ) 0P    ) provided that the 
regressor matrix   in (41) is Persistently Excited (PE), i.e. 

( ) ( )
t T

T

t
d I   


   , 0t   for 0,  0T   . 

Proof: Please refer to our previous work [28, 29] for a 
similar proof.    ◇ 

As indicated in Lemma 7, we can find that the variables 
1 2,  W W  derived from the measured engine variables are 

measures of the estimation error  , in particular when 
0  . Thus, as from our previous work [28, 29], they can 

be used to drive adaptive laws with guaranteed convergence. 
In particular 2W  is suited to estimate time-varying 
parameters, as demonstrated in the next section.  

A. Constant Learning Gain 

The following adaptive law is first designed to online 
update ̂  as 

1 2
ˆ ( )W W            (50) 

where 0   is a constant gain, and 0   is a constant 
chosen to tradeoff the performance and robustness. 

Theorem 3: Consider the engine crankshaft dynamics (41) 
with unknown parameter   and the adaptive law (50). 
When   is PE, then   converges to a compact set 

2 2 2 2 2 2 1
min max

1
1 min

[ ( 1/ ) / ( )] ( )|
2( 3 / 2 ) ( )

m m

m

     
 





          
   

  , and 

the engine torque estimate can be obtained as ˆ
ê
   . 

Proof: We select a Lyapunov function as 1 / 2T
V

     
and use Young’s inequality / 2 / 2T T T

a b a a m mb b   for 
any constant 0m  , and then can calculate V  along (50) 
with (48) and (49) as 

1

2 2 2 2 2 22

1 2 2
min

3( )
2 22 2 ( )

T T T T T T T

f f fV P

m m m

m

V

   

     


 

            

      


  

        




(51) 

where 1
1 max2( 3/2 )/ ( )m      , 2 2 2 2 2 2

min( 1/ ) / 2 / 2 ( )m m          
are all positive when the parameter is set as 13/ 2m  . 
Then, the solution of (51) is ( ) (0) /t

V t e V
    , which 

implies 21 1 1
min min( ) (2 ( ) / (0) ) 2 ( )//t

maxt eV
             

     . 

Thus, the estimation error   exponentially converges to a 
compact set defined in Theorem 2, whose size is determined 
by the excitation level (e.g. 1 ), the residual error   due 
to variations of parameters and the adaptive gain  . The 
convergence rate   depends also on the persistent 
excitation level 1  and the learning gain  .  ◇ 
Remark 6: Note the matrix P  in (45) and (48) versus the 
regressor matrix T

f f
  in (49). Hence, P  represents the 

(averaged) data history of the instant information T

f f
  . 

P is invertible once the regressor   is PE (Lemma 8). 
Hence, 1W  is also a filtered version of 2W  by applying 
1/ ( )s  in (49). This again introduces an ‘averaging’ 
effect and improves the robustness of the adaptive laws. 1W  
is essential to estimator convergence and robustness. 
However, the ‘averaging’ effect may reduce the ability to 
track fast time-varying parameters. (The influence of a 
similar ‘averaging operator’ was discussed in [20] for the 
least-squares algorithm). On the other hand, the variable 2W  
contains the instant error information which can help to 
estimate fast time-varying dynamics, while it may be 
sensitive to noise. In this respect, the constant   is chosen 
as a tradeoff between performance and robustness.  

Remark 7: As shown in Lemma 7, a large filter parameter 
  can reduce the amplitude of the residual error  , while 
too large   may introduce a dc gain 1/   in (45) and 
decrease the amplitude of P ; thus a large   may reduce 
the convergence speed of the adaptive law (50). Thus, the 
parameter   cannot be set too large in practice. 

Remark 8: It should be noted that the proposed adaptive law 
(50) can be directly used for estimating unknown constant 
parameter  (i.e. 0  ). In this case, we know that 

0    is true, such that the estimation error of the 
adaptive law (50) will exponentially converge to zero. 

B. Time-varying Learning Gain 

It is shown that the estimation error   in (48)-(49) is 
associated with the time-varying regressor f  for the 

matrices P  in (48) and T

f f
  in (49), respectively. The 

involvement of such dynamics in the adaptive law (50) may 
not be desirable, because the error convergence speed of (50) 
increases for large regressor T

f f
   and P , while the 

amplitude of residual terms   and T

f
  in 1 2,  W W  also 

increases for large regressor f , and thus leads to a large 
error bound defined in Theorem 3. This contradictory effect 
of P  in (48) and T

f f
  in (49) can be compensated and 

the estimation response improved. Inspired by the 
Least-squares algorithm, we introduce a time-varying 
adaptive gain to compensate for the effects of P  and 

T

f f
   in (50). We now derive another matrix K  as 
follows 

1
0, (0) 0T

f f
K K K K K K

        (52) 

Then based on the equality 1 1 1 0
d d

KK KK K K
dt dt

     , 

one can obtain 
( ) 1 1

0 00
[ ( ) ( ) ] [ ]

t
t t T t

f f
K e K e d e K P

                (53) 

From (53), we can find that the matrix K exponentially 
converges to the inverse of P , i.e. K P I  . 
Consequently, we can use K  as an adaptive learning gain to 



  

eliminate the effect of P in the adaptive law. This provides a 
modified adaptive law 

1 2
ˆ ( )K W W        (54) 

where 0   is a constant and K  is the time-varying 
matrix which is online updated based on (52). 

Before presenting the main results of this section, we first 
analyze the boundedness of K  based on (53) as 

1 1 ( )

0
( ) (0) ( ) ( )

t
t t T

f f
K t e K e d

              (55) 

Considering the PE condition ( ) ( )
t T

T

t
d I   


   , 

one can verify for 0t T   the following inequality 
1 ( ) ( )

0
( ) ( ) ( ) ( ) ( )

         

t t
t T t T

f f f f
t T

T

K t e d e d

e I

      



    





     



  


(56) 

On the other hand, for any bounded regressor 
f

  , 
one can also verify from (53) that 

1 1 2 ( ) 2
00

( ) (0)
t

t
K t K e d K I

           (57) 

Consequently, it follows from (56)-(57) that 
1 2( )I K t I       (58) 

for constants 2
1 min 01/ ( ( ) )K     and 2 /T

e   . 
Now, the main results of this subsection can be given as:  

Theorem 4: For engine crankshaft dynamics (41) with 
unknown parameter  , the adaptive law (54) is used when 
  is PE, then   converges to a compact set defined by 

2 2 2 2 2 2 2
2 1

2
1 1 2

[ ( 1 / ) / ]
(2 / / 3 / )

m m
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

, and the engine 

torque can be obtained as ˆ
ê
  . 

Proof: We select a Lyapunov function as 1 / 2T
V K

    , 
then its derivative V  is calculated along (52) and (54) as  
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(59) 

where 0m   is a constant which has been used for 
Young’s inequality similar to Theorem 3. Then as for the 
analysis in the proof of Theorem 3, the ultimate bound of the 
estimation error shown in Theorem 4 can be calculated from 
(59). The convergence rate here depends stronger on  . 
Hence, compared to Theorem 3, it is noted that the learning 
gain   can be chosen as a larger constant to reduce the 
error bound and to increase convergence.  
Remark 9: Lemma 8 provides an intuitive method to online 

validate the PE condition of regressor   by calculating the 
minimum eigenvalue of P  and test for min 1( ) 0P    
as [28, 29]. This PE condition is used to prove the 
convergence for adaptive laws (e.g. [30]).  

VI. SIMULATION 

In this section, we first validate the proposed estimation 
methods by using a dynamic simulator, which was built in a 
commercial engine simulation software GT-Power (Ricardo 
Wave) based on a well calibrated engine model. 

A. GT-Power Model 

  The engine model is a commercially available benchmark 
simulation model in GT-Power [31], which is based on a 
turbocharged 2.0 L four-cylinder SI engine with direct 
injection. It is well calibrated from geometry measurements 
(valves, pipes, cylinders etc.) and practical experiments. We 
predefine the engine speed profile, and then the throttle angle 
is driven by a feedback controller to cope with the load 
demand. In comparison to the MVEM used in [24], the GT 
power model can simulate more realistic engine 
characteristics because the thermal mechanics and the 
emission dynamics can be more accurately modelled [31].  

B. Simulation Results 

By using a speed feedback controller, the engine model 
runs from acceleration to deceleration, i.e. 2200 2500N    

 2200 1900 [RPM]  at 0,  4,  12 and 14 [s]t   to test the 
transient response covering a relatively wider engine 
operation regime. Thus, both the transient and steady-state 
response of the engine model can be shown in Fig.2, where 
the throttle angle, the engine speed, the air mass flow rate 
and the load torque are provided. 

 
Fig. 2 The engine dynamics of the GT-Power model 

For fair comparison, the following performance indices 
are used to evaluate the estimation error e

  response.  

1) Integrated Squared Error (ISE) 
2 ( )

e
ISE t dt        (60) 

2) Maximum Absolute Error (MAE) 

 max ( )
e

MAE t       (61) 

3) Standard Deviation (SD) 



  

 
21 ( )

e e
SD t dt

T
       (62) 

where e
  is the average error. It is noted that the above 

performance indices have been widely used to characterize 
the error performance [37-38]. The MAE is a temporal worst 
case of the absolute estimation error, while SD can quantify 
the variation or dispersion of a set of data values. These 
performance indices are not necessarily valid for 
time-invariance cases only. 

We first test the three unknown torque estimators 
presented in Section III. The proposed UIO (14) is compared 
with the sliding mode estimator (21) and the dirty 
differentiation estimator (24) with 0.01k   and 1 150  , 
and zero initial condition. In order to validate the robustness 
of these estimators, random noise 1 (0,20)w N  and 

2 (0,20)w N  are added to the measured engine speed N  
and load torque l

 . Fig.3 shows the torque estimation 
performance of these three different methods. The 
corresponding torque estimation errors are presented in Fig. 
4. It is found from Fig.3 and Fig.4 that the proposed UIO (14) 
achieves a better response than (21) and (24) in terms of 
both transient and steady-state response. This is because the 
sliding mode estimator (21) has the unavoidable chattering 
phenomenon and thus leads to oscillations in the estimated 
torque. Moreover, the estimator (24) is sensitive to the 
sensor noise, where the estimation error bound is affected by 
the upper bound of the second order derivative of the engine 
speed, i.e. N , as illustrated in Lemma 5.  

 
Fig. 3  Torque estimation with different methods: (a) UIO 
(14); (b) Sliding mode estimator (21); (c) Dirty 
differentiation estimator (24) 

These observations can also be illustrated by using the 
above three performance indices, which are calculated using 
the data point from 5s to 30s. The indices are shown in Table. 
III. The ISE and SD of (14) is much less than the others. 
However, it is noted that the MAE of the estimator (24) is 
slightly smaller than that of (14). This can be explained by 
the fast convergence of (24) at transients in spite of its poor 
robustness to noise. 

TABLE III. TORQUE ESTIMATION PERFORMANCE INDICES 

Index UIO Sliding mode Dirty differentiation
ISE 3.5653e+4 1.3739e+5 1.0814e+5 

MAE 19.0230 20.4237 18.9628 
SD 2.8135 4.9259 4.9015 

 
Fig. 4 Torque estimation errors with different methods: (a) 
UIO (14); (b) Sliding mode estimator (21); (c) Dirty 
differentiation estimator (24) 

We further test the adaptive time-varying parameter 
methods from Section V, i.e. the adaptive law (50) with 
constant learning gain and the adaptive law (54) with 
time-varying learning gain. The parameters in (42) and (45) 
are 0.01,  10k    and [0.1 100]diag   for (50) with 
zero initial condition ˆ (0) 0  . Again, the same random 
noise signals are added to test the robustness of these 
adaptations. The adaptive laws (50) and (54) are verified 
with 0   and 0.1  , respectively; in the second case, 
the instant information in 2W  is used together with 1W , 
which is dedicated to improve transient convergence response, 
but the use of this instant information may be more sensitive 
to noise in steady-state.  

Fig. 5 and Fig. 6 depict the torque estimation performance 
and the corresponding estimation errors. The performance 
indices are also shown in Table IV. It can be found that the 
adaptive law (54) with a time-varying learning gain has 
overall better performance than the adaptive law (50) with a 
constant learning gain, i.e. the three indices are all smaller 
when including the time-varying gain K . This can be also 
reflected in Fig. 6 (a)-(b) when comparing to Fig. 6 (c)-(d). 
As we explained in Theorem 3, the time-varying gain K  
can compensate for the influence of matrix P  and thus can 
improve the steady-state convergence response.  

Furthermore, it is obvious that Fig. 6 (b), (d) contain more 
high frequency oscillations than Fig. 6 (a), (c) due to the use 
of 2W  with instant error information in (49), which is 
sensitive to noise as we analysed in Remark 6. However, the 
advantage of including 2W  can be seen in Fig. 6 that the 
peak errors at the transients points (e.g. 12s and 24s) in Fig. 
6 (b), (d) are reduced compared to Fig. 6 (a), (c). This is also 



  

reflected from Table. IV, which indicates that the ISE, MAE 
and SD are reduced when   changes from 0 to 0.1. This 
proves that 2W  is beneficial to track fast time-varying 
dynamics. In these case, we also found that the estimated 
parameters 1( )t  and 2 ( )t  corresponding to N  and 

ai
m  are all bounded. 

 
Fig. 5 Torque estimation with: (a) adaptive law (50) with 

0  ; (b) adaptive law (50) with 0.1  ; (c) adaptive law 
(54) with 0  ; (d) adaptive law (54) with 0.1   

 
Fig. 6 Torque estimation errors with: (a) adaptive law (50) 
with 0  ; (b) adaptive law (50) with 0.1  ; (c) adaptive 
law (54) with 0  ; (d) adaptive law (54) with 0.1   

TABLE IV. TORQUE ESTIMATION PERFORMANCE INDICES 

Index Constant Gain Time-varying Gain 
  0   0.1   0   0.1   

ISE 1.5473e+5 1.3263e+5 1.7152e+5 7.4863e+4 
MAE 19.2048 14.8248 19.6502 12.7438 
SD 2.6222 2.4279 2.7607 1.8234 

VII. PRACTICAL VALIDATION 

This section will present the practical results based on an 
engine test rig with dynamometer to further validate the 
practical application of the proposed methods. 

A. Description of test bench 

The test engine is a turbocharged 2.0 L diesel engine with 
rail direct injection, the specifications of which is presented 
in Table. V. The engine incorporated a high pressure cooled 
EGR system. The maximum torque is 320Nm at 1800- 
2000rpm and maximum power is 95kW at 3800rpm. It is 
mounted on a test bench and coupled to a McClure 215 kW 
transient dynamometer as shown in Fig. 7. The whole system 
is controlled using a CP CADET V14 control and data 
acquisition system. 

TABLE V. ENGINE SPECIFICATIONS 

Property Description 
Engine type Turbocharged diesel 

Cylinder 4 
Injection pressure 1400 bar 

Compression 
ratio 16 

Max Torque 320Nm at 1800-2000rpm
Max Power 95kW at 3800rpm 

Capacity 1998 cc 
Turbocharger Garrett variable geometry

 
Fig. 7  Engine test bench used for experiments. 

B. Practical Results 

Without loss of generality, we control the engine speed 
within 1000-2500 RPM and the applied load torque within 
0-300 Nm during experiments. The engine dynamics are 
measured as presented in Fig 8. Sine sweep excitation 
signals were used to vary the engine speed. The load with 
both slow and fast transient operating conditions is simulated 
[36] in the practical data collection experiments.  

We first test the three UIO based torque estimators 
presented in Section III. The parameters used in these 
estimators are set as 0.01k   and 1 350  . Fig. 9 and 
Fig. 10 present the torque estimation results and errors. The 
performance indices are calculated using the data point from 
5s to 30s, which are given in Table. VI. It can be verified 
again that the proposed estimator (14) can obtain better 
performance compared to the sliding mode estimator (21) 
and the dirty differentiation estimator (24). 

TABLE VI. TORQUE ESTIMATION PERFORMANCE INDICES 

Index UIO Sliding mode Dirty differentiation
ISE 1.5264e+06 3.4639e+06 4.2208e+06 

MAE 18.8252 26.5097 24.8369 
SD 2.9120 4.2565 4.8424 



  

We finally test the adaptive laws for time-varying 
parameter estimation proposed in Section V, i.e. the adaptive 
law (50) with constant learning gain and the adaptive law 
(54) with time-varying learning gain. The parameters used in 
these adaptive laws are the same as those used in the above 
simulations. Fig. 11 presents the practical results of torque 
estimation errors. Table VII shows the corresponding 
performance indices. 

 
Fig. 8 Engine dynamic measurements in experiments. 

 
Fig. 9 Torque estimation with different methods: (a) UIO (14); 
(b) Sliding mode estimator (21); (c) Dirty differentiation 
estimator (24). 

 

Fig. 10 Torque estimation errors with different methods: (a) 
UIO (14); (b) Sliding mode estimator (21); (c) Dirty 
differentiation estimator (24). 

 
Fig. 11 Torque estimation with: (a) adaptive law (50) with 

0  ; (b) adaptive law (50) with 0.1  ; (c) adaptive law 
(54) with 0  ; (d) adaptive law (54) with 0.1  . 

It can be verified again that the adaptive law (54) with 
time-varying learning gain has better steady-state 
performance than adaptive law (50) with constant learning 
gain. Moreover, the use of 2W  with instant error 
information may be sensitive to sensor noise, thus   needs 
to be carefully set to obtain a trade-off between robustness 
and performance.  

TABLE VII. TORQUE ESTIMATION PERFORMANCE INDICES 

Index Constant Gain Time-varying Gain 
  0   0.1   0   0.1   

ISE 8.6268e+5 3.0278e+5 1.0647e+6 3.5609e+5 
MAE 15.4241 9.4317 17.2514 9.6780 
SD 2.1888 1.2967 2.4291 1.4044 

VIII. DISCUSSION 

Practical and simulation results show that the UIO (14) 
can obtain better performance than the sliding mode 
estimator and the dirty differentiation estimator. The 
adaptive parameter estimator (54) with time-varying learning 
gain can even have better results than that (50) with constant 
gain. Furthermore, it is also interesting to compare the two 
different torque estimation methods, i.e. unknown input 
observer and parameter estimation. Clearly, the UIO (14) is 
simple and easy to implement. Only one parameter k needs 
to be selected. Hence, it requires less computational costs, 
which is more suited for practical applications. The adaptive 
parameter estimator (54) can provide smoother and 
improved estimation performance (e.g. smaller ISE in all 
cases), because the engine dynamics (e.g. relationship 
between engine torque, speed and air mass) are considered in 
this scheme. Moreover, the latter one also provides some 
insights of the implicit relationship between the effective 
torque and the internal engine dynamics, i.e. the air mass 
flow rate and the engine speed. Nevertheless, the 
time-varying parameter estimation imposes a higher 



  

computational burden due to the online calculation of the 
auxiliary variables (e.g. P , Q , 1W , 2W  and K). 

Moreover, the large peak errors encountered in the 
transient period (shown in above figures) are due to the fact 
that we set all initial estimation conditions as zero (e.g. 
ˆ (0) 0  ). Hence, there may be large transient errors before 

the proposed estimators achieve convergence. However, this 
transient process presented in the paper is very fast (e.g. less 
than 1 second). This phenomenon is quite normal for every 
estimation scheme presented in other papers (e.g. [11]). In 
fact, the transient estimation errors can be diminished if we 
have a priori information of the system parameters, which 
can help to set better initial errors (e.g. initialize ˆ (0)
around its true values  ) to reduce the transient errors. 

IX. CONCLUSIONS 
This paper addresses the online estimation of unknown 

effective engine torque with measured engine speed, load 
torque and air mass flow rate, and presents two different 
frameworks: unknown input observer (UIO) and time- 
varying parameter estimation. Thus, the paper presents a 
novel simple UIO and several adaptive laws. The first UIO 
only uses the engine crankshaft rotation dynamics, requests 
low-pass filter operations with only one tuning constant, and 
thus is simple for implementation. Both the convergence and 
robustness of this UIO are compared with two other UIOs; it 
provides smoother performance and comparable robustness 
compared to sliding mode estimator. Considering the fact 
that the torque can be presented in a parameterized form, 
which has time-varying dynamics corresponding to the air 
mass flow rate and the engine speed, a novel adaptive 
parameter estimation algorithm is suggested to estimate such 
time-varying parameters. The essential feature of this 
adaptation is that it is driven by the parameter estimation 
error and uses time-varying learning gains. In this respect, 
the proposed adaptive laws can pave a potential way to solve 
the problem for time-varying parameter estimation in other 
applications. The proposed methods derived based on 
MVEM are generic, and thus they are applicable to different 
engines, e.g. port injection naturally aspirated Gasoline 
engines, direct injection turbocharged Gasoline engines, and 
turbocharged direct injection Diesel engines. Moreover, 
these algorithms have been validated under realistic 
conditions. Both simulations based on an engine simulator 
built in commercial software (GT Power) and practical 
results based on a dynamometer test-rig are presented to 
support the theoretical studies. The small estimation errors 
also demonstrate the commercial potential of these 
algorithms. 
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