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Vehicle Lateral Dynamics Estimation using Switched Unknown Inputs

Interval Observers: Experimental Validation

Sara Ifqir, Naima Ait Oufroukh, Dalil Ichalal and Saı̈d Mammar

Abstract— A systematic design methodology for interval es-
timation of switched uncertain linear systems subject to un-
certainties and unknown inputs is presented. The uncertainties
under consideration are assumed to be unknown but bounded
with a priori known bounds. The proposed observer is used
to robustly estimate the vehicle yaw rate and lateral velocity
using a vision system measurement. The road curvature is
treated as an unknown input and a linear adaptive tire model
is considered to take into account the changes of the road
adhesion. Sufficient conditions allowing the design of such
observer are derived using Multiple Quadratic ISS-Lyapunov
function and an LMIs (Linear Matrix Inequalities) formulation
is obtained. Performance of the algorithm is evaluated using
vehicle real data, results show that the proposed estimation
scheme succeeds to appropriately estimate the upper and lower
bounds of vehicle lateral dynamics despite of the presence of
unknown inputs.

I. INTRODUCTION

A basic requirement for autonomous vehicle systems

operating in unstructured environments is the ability to

efficiently estimate the state in the presence of parameter

uncertainties and disturbance inputs. Most existing methods

for estimation of vehicle lateral dynamics state rely on a

deterministic analysis that assumes accurate knowledge of

the vehicle parameters [11], [12], [13] and [14]. However,

in field conditions, vehicle parameters, such that, mass,

location of the center of gravity and cornering stiffness at

the front and rear tires, might have significant uncertainties

due to vehicle motions, different load conditions, and road

frictions. Note that, the change on road conditions is one of

the most important factors which can significantly influence

the estimation accuracy. In the literature, there is a few

works that explicitly take into consideration the cornering

stiffness uncertainties. For example, [15] uses a linear system

identification while [16] use an adaptive observer to identify

the cornering stiffness coefficients at the front and rear tires.

Liu and Peng proposed in [17] an identification scheme

to estimate simultaneously the states and the parameters.

However, this approach shows slow convergence for non-

nominal conditions.

The main particularity of this work is that the front and rear

cornering stiffness are assumed to be unknown but bounded

with a priori known bounds. A switched representation

is also considered to take into account the variations of

longitudinal velocity. An interval observer is then designed

to estimate upper and lower bounds of the state vector under
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consideration of suitable intervals in which the true but

unknown cornering stiffness parameters values are definitely

included.

It should be recalled that, an interval observer is a pair of

estimators whose dynamics are defined such that their tra-

jectories characterize at any instant upper and lower bounds

of the state values. They are appeared in the last decade as

an alternative approach for robust estimation and they were

originally developed in [18] for the estimation of biological

systems subject to unknown uncertainties. There are various

approaches to design interval observers for continuous times

systems, see for instance [8], [21], [20], [19] and references

therein. Let us recall that a few works exists on design of

such observer for switched systems, see for example the

recent results presented in [22] and [23] in which interval

observers were designed for switched linear systems subject

to exogenous disturbances and measurement noises. Note

that, an interval observer for switched LPV (Linear Parame-

ter Varying) systems was proposed in [5] with application

to vehicle lateral dynamics estimation. Unfortunately, the

proposed observer is not able to deal with unknown inputs.

The objective of this paper is to propose some new results on

switched interval observers for switched uncertain systems

subject to unknown inputs. Furthermore, it should be pointed

out and to the best of the authors knowledge, a few results

exist on design of interval observer for switched systems

subject to parameter uncertainties and unknown inputs.

A solution to the problem of robust state estimation for a

class of continuous uncertain switched linear systems under

constrained switching signal is proposed. Taking into account

the parameters uncertainties and unknown inputs, the main

contribution of this paper is as follows: -1- The robust state

estimation is achieved by means of a new structure of time-

varying unknown inputs interval observer which incorpo-

rates the nominal state matrix. -2- Sufficient conditions for

existence of the proposed observer is formulated in terms

of Linear Matrices Inequalities using Multiple Quadratic

ISS-Lyapunov Functions. -3- Design of switched interval

observer for robust estimation of vehicle lateral dynamics.

The effectiveness of the proposed approach is validated

through experimental data.

The outline of the paper is as follows: section 2 introduces

some preliminaries and definitions. Section 3, gives the

vehicle lateral dynamics model and the problem statement.

A design methodology of the proposed Switched Unknown

Input Interval Observer is presented in section 4. The exper-

imental validation using real data is presented in section 5.

Section 6 concludes the paper.



II. PRELIMINARIES

A. Notations

Left and right endpoints of an interval [x] will be denoted

respectively by x− and x+ such as [x] = [x−, x+]. For any

two vectors x1, x2 or matrices M1, M2 the inequalities x1 ≤
x2, x1 ≥ x2, M1 ≤ M2 and M1 ≥ M2 must be interpreted

component-wise. mîĵ denotes the element on the îth line

and ĵth column of the matrix M . M > 0 (resp. M < 0)

denotes a matrix with positive (resp. negative) components

and M ≻ 0 (resp. M ≺ 0) means that the matrix is positive

(resp. negative) definite. M† denotes the generalized inverse

of the matrix M . MT means the transpose of matrix M. R

(R+) is the set of all real (positive) numbers. Rn (Rn
+) is n-

dimensional real (positive) vector space. We denote by In an

identity matrix of dimension n× n. The absolute value and

euclidean norm of a vector x ∈ R
n is denoted respectively by

|x| and ‖x‖. Let a vector x ∈ R
n and a matrix M ∈ R

n×n,

we denotes, x = max{0, x}, x = x − x, M = max(0,M)
and M =M−M . By K, we will denote the class consisting

of all functions α : R+ → R+ which are continuous, strictly

increasing, and satisfy α(0) = 0. By K∞, we will denote the

class of functions of class K and α(s) → +∞ as s→ +∞.

B. Interval Analysis and positive systems

Definition 1. [7] A real matrix M is called Metzler matrix

if all its elements outside the main diagonal are positive:

mîĵ ≥ 0, ∀î 6= ĵ.

Lemma 1. [8] A matrix M is a Metzler if and only if there

exist η ∈ R+ such that M + ηIn ≥ 0.

Lemma 2.[9] Consider a continuous time uncertain switched

system of the following general form

ẋ(t) = Aσ(t)x(t) + δσ(t)(t) (1)

where x ∈ R
n×n is the state, σ(t) : R+ → I = {1, 2, ..., N}

is the switching rule, δ ≥ 0 represents additive uncertainty.

The system (1) is said to be positive, i.e. x(t) ≥ 0, ∀t ≥ t0, if

Aσ(t) is Metzler matrix ∀σ(t), x(t0) ≥ 0 and δσ(t)(t) ≥ 0.

Lemma 3. [6] Let the vector x ∈ R
n be a variable vector

with given bounds x+ x− ∈ R
n such that x− ≤ x ≤ x+.

1) If M ∈ R
n×n is a constant matrix, then

Mx− −Mx+ ≤Mx ≤Mx+ −Mx− (2)

2) If M ∈ R
n×n is a variable such that M− ≤M ≤M+

for some M−, M+ ∈ R
n×n, then

M+x+ −M
+
x− −M−x+ +M

−

x− ≤Mx ≤

M
+
x+ −M+x− −M

−

x+ +M−x−
(3)

C. Input-to-state stability of switched systems

We will briefly review in this subsection the main idea

of Multiple Input-to-State Stable-Lyapunov Functions as a

tool for stability analysis of switched systems. To this end,

consider the switched system (1), and, suppose that we

can find a family of Quadratic Lyapunov functions {Vi :
i ∈ I}, associated with each subsystem ẋ = Aix + δi,

i ∈ I. Then, V (x(t)) is called a piecewise Quadratic

ISS-Lyapunov function candidate if it can be written as

V (x(t)) = Vσ(t)(x(t)), where Vσ(t)(x(t)) is switched among

Vi(x(t)) = xT (t)Qix(t) in accordance with the piecewise

constant switching signal σ(t).
Definition 2. [5] For a switching signal σ(t) and any t2 >

t1 > t0, let Nσ(t1, t2) be the number of switching over the

interval [t1, t2). If the condition Nσ(t1, t2) ≤ N0 +
(t2−t1)

τa
holds for N0 ≥ 1, τa > 0, then N0 and τa are called the

chatter and the average dwell time bound respectively.

Lemma 4. Consider the switched system (1), and let ε > 0.

Suppose that there exist smooth functions Vσ(t) : R
n → R ,

σ(t), K-function γ, two K∞ functions β > α > 0 such that

for each σ(t) = i, the following conditions hold:

α(‖x(t)‖) ≤ Vi(x(t)) ≤ β(‖x(t)‖) (4)

V̇i(x(t)) < −εVi(x(t)) + γ(‖δσ(t)‖) (5)

then the system (1) is Input-to-State Stable with respect of

the additive term δσ(t) for any switching signal with Average

Dwell Time

τa ≥ τ∗a =
ln(µ)

ε
(6)

where µ = β
α

.

Remark 1. Note that, µ = 1, corresponds to the case when

the system is Uniformly Input-to-State Stable. This implies

the existence of a common ISS-Lyapunov function for the

switched system (1), and thus the system is ISS-Stable

under arbitrary switching. It should be noticed that the ADT

method proposed in [10], [5] needs the conditions (4)-(5)

and an additional condition as

Vi(x(t)) ≤ µVj(x(t)), µ ≥ 1, i 6= j, i, j ∈ I (7)

which place restrictions on the switching instant to guarantee

stability of the overall switched system. Moreover, Lemma

4 needs fewer conditions and it is easy to demonstrate that

using (4) and (5) leads to condition (7) for an appropriate

choice of α and β ensuring the existence of µ ≥ 1.

Proof. Due to space limitations, the proof is omitted.

III. VEHICLE MODEL

In this section, we will first describe the vehicle lateral

dynamics based on the well known bicycle model, then the

model of the vision system measurement based on the lateral

displacement will be presented.

A. Vehicle Lateral Dynamics

In this paper, a simple model known as the bicycle

model (Figure 1) is used for Interval Observer design. This

model describes the vehicle yaw and lateral motions [1],

and largely simplifies the equations of motion of the vehicle

and reduces the implementation complexity of equations.

The two-dimensional model describing the vehicle lateral

behavior can be represented by the following differential

equations:
{

mv̇y +mvxr = Fyf + Fyr

Iz ṙ = lfFyf − lrFyr
(8)



Fig. 1. Bicycle model and vision system measurement .

where m, Iz , are the mass and the yaw moment, vx and vy
are lateral and longitudinal velocities, r is the yaw rate, lf ,

lr are distances from front and rear axle to the CG, while

Fyf and Fyr are lateral tire force of front and rear tires.

The lateral forces Fyf and Fyr are highly nonlinear and

usually functions of the wheel sideslip angle and wheel

longitudinal slip ([3], [2]). Using the so-called Pacejka magic

formula [3], and under assumption of small sideslip angle

variation, lateral forces are taken to be linear and given as:

Fyf = cf (δf − vy

vx
− lf

vx
r) , Fyr = cr(−

vy

vx
+
lr

vx
r) (9)

where cf , cr are the cornering stiffness of front and rear

tires.

In the proposed model, it is assumed that the available

measurements are yaw rate r, longitudinal velocity vx and

front steering angle δf . Gathering equations (8) and (9) and

chosen vy and r, as state variables, leads to the following

state equations:

[

v̇y
ṙ

]

=

[

−(cf+cr)

mvx

crlr−cf lf

mvx
−vx

crlr−cf lf

Izvx
−

crl
2

r+cf l2f

Izvx

]

[

vy
r

]

+

[ cf

m
cf lf

Iz

]

δf (10)

B. Vision system measurement

The vision system model describes the evolution of the

angular and lateral displacements of the vehicle from the

centerline at a particular look ahead distance ls (Figure 1).

These measurements are extracted from images obtained

with a suitable vision system, taking into consideration the

motion of car and changes in the road geometry.

The equations describing the vision system model are given

by the following state representation form:
[

ψ̇L

ẏL

]

=

[

0 0
0 vx

] [

ψL

yL

]

+

[

0 1
1 ls

] [

vy
r

]

+

[

−vx
−lsvx

]

ρ (11)

where yL and ψL are the offset and angular displacements

at a look ahead distance ls, however, ρ represents the road

curvature.

C. Problem formulation

Combining the vehicle lateral dynamics (10) and the vision

system model (11) leads to a single dynamical system subject

to the road curvature as an unknown input and describing as:
{

ẋ(t) = Ax(t) +Bu(t) + Ed(t)
y(t) = Cx(t)

(12)

with the state vector x =
[

vy r ψL yL
]T

, the control

input u(t) = δf , the unknown input d(t) = ρ and the

matrices A, B, and C defined at the top of the next page.

Note that the model (12) describing the vehicle lateral

dynamics is subject to several variations and uncertainties.

When road friction changes or when the nonlinear tire

domain is reached, the tire forces Fyf and Fyr are no longer

linearly proportional to slip angles due to the tire saturation

property.

Taking into account this variation, the linear tire model (9)

could correct the cornering stiffness by adding two uncertain

terms ∆cf and ∆cr as:

cf = cf0 +∆cf , cr = cr0 +∆cr (14)

where the linear part, denoted by ci0, i ∈ {r, f}, presents a

known nominal value and the uncertainty term, denoted by

∆ci, i ∈ {r, f}, is assumed to be unknown but bounded with

a priori known bounds. Moreover, to deal with longitudinal

velocity variations, a switched representation of the vehicle

model is used and vx is assumed to be piecewise constant.

Considering the cornering stiffness uncertainties and adopt-

ing a switched representation depending on the measured

longitudinal speed, the system (12) is transformed into a

Switched Uncertain System given as follows:
{

ẋ(t) = (A0,σ(t) +∆Aσ(t)(ξ(t)))x(t)+
(B0 +∆B(ξ(t)))u(t) + Eσ(t)d(t)
y(t) = Cx(t)

(15)

where x(t) ∈ R
n, u(t) ∈ R

m, y(t) ∈ R
p, d(t) ∈ R

q repre-

sent respectively the state, the control input, the output vector

and the unknown input. ξ(t) = [∆cf ∆cr]
T is the vector

of parameters uncertainty. σ : R+ → I = {1, 2, ..., N} is

the switching signal. Aσ(t) ∈ {A1, A2, ..., AN} and ∆B
are bounded time-varying matrices. N is the number of

subsystems known a priori. For technical reasons, let define

δ(t) = ∆B(ξ)u(t), the system (15) becomes
{

ẋ(t) = (A0,σ(t) +∆Aσ(t)(ξ(t)))x(t)+
B0u(t) + Eσ(t)d(t) + δ(t)
y(t) = Cx(t)

(16)

IV. SUIIO DESIGN AND LMI SYNTHESIS

In this section, we will first present the structure of

the proposed Switched Unknown Input Interval Observer

(SUIIO), then derive sufficient conditions in term of Linear

Matrix Inequalities for the existence of the SUIIO. For this

purpose, the following assumptions are made.

Assumption 1. We assume that there exist constants X ≥ 0
and U ≥ 0 such that ‖x‖ ≤ X and ‖u‖ ≤ U .

Remark 1. The assumption 1 is not restrictive since for

vehicle dynamics, these variables evolve in a bounded region.

Assumption 2. Assume that the input vector u(t) is bounded

with an a priori known bound ζ. Then,

u−(t) = u(t)− ζ

u+(t) = u(t) + ζ
(17)

Assumption 3. There exist known constants matrices A+
i ,

A−
i , ∆B+, ∆B− ∀i ∈ I such that:



A =









−
cf+cr

mvx

crlr−cf lf

mvx
− vx 0 0

crlr−cf lf

Izvx
−

crl
2

r+cf l2f

Izvx
0 0

0 1 0 0
1 ls vx 0









, B =







cf

m
cf lf

Iz

0
0






, E =







0
0

−vx
−lsvx






, C =

[

0 1 0 0
0 0 1 0
0 0 0 1

]

1) A−
i ≤ A0 +∆Ai ≤ A+

i

2) ∆B− ≤ ∆B ≤ ∆B+

Assumption 4. rank(CEi) = rank(Ei), q < p.

Assumption 5. rank

([

sIn −Ai Ei

C 0

])

= n+ q, holds for

all complex number s with Re(s) ≥ 0.

A. SUIIO Design

Given the system (16), consider the interval observer

structure given (19) in the top of the next page, where

x+(t), x−(t) ∈ R
n are upper and lower bounds of the state

vector x(t). Nσ(t), Kσ(t), Gσ(t), Pσ(t) and Hσ(t) are matrices

to be designed for achieving boundedness of the state vector

and unknown input decoupling. δ+(t) and δ−(t) are the

upper and lower bound of the additive term δ(t) = ∆Bu(t),
using Lemma 3 and Assumptions 2 and 3, it can be bounded

as follows δ−(t) ≤ δ(t) ≤ δ+(t) such that

δ−(t) = ∆B+x+ −∆B
+
x− −∆B−x+ +∆B

−

x−

δ+(t) = ∆B
+
x+ −∆B+x− −∆B

−

x+ +∆B−x−
(18)

The following theorem provides the conditions which should

be verified to ensure an interval estimation of the state x(t)
despite the presence of unknown inputs using the observer

structure described previously.

Theorem 1. Consider the SUIIO (19). Let Hσ(t) be chosen

such that Pσ(t) is positive element-wise, and let Kσ(t) be

chosen such that (Pσ(t)A
+
σ(t) −Kσ(t)C) is Hurwitz and

(Pσ(t)A
−
σ(t) − Kσ(t)C) is Metzler ∀σ(t). Then, for all

x−(t0) ≤ x(t0) ≤ x+(t0), the solutions of the system (16)

and (19) satisfy: x−(t) ≤ x(t) ≤ x+(t), ∀t ≥ t0, ∀σ(t).
The proof of Theorem 1 consists of two parts. The upper and

lower interval estimation errors, i.e. e+(t) = x+(t) − x(t)
and e−(t) = x(t) − x−(t) are positive which guarantees

that, at each instant, the true state, solution of the switched

system (16) lie inside the interval defined by the upper and

lower estimates x+(t) and x−(t). On the other hand, the

proposed interval observer is Input-to-State Stable ensuring

that estimated bounds remains bounded.

Proof. When the observer (19) is applied to the system (16),

the upper and lower estimation errors e+(t) and e−(t) are

governed by the following equations:


























ė+(t) = N0,σ(t)e
+(t) + (Gσ(t) − Pσ(t)B0)u(t)−

Pσ(t)Eσ(t)d(t) + Pσ(t)δ
+(t)− Pσ(t)δ

−(t)

−Pσ(t)δ(t) + (N+
σ(t) −N0,σ(t))|x

+(t)|

ė−(t) = N0,σ(t)e
−(t) + (Pσ(t)B0 −Gσ(t))u(t)+

Pσ(t)Eσ(t)d(t) + Pσ(t)δ(t)− Pσ(t)δ
−(t)

+Pσ(t)δ
+(t) + (N+

σ(t) −N0,σ(t))|x
−(t)|

where Pσ(t) = Hσ(t)C + In. If one can make the following
conditions hold ∀i ∈ I:

N+
i = PiA

+
i −KiC (20a)

N−

i = PiA
−

i −KiC (20b)

N0,i = PiA0,i −KiC (20c)

Gi − PiB0 = 0 (20d)

PiEi = 0 (20e)

The upper and lower estimation errors will then be:
{

ė+(t) = N0,σ(t)e
+(t) + ∆+

σ(t)(t)

ė−(t) = N0,σ(t)e
−(t) + ∆−

σ(t)(t)
(21)

where

∆+
σ(t)(t) = Pσ(t)δ

+(t)− Pσ(t)δ
−(t)− Pσ(t)δ(t)+

(N+
σ(t) −N0,σ(t))|x

+(t)|

∆−

σ(t)(t) = Pσ(t)δ(t)− Pσ(t)δ
−(t) + Pσ(t)δ

+(t)+

(N+
σ(t) −N0,σ(t))|x

−(t)|

(22)

It’s clear that, if Pσ(t) is positive element-wise, and, N−
σ(t)

is Metzler, then, Nσ(t) is also Metzler for any Aσ(t) in

the interval: A−
σ(t) ≤ Aσ(t) ≤ A+

σ(t). According to Lemma

2, if N−
σ(t) is Metzler matrix, since, ∆+

σ(t)(t) and ∆−
σ(t)(t)

are positive by construction (easy to check, using (18) and

Lemma 3), e+(t0) ≥ 0 and e−(t0) ≥ 0, then, e−(t) ≥ 0 and

e+(t) ≥ 0 for all t ≥ t0 implies that x−(t) ≤ x(t) ≤ x+(t).
In order to derive convergence conditions of the proposed

interval observer, we define the interval estimation error

e(t) = x+(t)− x−(t), then

ė(t) = N+
σ(t)e(t) + ∆σ(t)(t) (23)

where ∆σ(t)(t) = ∆+
σ(t)(t) − ∆−

σ(t)(t). Furthermore, if

∆σ(t)(t) = 0, the interval error (23) exponentially converges

to zero. But when ∆σ(t)(t) 6= 0 e(t) is positive bounded.

The interval state estimation problem is then reduced to

determine the observer gains matrices such that the upper and

lower estimate errors e+(t) and e−(t) evolves in the positive

orthant and the total error e(t) governed by equation (23)

achieves Input-to-state property with respect to uncertainty

represented by ∆σ(t).

Therefore the problem of designing the Switched Interval

Observer with unknown inputs is reduced to find the positive

matrices Pi satisfying (20e), equivalently the matrices Hi

satisfying,

(In +HiC)Ei = 0 (24a)

In +HiC ≥ 0 (24b)

and gains matrices Ki such that conditions of Theorem 1

holds. The general solution of (24a), ∀i ∈ I, is given by

Hi = −Ei(CEi)
† − Yi(In − (CEi)(CEi)

†) (25)



{

ẋ+(t) = N+
σ(t)x

+(t) +Kσ(t)y +Gσ(t)u(t)−Hσ(t)ẏ + (N+
σ(t) −N0,σ(t))(|x

+(t)| − x+(t)) + Pσ(t)δ
+(t)− Pσ(t)δ

−(t)

ẋ−(t) = Nσ(t)x
−(t) +Kσ(t)y +Gσ(t)u(t)−Hσ(t)ẏ − (N+

σ(t) −N0,σ(t))(|x
−(t)|+ x−(t)) + Pσ(t)δ

−(t)− Pσ(t)δ
+(t)

(19)

where (CEi) is the generalized inverse matrix of CEi, given

by (CEi)
† = ((CEi)

T (CEi))
−1(CEi) and Yi is an arbitrary

matrix of appropriate dimension chosen to satisfy (24b).

B. LMI Formulation

In this subsection, sufficient conditions using Input to

State Stability of interval error (23) are established in terms

of linear matrix inequalities (LMIs). Theorem 2 provides

sufficient conditions for the existence of such observer.

Theorem 2. For the switched system (23), suppose that

there exists a Piecewise Quadratic ISS-Lyapunov function

Vσ(t)(e(t)) where Vi(e(t)) = eT (t)Qie(t). If there exist a

positive diagonal matrices Qi, matrices Ki, β > α > 0,

γ > 0 for a given η ≥ 0, ε > 0, such that for all i ∈ I,

min
Qi,Wi,Yi

γ

α In � Qi � β In (26)

[

A+
i

T
PT
i Q

T
i − CTWT

i +QiPiA
+
i −WiC + εQi Qi

Qi −γIn

]

≺ 0

(27)

QiPiA
−
i −WiC + ηQi ≥ 0 (28)

holds, then the system (23) can estimate the lower and upper

bounds of the state vector x(t), where Ki = Q−1
i Wi and

Pi = In + (−Ei(CEi)
† − Yi(In − (CEi)(CEi)

†))C.

Furthermore the interval error (23) is Input-to-State Stable

with respect to ∆i(t), ∀i ∈ I, then, if sup‖∆i(t)‖∞ ≤
∆max, then, (23) satisfies

lim
t→∞

‖e‖2 ≤
√

γ

αε
∆max (29)

Proof. The Piecewise Quadratic ISS-Lyapunov Function is

chosen as

Vσ(t)(e(t)) = eT (t)Qσ(t)e(t) (30)

Taking the derivative of the Lyapunov function (30) along

the trajectory of the interval error dynamics in each mode i,

V̇i(e(t)) = eT (t)
(

N+
i

T
Qi +QiN

+
i

)

e(t)+

∆T
i (t)Qie(t) + eT (t)Qi∆i(t)

(31)

By adding and subtracting the terms εeT (t)Qie(t) and

−γ ∆T
i (t) ∆i(t), replacing N+

i by (20a) and denote Wi =
QiKi (31) becomes

V̇i(e(t)) =
[

eT (t) ∆T
i (t)

]T
Λi

[

e(t) ∆i(t)
]T

−
εVi(e(t)) + γ∆T

i (t)∆(t)
(32)

with

Λi =

[

A+
i

T
PT
i Q

T
i − CTWT

i +QiPiA
+
i −WiC + εQi Qi

Qi −γIn

]

then, satisfying (27) leads to

V̇i(e(t)) < −εVi(e(t)) + γ∆T
i (t)∆i(t) (33)

integrating the inequality (33) over the interval [tk, tk+1)
implies that

Vi(e(t)) < e−ε(t−tk)Vi(e(tk))+

γ

∫ t

tk

e−ε((t−tk)−s)‖∆i(s)‖22 ds (34)

Using (26), we obtain

‖e(t)‖2 <
1√
α

(

e−ε(t−tk)Vi(e(tk)) +
γ

ε
‖∆i(t)‖2∞

)
1

2

Hence, when t→ ∞ the exponential converge to zero, and,

knowing that sup‖∆i(t)‖∞ ≤ ∆max, (29) is obtained.

In order to optimize the ISS-gain given in (23), the gain

γ is minimized for a given α and ǫ. On the other hand,

according to Lemma 1, N−
i defined in (20b) is Metzler if

N−
i + ηIn ≥ 0, ∀i ∈ I, multiplying in the left side by

Qi and using (20b) together with the change of coordinates

Wi = QiKi, (28) is obtained and the proof is complete.

Remark 2. We stress that the present work rests on analysis

result in Theorem 1 which consists in finding a gain matrix

Ki ensuring simultaneously the stability of N+
i and Metzler

property of the matrix N−
i , ∀i ∈ I. However, the aforemen-

tioned requirements can be relaxed by using a time-varying

or time-invariant change of coordinates [6].

V. EXPERIMENTAL RESULTS

In this section, the proposed SUIIO is applied to exper-

imental data acquired using a prototype vehicle. Several

sensors are implemented on the vehicle: The yaw rate r

is measured using an inertial unit, the steering angle δf is

measured by an absolute optical encoder while an odometer

provides the vehicle longitudinal speed. Finally, a high

precision Correvit sensor provides a measure of the sideslip

angle. This measure is not used for observer design. It

serves only for estimation evaluation. For our purpose, we

assume that the cornering stiffness parameters are affected

by 10% uncertainty in their nominal value. Furthermore, and

as mentioned above, the switching law σ(t) depends on the

varying parameter vx which is accessible in real time, such

that:

σ(t) =







1 if v1x ∈ [v1x −∆V, v1x +∆V ]
2 if v2x ∈ [v2x −∆V, v2x +∆V ]
3 if v3x ∈ [v3x −∆V, v3x +∆V ]

(35)

The steering angle, longitudinal velocity and switching law

are shown in Figure 2. The yaw rate , angular and offset

displacements profiles are appeared in Figure 3. Using Mat-

lab optimization tools (Yalmip or Sedumi), the set of LMIs

given in Theorem 2 are solved minimizing γ. The observer



gain matrices are omitted due to the lack of space. The

simulation results are presented in Figure 3, the simulated

lateral velocity and measured variables are shown with the

corresponding estimated bounds. The inclusion property is

verified and the real data are within the estimated interval

showing the good estimate ability of the proposed observer

in spite of the presence of unknown inputs.

Fig. 2. Measurements of: Steering angle δf and longitudinal velocity vx.

Fig. 3. Interval Estimation of: Lateral velocity vy , yaw rate r, angular
displacement ψL and offset displacement yL.

VI. CONCLUSION

A methodology to cope with uncertainties in the vehi-

cle lateral dynamics model have been addressed. A new

approach for robust estimation of lateral velocity and yaw

rate is proposed, where the classical observers are replaced

with the interval one. Applicability conditions of the interval

observers are expressed in terms of linear matrix inequalities.

The proposed approach is illustrated through simulation

using real data. Finally, an appealing direction for future

works is the unknown inputs estimation, fault detection and

isolation observers for systems with faulty inputs.
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