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Abstract – Borrowing a concept from hydrodynamic anal-
ysis, this paper presents stream functions which satisfy
Laplace’s equation as a local-minima free method for produc-
ing potential-field based navigation functions in two dimen-
sions. These functions generate smoother paths (i.e. more
suited to aircraft-like vehicles) than previous methods. A
method is developed for constructing analytic stream func-
tions to produce arbitrary vehicle behaviors while avoiding
obstacles, and an exact solution for the case of a single uni-
formly moving obstacle is presented. The effects of introduc-
ing multiple obstacles are discussed and current work in this
direction is detailed. Experimental results generated on the
Cornell RoboFlag testbed are presented and discussed.

1 INTRODUCTION

As autonomous vehicles such as unmanned air vehicles
(UAV’s) become more commonplace, it is becoming in-
creasingly necessary to develop methods by which the ve-
hicles assume a higher degree of autonomy. For example,
such methods would allow the current ratio of four to five
operators for a single UAV to be inverted or better, with a
few operators capable of controlling many vehicles. An ex-
perimental scenario we have chosen to explore this issue is
RoboFlag [5], a game akin to “Capture the Flag” in which
one or two humans control a group of eight vehicles as they
attempt to capture a flag in an opponent’s territory and re-
turn to their home base. The robots must also avoid being
tagged out by an opposing team’s robot and attempt to pre-
vent the opponent capturing their own flag, all while avoid-
ing neutral obstacles. Fig. 1 depicts a global view of such
a game in progress. It is clear from the situation in the fig-
ure that low-level control tasks such as obstacle avoidance
must be automated in order for just one or two humans to
successfully play the game. Furthermore, it would be very
desirable for the automated behavior to be very intuitive in
that the operators should not be surprised by what paths
their vehicles take given the commands they have issued.

The goal of the RoboFlag game is to determine what
technologies will be required to enable a small number of
humans to manage a large number of autonomous vehi-
cles. One eventual application area of such technologies
will be in the guidance and control of UAV’s. This goal
complicates the path planning problem in that, in contrast
to car-like vehicles or manipulators, aircraft exhibit non-
linear second order dynamics which impose requirements
such as minimum speeds and turning radii that may not be
easily satisfied by current planning methods.

Figure 1: Global view of a RoboFlag game. Black vehicles, based on the
left side of the field, must capture flag (black dot) from white defense zone
(large white circle) and return it to their home zone (gray quarter circle)
without being tagged, while defending their own flag from the white team
and while avoiding neutral obstacles (gray circles).

One method for on-line robot path planning with ob-
stacle avoidance is to follow the (sometimes negated) gra-
dient of an artificial potential field which is constructed
such that the resulting vector field is exterior directed on
the boundaries of the configuration space. A major chal-
lenge in constructing these fields is guaranteeing that a ve-
hicle will reach the goal from any initial position, meaning
that the potential field has no local extrema aside from the
desired goal. There is a further complication, especially
apparent in such provably correct methods, that the paths
produced by following the gradient of a potential function
may not satisfy the second order, nonlinear dynamics of an
aircraft-like vehicle. The hydrodynamic concept of a har-
monicstream functionmay be useful with respect to both
of these issues. Stream functions (and the potential func-
tions associated with them) have no local extrema, and they
generate smoother paths then many potential functions and
hence better nominal paths for second order systems.

Potential field and stream function methods such as the
one described here offer a natural way in which a human
can interface with a group of vehicles. Rather than assum-
ing direct control over vehicle behavior, a strategy which
limits an operator to controlling a single vehicle at a time,
the human can shape the world that the vehicles perceive
by tagging various objects or locations as obstacles, goals,
or other primitives. These primitives can then be (auto-
matically) composed into a resultant field which governs
vehicle behavior and which expresses operator intent while

Richard Murray
2003 International Conference on Robotics and Automationhttp://www.cds.caltech.edu/~murray/papers/2002k_wm02-icra.html



allowing the vehicles to handle the low-level control tasks
to which computers are particularly well suited. If the op-
erator is temporarily taken away from the control task, the
autonomous vehicles have behavioral guidelines encoded
in their perceived potential field that allow them to continue
to behave in a desirable manner.

This work is motivated by problems described in [12]
and [6]. The original concept of potential-field navigation
was due to Khatib, who summarizes his approach in [7].
Koditschek and Rimon examine the topological properties
of navigation functions in [9]. Connolly and Grupen de-
scribe the application of numerical (finite-difference) solu-
tions of Laplace’s equation to robot navigation in [3]. Kim
and Khosla apply the panel method of hydrodynamic anal-
ysis to develop analytic approximations to stream functions
for complex geometry in [8]. Akishita et al. [1] have in-
vestigated the use of analytic harmonic functions based on
fluid dynamics in an approach similar to that found here.
For a more exhaustive review of the literature on potential
field navigation, particularly with respect to the application
of PDE solutions to path planning, the reader is referred to
the introduction to [10].

This paper outlines a method for synthesizing stream
functions which avoid obstacles while producing paths
suitable for an aircraft-like vehicle. The contributions of
this paper include the thorough exploration of methods for
composing analytic stream functions and the explicit treat-
ment of vehicle motion. In Section 2 an overview of poten-
tial and stream functions is given along with some mathe-
matical preliminaries describing methods for constructing
harmonic functions. An historic exact result for avoiding a
single stationary obstacle is given in Section 3 and simula-
tion results are presented; issues encountered when apply-
ing this technique to multiple obstacles are also described.
Section 4 describes a method by which obstacle motion can
be incorporated into the stream function in an exact way.
This approach, although similar to that of [1], includes a
new proof of correctness and is the primary contribution of
this paper. Section 5 contains a description of one imple-
mentation of this method and experimental results obtained
on the Cornell RoboFlag/RoboCup testbed are discussed.
A detailed examination of a new method proposed for mod-
ifying the existing theory to incorporate multiple obstacles
exactly is presented in Section 6. Finally, Section 7 pro-
vides a summary and discusses the ongoing theoretical and
experimental work related to this method. More detail on
many of these topics can be found in [14].

2 PRELIMINARIES

2.1 Potential Fields

Potential field navigation is based on vehicles following
the (sometimes negated) gradient of an artificial potential
field. Desirable properties for such a potential field are:

(1) Unique global minimum at goal state.

(2) Gradient is exterior directed (or tangent) on bound-
aries of workspace.

(3) Absence of local extrema corresponding to undesired
equilibria in the resulting vector field.

Property (1) is not difficult; it is often satisfied by having
the field shrink to−∞ at the goal. Property (2) ensures
obstacle avoidance (provided that the vehicle is capable of
following the vector field. Property (3) guarantees that ve-
hicles will not come to rest at a location other than the goal
state. Koditschek and Rimon showed by topological ar-
guments in [9] that a vector field in a workspace withm
obstacles will contain at leastm extra equilibria, and that
through careful formulation one can guarantee that these
equilibria will be saddle points. This means that a robot fol-
lowing the gradient will reach the goal state from any initial
condition excepting a set of measure zero corresponding to
the regions of attraction of the saddle points.

One method for ensuring that an artificial potential field
contains no local extrema is to formulate it as aharmonic
function:

Definition 2.1 (Harmonic function [2]). A complex-
valued functionφ : Rn → Cwhich is continuous and twice
differentiable on an open, nonempty subsetΩ of Rn and
which satisfies Laplace’s equation,

∇2φ , ∂2φ

∂x2
1

+
∂2φ

∂x2
2

+ . . . +
∂2φ

∂x2
n

= 0,

is called aharmonic functiononΩ.

Theorem 2.1 (Maximum Principle [2]). Supposeφ is
real-valued and harmonic on a connected subsetΩ of Rn

and has a maximum or minimum inΩ. Thenφ is constant.

Corollary 2.1. SupposeΩ is bounded andφ is a contin-
uous, non-constant, real-valued function onΩ that is har-
monic onΩ. Thenφ has no local extrema inΩ.

2.2 Complex Functions

The machinery of complex variables provides a conve-
nient method for synthesizing harmonic functions in two
dimensions which will be useful in the following sections.
The following definitions and theorems are all from [11],
and proofs can be found there or in [14].

A function f : C → C of the complex variablez =
x + iy which is finite and single-valued within a closed
contourC and which has a single-valued finite differential
coefficient with respect toz within C is said to beholomor-
phic. If the functionf(z) is taken to beφ(x, y) + iψ(x, y),
the following conditions are necessary and sufficient for
f(z) to be holomorphic:



(1) ∂f
∂z = 0 within C.

(2) All of the partial derivatives∂φ
∂x , ∂φ

∂y , ∂ψ
∂x , ∂ψ

∂y are con-
tinuous.

Theorem 2.2 (Cauchy-Riemann equations).Let f(z) =
φ(x, y) + iψ(x, y) = φ + iψ, whereφ, ψ : R2 → R.
Suppose∂f

∂z = 0. Then

∂φ

∂x
=

∂ψ

∂y
,

∂ψ

∂x
= −∂φ

∂y
.

These are known as the Cauchy-Riemann equations.

The real and imaginary parts of a holomorphic function
of z are calledconjugate functions. For example,φ andψ
in Theorem 2.2 above are conjugate functions.

Theorem 2.3 (Solutions to Laplace’s Equation).Conju-
gate functions are solutions to Laplace’s equation.

2.3 Stream Functions

The following definitions and theorems are again taken
from [11].

Incompressible, inviscid, irrotational fluid flow can be
described in terms of potential functions in which the flow
is always along the gradient of the fluid potential. Astream
functionis a more general function which describes incom-
pressible flow which may be viscous and/or rotational in
which the flow is along the level curves of the function, i.e.
the level curves are thestreamlinesof the flow:

Definition 2.2 (Stream Function). A stream functionψ
gives the componentsu, v of fluid velocity in thexy plane
by

u = −∂ψ

∂y
, v =

∂ψ

∂x
.

∇2ψ describes the vorticity of the flow. If the flow is
irrotational in a regionW ,∇2ψ = 0, ψ is a harmonic func-
tion onW , and the potential functionφ exists [11].

Definition 2.3 (Complex Potential). Thecomplex poten-
tial w of an irrotational two-dimensional flow of an inviscid
liquid is defined by

w = φ + iψ,

whereφ andψ are the potential and stream functions defin-
ing the flow. Equating the velocity components gives

∂φ

∂x
=

∂ψ

∂y
,

∂φ

∂y
= −∂ψ

∂x
,

which are exactly the Cauchy-Riemann equations. Thus
we see thatw is a holomorphic function ofz = x + iy in
any region whereφ andψ are single-valued. Conversely,
we can assume forw any holomorphic function ofz and
the real and imaginary parts give the potential and stream
functions for a possible flow satisfying Laplace’s equation.

The insertion of an obstacle into a flow introduces the
boundary condition that the flow be tangent to the surface.
Becauseψ is constant along a streamline, this is equivalent
to the condition that the stream function must be constant
on an obstacle’s surface. The problem of enforcing the tan-
gent boundary condition then becomes one of ensuring that
the complex potential has constant imaginary part on the
obstacle boundary. The following theorem is taken from
[11] and adapted for arbitrary obstacle locations:

Theorem 2.4 (Circle Theorem). Let there be irrotational
two-dimensional flow of incompressible inviscid fluid in the
z-plane. Let there be no rigid boundaries and let the com-
plex potential of the flow bef(z), where the singularities
of f(z) are all at a distance greater thana from the point
b. If a circular cylinder, typified by its cross-section the cir-
cle C, |z − b| = a, is introduced into the flow, the complex
potential becomes

w = φ + iψ = f(z) + f

(
a2

z − b
+ b

)
.

Proof. On the circle,|z − b| = a. Thusw reduces to

w = f(z) + f(z)

which is purely real and thereforeψ = 0 andC is a stream-
line.

The new complex potentialw is the sum of holomorphic
functions and thus is itself holomorphic, so the conjugate
functionsφ andψ satisfy Laplace’s equation. If a pointz

is outsideC, the point a2

z−b + b is insideC, and vice-versa.
Since all the singularities off(z) are by hypothesis exterior
to C, all the singularities off( a2

z−b + b) are interior toC.
Thusw has exactly the same singularities asf(z) and all
conditions are satisfied.

3 AVOIDANCE OF A STATIONARY OBSTACLE

The Circle Theorem allows the stream function for a ve-
hicle to be composed of primitives which describe differ-
ent vehicle behaviors. The most useful primitives for robot
navigation are the sink,fs(z), and the vortex,fv(z):

fs(z) = −C ln(z), fv(z) = C i ln(z),

whereC ∈ R+ is the strength of the singularity associated
with the primitive, which is assumed without loss of gener-
ality to be located at the origin. In the case of a sink flow of
strengthC into which a single, stationary obstacle of radius
a is placed at(x, y) = (bx, by) and lettingb = bx + iby,
applying the Circle Theorem gives the complex potential

w = −C ln(z)− C ln
(

a2

z − b
+ b

)
.



(a) Doublet streamlines (b) Obstacle avoidance
Figure 2: Obstacle avoidance streamlines.

The imaginary component of this complex potential is the
stream function for the flow

ψ = −C tan−1
(y

x

)

+ C tan−1




a2(y−by)
(x−bx)2+(y−by)2 + by

a2(x−bx)
(x−bx)2+(y−by)2 + bx


 .

Note that on the surface of the obstacle(x − bx)2 + (y −
by)2 = a2 and thusψ = 0, verifying that the flow is tangent
to the surface. Differentiating using the definition of the
stream function above yields the componentsu andv of
the flow velocity. In practice, the constantC is arbitrary
and the velocity is normalized to respect vehicle dynamics
while preserving its direction.

The object created upon application of the Circle The-
orem is called adoubletand is essentially the limit as a
singular source (defined as a sink, above, but with−C re-
placed byC) and sink are brought together. Fig. 2(a) de-
picts the streamlines (level curves of the stream function)
of a doublet alone. The important effect of this compo-
sition is that, in contrast to the objects created by most
other potential field methods, the doublet carries with it
the notion of an orientation. The effect of the doublet de-
pends not only on the vehicle’s position relative to it, but
also upon where the vehicle is going. This helps to pro-
duce the smooth paths observed when using this method,
and also tends to produce commands in the direction which
one would intuitively guess to be “correct” to gently veer
around an obstacle.

Fig. 2(b) depicts the streamlines obtained from the Cir-
cle Theorem for a sink flow with an obstacle. Note that
the paths generated by following the streamlines tend to be
smooth due to the tangent boundary condition; i.e. they
appear at least qualitatively to be well-suited to the dynam-
ics of an aircraft-like vehicle. Fig. 3 compares simulations
of the paths a fully-actuated vehicle witḧ~x = ~u dynamics
would follow given a potential function following the for-
mulation of [9] and one generated by the method presented
here for the same initial conditions, obstacle location, and
goal position.

All of the above statements apply exactly only to the

(a) Potential field (b) Stream function
Figure 3: Comparison of obstacle avoidance approaches.

Figure 4: Multiple obstacle avoidance.

case of a single obstacle. However, in a simple flow such as
a sink (or source) or vortex flow, the influence of an obsta-
cle falls off with the square of the distance to the obstacle.
When multiple obstacles are present, treating each obstacle
separately by the above methods has been quite successful
in both simulation and experiment as long as the obstacles
are not nearly touching one another. Fig. 4 depicts simula-
tion results for a vehicle negotiating a group of obstacles.
Work is in progress to determine more precisely how ac-
curate this approximation is, and a method by which these
results can be applied exactly to the case of multiple obsta-
cles is proposed in Section 6.

4 MOVING OBSTACLES

If the obstacles to be avoided are moving, simply us-
ing a snapshot of the configuration space at each instant in
time to calculate a quasi-static potential field will be insuf-
ficient to guarantee obstacle avoidance. This can be seen
by imagining that the vehicle is infinitesimally close to the
leading edge of a moving obstacle at a particular instant.
A navigation function is guaranteed to be exterior directed
(or at least tangent, in the case of stream functions) on the
boundary, but does not guarantee that it will produce a ve-
hicle motion which will be fast enough (ignoring actuator
constraints) to stay ahead of the obstacle. Furthermore, a
quasi-static potential function may also generate undesir-
able behavior even if obstacle avoidance is successful in
that it may direct a vehicle to pass in front of an obstacle
rather than behind it. Both of these issues can be dealt with
by a change of reference frame in which the condition for
obstacle avoidance becomes that the vector field must be
exterior (or tangent) directed on the boundary of the obsta-
cle in the rest frame of the obstacle. Stream functions offer
a convenient method for handling this condition.

Theorem 4.1 (Stream Function for a Moving Obstacle).
Consider a circular obstacle in an arbitrary irrotational
two-dimensional flow of incompressible inviscid fluid with



complex potentialf(z) as in the Circle Theorem above. Let
the obstacle be moving at constant velocity~v0 = vx + ivy.
The complex potential for the flow about the obstacle is
given by

w(z) = ws(z)− vx

(
a2

z − b
+ b

)
− ivy

(
a2

z − b
+ b

)
,

wherews is the static stream function that would be derived
if the obstacle were not moving.

Proof. Performing a Galilean transformation into the ref-
erence frame of the obstacle superimposes−~v0 on the ve-
locity field given byw(z). The complex potential for this
uniform flow isg(z) = −vxz + ivyz, so the complex po-
tential in this reference frame is given by

w′(z) = ws(z)− vxz + ivyz

− vx

(
a2

z − b
+ b

)
− ivy

(
a2

z − b
+ b

)

= f(z) + f

(
a2

z − b
+ b

)

+ g(z) + g

(
a2

z − b
+ b

)
,

which is the result given by applying the Circle Theorem to
the flow in the rest frame of the obstacle. Thus the vector
field is tangent to the obstacle boundary in the reference
frame of the obstacle and a vehicle following the vector
field will not hit the obstacle.

The result of the above theorem is to add an addi-
tional doublet which describes how the vehicle should pass
around the moving obstacle. Note that in contrast to the
sink strength discussed above, the strength of this doublet
is not arbitrary; it is that required to avoid the moving ob-
stacle and it is set by the magnitude of the obstacle’s veloc-
ity.

Fig. 5 depicts simulation results for goal seeking with
and without the additional dynamic component of the
stream function in place. The vehicle is depicted as a se-
ries of outlined circles representing equal time steps, and

(a) No dynamic
component

(b) With dynamic component

Figure 5: Moving obstacle avoidance. Vehicle (open circle) attempts to
travel to destination marked ‘x’ while avoiding moving obstacle (shaded
circle). Obstacle follows a set circular trajectory.

Figure 6: RoboFlag testbed.

the obstacle is depicted as solid circles at the same set of
times. The obstacle is moving on a circular trajectory at
a constant speed equal to the maximum speed of the ve-
hicle. In Fig. 5(a) the vehicle attempts unsuccessfully to
pass in front of the obstacle and a collision takes place. In
Fig. 5(b), the vehicle successfully avoids the obstacle by
passing behind it.

5 EXPERIMENTAL RESULTS

Stream function-based navigation has been imple-
mented on Cornell University’s RoboFlag/RoboCup
testbed [5], shown in Fig. 6. The RoboFlag vehicles are
omni-directional and capable of following nearly arbitrary
trajectories, and so are an ideal testbed for the initial
implementation of these concepts. Furthermore, the input
to the low-level controllers on the vehicles is the desired
velocity, so stream functions are particularly suited to
generating the control inputs.

The current experimental implementation requires the
velocity obtained from the stream function to be normal-
ized to suit the dynamics of the vehicle as well as the de-
sired speed range. In the case of static obstacle avoidance,
the simple dynamics of the RoboFlag vehicles allows them
to travel at nearly their maximum speed all of the time,
so the normalization simply retained the direction of the
stream function-commanded velocity and set the velocity
to this maximum. When the obstacles were moving, how-
ever, a different approach was necessary. The equations
from Section 4 separate into two independent components:
one due to the external flow and static obstacle configura-
tion, and one due to the motion of the obstacle. As dis-
cussed above, the magnitude of the velocity due to the
static configuration and goal is arbitrary prior to normal-
ization, but the magnitude of the velocity due to the obsta-
cle motion has physical meaning. Hence, when normaliz-
ing commands to satisfy actuator constraints, the dynamic
component was entirely satisfied and any remaining actu-
ator authority was devoted to the static component. Ob-
stacle avoidance was guaranteed because the external flow
was given the maximum strength possible that would al-
low the vehicle to preserve the intended direction of travel.
That is, the normalization was given by maximizing the



Figure 7: Multiple obstacle avoidance – RoboFlag experimental results.
Vehicle (open circles) travels from home zone in top left of figure to cap-
ture flag (black dot) in opponents flag zone while avoiding stationary ob-
stacles (filled circles). Time span is approximately 10s, with 0.3s between
frames.

sink strengthC with the constraints
∣∣∣∣C

~vs

|~vs| + ~vd

∣∣∣∣ ≤ vmax, |~̇v| ≤ amax,

where~vs and~vd are the static and dynamic velocity com-
ponents andvmax andamax are the maximum speed and ac-
celeration constraints on vehicle motion.

Several maneuvers were performed at a maximum speed
of 0.6 m/s. The first maneuver was a “capture the flag” ex-
ercise. Using sink stream functions, the vehicle was com-
manded to start out at a home location, travel about 4 me-
ters to a point and stop there, then return to the initial lo-
cation, all while avoiding stationary obstacles placed ran-
domly on the field. The vehicle was consistently able to
perform this maneuver without coming into contact with
the obstacles as long as the obstacle configuration was rel-
atively sparse, e.g. about four obstacles in the path from
home to goal. Fig. 7 depicts one such test run spanning 10
seconds. During this run the proposed correction to make
multiple obstacle avoidance exact described in Section 6
was in place.

The second maneuver tested was an orbit/defend ma-
neuver. The vehicle was commanded to circle a particu-
lar point at a 1-meter radius. Control of the radius was
implemented via source/sink flows at the orbit center, and
the orbit itself was implemented using a vortex. Obstacle
avoidance was again demonstrated in this maneuver. Mul-
tiple vehicles were able to perform this maneuver together,
spacing themselves equally about the circle by monitoring
the positions of the other vehicles and adjusting their own
maximum speed to compensate.

The third maneuver tested was avoidance of moving ob-
stacles. Three vehicles were commanded to circle the desti-
nation of a flag-capturing robot without avoiding obstacles.
The “capture the flag” maneuver was then run both with
and without the dynamic component of the stream function
present. Performance without the dynamic component was

very poor — unless the vehicle happened to be approach-
ing the goal at exactly the right time, it would collide with
one of the passively moving “defenders,” often because the
static stream function commanded it to try to pass in front
of the moving obstacle. The introduction of the dynamic
stream function improved performance dramatically. With
this component in place, the attacker could generally cap-
ture the flag and return without collision, following a path
that would take it behind a defender when necessary rather
than trying to hook around in front.

In all demonstrations the effects of having multiple
rather than a single obstacle seemed to be negligible as
long as the obstacles were at least one obstacle diame-
ter apart. Demonstrations of all maneuvers in simulation
were much more successful at dealing with higher obsta-
cle densities; high latency in the system (on the order of
500 ms) was the likely cause for this discrepancy. Movies
of the experiments described above are available on-
line at http://www.cds.caltech.edu/˜waydo/
streammovies/streammovies.html

6 POTENTIAL EXTENSIONS

The current focus of this work is to improve the treat-
ment of multiple obstacles. Attempts to solve Laplace’s
equation analytically with the multiple obstacle bound-
ary condition have not been fruitful, but another approach
which involves interpolating between the single-obstacle
cases may be of use in the most important case, that of a
goal-seeking (sink) flow. First it is necessary to re-examine
the velocity field in a sink flow with obstacle in a bit more
detail.

Differentiating the stream function given above for a
single (circular) obstacle in a sink flow above gives thex
and y componentsu and v of the flow velocity (omitted
here for space reasons, see [14] for details). Letro be the
distance from the point(x, y) to the center of an obstacle
located at(bx, by), i.e. r2

o = (x − bx)2 + (y − by)2. Let a
be the obstacle radius.

Theorem 6.1. The velocity field resulting from a circular
obstacle being placed in a sink flow always has a non-zero
component directed toward the origin outside the obstacle
(i.e. whenro > a).

Proof. The component of the velocity field due to the sink
is always directed toward the origin and has magnitude
(x2 + y2)−

1
2 . Hence, it is sufficient to show that the mag-

nitude of the velocity due to the doublet is always smaller
than this whenro > a.

Because of symmetry we can setby = 0 andbx > 0
without loss of generality (Note that because the obstacle
may not overlap the goal pointbx > a). With this substi-
tution and after some algebra the magnitude of the velocity



due to the doublet becomes

|~vd| =
(

a

ro

)2 1√
a2 + b2

x

(
ro

a

)2 + 2xbx − 2b2
x

.

Sincea/ro < 1 outside the obstacle it is now sufficient to
show thata2 + b2

x(ro/a)2 + 2xbx− 2b2
x > x2 + y2. We do

so by contradiction.

a2 +
(ro

a

)2

b2
x + 2xbx − 2b2

x ≤ x2 + y2

a2 +
(ro

a

)2

b2
x − b2

x ≤ x2 − 2xbx + b2
x + y2

a2 +
(ro

a

)2

b2
x − b2

x ≤ r2
o

(ro

a

)2
[(

bx

a

)2

− 1

]
≤

(
bx

a

)2

− 1

(ro

a

)2

≤ 1,

which violates the condition thata/ro < 1.

This fact allows us to interpolate between the single ob-
stacle cases without generating new equilibria. Let the con-
figuration space containm obstacles, with theith obsta-
cle, i = 1, . . . , m, having radiusai and location(bxi, byi).
Let ui andvi denote thex andy velocity components that
would exist for a sink flow about obstaclei on its own. De-
finem distance functionsdi : R2 → R,

di =
√

(x2 − b2
xi)

2 +
(
y2 − b2

yi

)2 − ai,

which is the distance from the point(x, y) to the boundary
of the ith obstacle. Finally, define interpolation functions
on thedi’s asαi : Rm → [0, 1] with the following con-
straints:

αi = 0 whendj = 0 ∀ j 6= i

αi = 1 whendi = 0
αi ∈ (0, 1) whendk > 0 ∀ k,

wherei, j, k ∈ [1, 2, . . . , m]. One such function is

αi =
∏

j 6=i

dj

di + dj
.

The proposed form of the final velocity field is

u =
∑

i

αiui, v =
∑

i

αivi.

This interpolation guarantees that on an obstacle surface
the vector field will be exactly that which would have ex-
isted in the presence of that obstacle alone; thus it guaran-
tees obstacle avoidance as above. Because it is no longer
the gradient of a harmonic function, the velocity field is no
longer guaranteed by the previous proofs to have no spuri-
ous equilibria and a new proof is required.

Theorem 6.2. The above velocity field will contain no un-
desired equilibria.

Proof. Because the flow field due to each obstacle always
contains a positive component toward the origin (goal), the
linear combination of the flow fields given above (noting
thatαi > 0 ∀ i) will also always contain such a component.
Thus the velocity is never exactly zero and the field has no
local equilibria.

7 SUMMARY AND FUTURE WORK

This paper has presented a method for composing local-
extrema free potential fields for vehicle guidance using
stream functions. These functions provide avoidance of
moving obstacles while allowing flexibility in designing
the overarching vehicle behavior. While the results pre-
sented above apply exactly only to the case of a single ob-
stacle, a promising method for treating multiple obstacles
exactly has been found. Future work will focus on several
key areas outlined below.

An important extension needed to fully exploit the pos-
sible applications of stream functions will be that to a three-
dimensional workspace. The complex potential approach is
inherently two-dimensional and will not extend readily to
this case. Two possibilities arise here. It may be that suit-
able three-dimensional problems can be posed as multiple
lower-dimensional problems to be solved simultaneously.
For example, altitude control of an aircraft may be per-
formed as a separate function from navigation in the plane
and the planar navigation problem solved via the above
methods. Also, because complex functions are only used
as part of the synthesis and analysis problems and do not
show up in the final stream function, there may be exten-
sions of the above results to three dimensions obtainable
without the complex machinery.

While the paths generated by the stream function
method appearmore likelyto be suited to vehicles such as
aircraft than those produced by other means, there is no ex-
plicit consideration of vehicle dynamics in the above for-
mulations. The guarantees of obstacle avoidance rest on
the assumption that the vehicle follows exactly the stream-
lines of the flow. Other methods, for example that followed
by Koditschek and Rimon in [9], do provide guaranteed ob-
stacle avoidance for actuator-limited vehicles by bounding
the system energy (including that of the artificial potential).
Such proofs, however, rely on the vehicle’s ability to pro-
duce force in any direction and the resulting trajectories
may not be feasible for aircraft-like vehicles. Another area
for future research is to develop a quantitative understand-
ing of the motion described by stream functions and how
vehicle dynamics including under-actuation and minimum
speed requirements might be incorporated into synthesis.

In addition to the above questions regarding the current
theory, future work will focus on handling multiple vehi-



cle formations in the stream function framework. It may
be that “flexible” formation flight and obstacle avoidance
can be incorporated together by having vehicles act as if
they are part of a viscous “blob” suspended in an inviscid
fluid; this may be an adaptation of the virtual leader method
as in [13]. It is hoped that this type of approach will nat-
urally lead to formations that adapt themselves to the en-
vironment; for example, a circular formation may become
longer and narrower as it passes between obstacles.

Several experimental thrusts are planned for the near fu-
ture as well. More tests on the RoboFlag testbed are being
planned to examine the effects of further advances in the-
ory on system performance and to begin to explore multi-
vehicle control using stream functions. Longer term testing
plans include implementing stream function-based control
on the Caltech Multi-Vehicle Wireless Testbed (MVWT)
[4]. The vehicles associated with this testbed rest on omni-
directional casters and are powered by two fixed ducted
fans; thus, they have the aircraft-like dynamics that this the-
ory was developed to address.

8 ACKNOWLEDGMENTS

Work described in this paper was supported in part by
the Defense Advance Research Projects Agency under co-
operative agreement F30602-01-2-0577 with the Air Force
Research Laboratory, Information Directorate, with Lt Col
Sharon Heise, PhD as the Program Manager, and Mr.
Carl DeFranco from AFRL Rome Laboratory as Techni-
cal Agent. Additional support for Stephen Waydo was pro-
vided by the Fannie and John Hertz Foundation. We also
thank Mark Campbell (project PI), Raffaello D’Andrea,
and Michael Babish at Cornell University for providing
programmatic support and the RoboFlag testbed.

REFERENCES

[1] S. Akishita, S. Kawamura, and T. Hisanobu. “Veloc-
ity potential approach to path planning for avoiding
moving obstacles”. Advanced Robotics, 7(5):463–
478, 1993.

[2] S. Axler, P. Bourdon, and W. Ramey.Harmonic Func-
tion Theory, pages 1–9. Springer,2nd edition, 2001.

[3] C. I. Connolly and R. A. Grupen. “On the applica-
tions of harmonic functions to robotics”.Journal of
Robotic Systems, 10(5):931–946, 1993.

[4] L. Cremean, W. Dunbar, D. van Gogh, J. Hickey,
E. Klavins, J. Meltzer, and R. M. Murray. “The Cal-
tech Multi-Vehicle Wireless Testbed”. InProc. of the
Conference on Decision and Control, 2002.

[5] R. D’Andrea, M. Babish, J.-W. Lee, and A. Klochko.
“The RoboFlag test-bed”. InTo appear: Proc. of the
American Control Conference, 2003.

[6] S. A. Heise. “Mixed Initiative Control of Automa-
teams”. Online: http://dtsn.darpa.mil/
ixo/mica.asp .

[7] O. Khatib. “Real-time obstacle avoidance for manip-
ulators and mobile robots”.International Journal of
Robotics Research, 5(1):90–98, 1986.

[8] J.-O. Kim and P. K. Khosla. “Real-time obstacle
avoidance using harmonic potential functions”.IEEE
Trans. on Robotics and Automation, 8(3):338–349,
1992.

[9] D. E. Koditschek and E. Rimon. “Robot navigation
functions on manifolds with boundary”.Advances in
Applied Mathematics, 11:412–442, 1990.

[10] S. A. Masoud and A. A. Masoud. “Constrained
motion control using vector potential fields”.IEEE
Trans. on Systems, Man, and Cybernetics, 30(3):251–
272, May 2000.

[11] L. Milne-Thomson. Theoretical Hydrodynamics.
Dover Publications, Inc.,5th edition, 1996.

[12] R. M. Murray, editor.Control in an Information Rich
World, pages 54–55. SIAM, 2003. (to appear).Avail-
able online:http://www.cds.caltech.edu/
˜murray/cdspanel .
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