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ABSTRACT This work addresses the problem of vehicle identification through non-overlapping cameras.

As our main contribution, we introduce a novel dataset for vehicle identification, called Vehicle-Rear, that

contains more than three hours of high-resolution videos, with accurate information about the make, model,

color and year of nearly 3,000 vehicles, in addition to the position and identification of their license plates. To

explore our dataset we design a two-stream Convolutional Neural Network (CNN) that simultaneously uses

two of the most distinctive and persistent features available: the vehicle’s appearance and its license plate.

This is an attempt to tackle a major problem: false alarms caused by vehicles with similar designs or by very

close license plate identifiers. In the first network stream, shape similarities are identified by a Siamese CNN

that uses a pair of low-resolution vehicle patches recorded by two different cameras. In the second stream,

we use a CNN for Optical Character Recognition (OCR) to extract textual information, confidence scores,

and string similarities from a pair of high-resolution license plate patches. Then, features from both streams

are merged by a sequence of fully connected layers for decision. In our experiments, we compared the two-

stream network against several well-known CNN architectures using single or multiple vehicle features. The

architectures, trained models, and dataset are publicly available at https://github.com/ icarofua/vehicle-rear.

INDEX TERMS Vehicle identification, vehicle matching, multi-stream neural networks, feature fusion.

I. INTRODUCTION

Identifying vehicles through non-overlapping cameras is

an important task to assist surveillance activities such as

travel time estimation, enforcement of speed limits, criminal

investigations, and traffic flow. The vehicle identification

problem can be formally defined as the process of assigning

the same label to distinct instances of the same object as

it moves over time in a network of non-overlapping cam-

eras [1]. The remarkable progress of emerging technologies

in producing low-cost cameras, capable of acquiring high-

definition images, has made the infrastructure to tackle this

problem become pervasive in many cities.

Although extensively investigated [2]–[7], this research

problem is far from being solved since several challenges

come from the high inter-class similarity, caused by vehicles

of the same make, model and/or color that often look ex-

actly the same, see Figure 1(a), vehicles with similar license

plate identifiers, see Figure 1(b), and from the high intra-

class dissimilarity, caused by abrupt illumination changes or

camera viewpoints, that makes two instances of the same

vehicle have differences, see Figure 1(c). In the remainder

of this section, we detail our research problem and the main

contributions of this work.

A. RESEARCH PROBLEM

The main issue of existing datasets for vehicle identifi-

cation [8]–[10] is the fact that the authors intentionally

redacted the license plate identifier in all images to respect

privacy restrictions, and, as explained later, the knowledge

extracted from this unique identifier is essential for solving

certain difficult matching problems, e.g., the correct identi-
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Camera 1
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(b)

(c)

FIGURE 1. Examples of challenging scenarios for vehicle identification:
(a) similar vehicles with different license plates; (b) similar license plate strings
and distinct vehicles; and (c) same vehicle under different lighting conditions.
The combination of attributes, e.g. vehicle appearance and textual information
from the license plate region, can help to improve the recognition since two
similar vehicles may have considerably different license plates and vice versa.

fication of distinct but visually similar vehicles, as shown in

Figure 1(a). However, in some regions/countries, the license

plates are linked/related to the vehicle and not to the respec-

tive drivers/owners; in other words, in such cases it is not

possible to obtain any public information about the vehicle

owner based on the license plate. One of the countries where

this occurs is Brazil [11], where we collected images to create

a novel dataset for vehicle identification that contains labeled

license plate information.

In this work, we consider a road network topology struc-

tured as shown in Figure 2, where the rear license plate

is legible in most cases – it is worth noting that in some

countries/regions, e.g. several states in the United States, the

license plate is attached only to the vehicle’s rear. The images

are taken from an elevated surveillance camera that records

simultaneously multiple road lanes. Each vehicle of interest

typically enters the field of view through the bottom part of

the frame and leaves through the top side. As can be noted,

not every vehicle seen in one camera appears in the other.

B. CONTRIBUTIONS

This work has two main contributions for the vehicle identi-

fication problem:

• We introduce a novel dataset, called Vehicle-Rear, com-

posed of high-resolution videos, that, to the best of our

knowledge, is the first to consider the same camera view

of most city systems used to enforce speed limits –

Camera 1

Camera 2

B

A

C

FIGURE 2. Illustration of the experimental environment setup: a pair of
low-cost Full-HD cameras, depicted by red dots, properly calibrated and time
synchronized are monitoring two distinct traffic lights on the same street, 546 ft
away. The road network is structured in such a way that some vehicles are
monitored only by Camera 1, see route B; only by Camera 2, see route C; or
by both cameras, see route A.

i.e., rear view of the vehicles with their license plates

legible in most cases; Vehicle-Rear is associated with

accurate information about each vehicle: make, model,

color and year, as well as the image coordinates of each

license plate region and its corresponding ASCII string;

• We propose a novel two-stream CNN architecture that

uses the most distinctive and persistent features for

vehicle identification: coarse-resolution image patches,

containing the vehicle shape, feed one stream, while

high-resolution license plate patches, with string iden-

tifiers easily readable by humans (as present in the

Vehicle-Rear dataset), feed the other stream. Such

multi-resolution strategy helps to minimize the compu-

tational effort while it makes possible to capture the

essential details for vehicle identification;

We believe that the creation of a publicly available dataset

containing images captured in real-world scenarios and la-

beled information about both the vehicle and its license plate

represents a step forward in designing different approaches

to vehicle identification, since state-of-the-art algorithms for

vehicle identification take advantage of only one of these

attributes [2], [12], [13]. We hope that our dataset and deep

architecture can also be useful for other machine learning

problems such as vehicle model identification, time-travel

estimation, among others.

The remainder of this paper is organized as follows. In

Section II, we review the literature on vehicle identification.

The proposed Vehicle-Rear dataset is described in Section III.

The two-stream architecture is described in Section IV, and

the experimental evaluation is reported in Section V. In

Section VI we discuss some alternative architectures, and in

Section VII we state the conclusions.
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II. RELATED WORK

Vehicle identification is an active field of research with

many algorithms and an extensive bibliography. As observed

by Tian et al. [14], this problem is still an open issue for fu-

ture developments of networked video surveillance systems,

in which the road camera infrastructure is used to extract ve-

hicle trajectories for behavior analysis and pattern discovery.

Traditionally, algorithms proposed for this task were based

on the comparison of electromagnetic signatures captured

from a pair of inductive or magnetic sensors [15], [16]. This

class of systems can benefit from the existing infrastructure

to capture vehicle signature profiles from inductive-loop

detectors [3], weight-in-motion devices [17], and microloop

sensors [4]. However, as stated by Ndoye et al. [4], such

signature-based algorithms are complex and depend on com-

plicated data models or extensive calibrations.

Video-based algorithms have been proven essential for

vehicle identification. As describe in the surveys of Deng et

al. [13], Wang et al. [18], and Khan & Ullah [19], handcrafted

image descriptors [20]–[23] were the first attempt to solve

this problem, e.g. Zapletal and Herout [24] and Chen et

al. [25] used HOG descriptors, Cabrera et al. [20] used

HAAR descriptors, while Cormier et al. [26] used Local

Binary Patterns (LBP) [22] – all these works also combined

other hand-crafted descriptors. Zhang et al. [27] used Scale-

Invariant Feature Transform (SIFT) [21] to distinguish be-

tween subordinate categories with similar visual appearance,

caused by a huge number of car design and models with

similar appearance. In particular, SIFT was widely explored

to extract distinctive key points from the vehicle for feature

correspondence [28].

The use of Siamese-based architectures for the specific

problem of vehicle identification is common. Tang et al. [7]

proposed to fuse deep and handcrafted features using a

Triplet Siamese Network [29] – a network that attempts to

minimize the distance between an anchor and a positive

sample and to maximize the distance between the same

anchor and a negative sample. Yan et al. [5] proposed a

novel Triplet Loss Function, which uses both the intra-class

variance and the inter-class similarity in vehicle models, but

using only vehicle shape features. Liu et al. [6] developed a

coarse-to-fine algorithm for vehicle identification that filters

out potential matchings with handcrafted and deep features

based on color and shape, and then used a Siamese network

for the license plate regions.

The idea of multi-stream Convolutional Neural Net-

works (CNNs) has also been considered by many authors

to tackle different identification problems. Ye et al. [30] pro-

posed a two-stream architecture that uses static video frames

and optical flow features for video classification. Similarly,

Chung et al. [31] proposed a two-stream Siamese architec-

ture that is also based on spatial and temporal information

extracted from RGB frames and optical flow features but

for person re-identification. Zagoruyko et al. [32] described

distinct Siamese architectures to compare image patches. In

particular, they developed a two-stream architecture that ex-

plores multi-resolution information by using the central part

of an image patch and the surrounding part of the same patch.

Specifically for vehicle identification, Oliveira et al. [33]

proposed a two-stream network fed by small patches from the

vehicle shape and the license plate region, and Guo et al. [2]

proposed a three-stream network where one stream extracts

global features from the vehicle shape and the other two

streams learn to locate vehicle features, such as windscreen

and car-head parts.

Architectures designed to recognize patterns in temporal

sequences, such as Long Short-Term Memory (LSTM) [34],

ensembles [35], and spatio-temporal (3D) convolutions [36],

may also have a major impact on vehicle identification [37],

[38]. As an example, Shen et al. [37] noted that if a vehicle

is seen by cameras 1 and 3 then it should also appear in

camera 2; thus, if no candidate is observed by camera 2,

any subsequent match should have very low confidence. The

authors employed a Siamese network fed with the vehicle’s

shape and temporal metadata to model this scenario, and an

LSTM to evaluate the visual and spatio-temporal differences

of neighboring states along with path proposals. The dataset

used in their experiments, VeRi-776 [39], was acquired by

20 cameras. Zhou et al. [38] exploited an adversarial bi-

directional LSTM network to create a vehicle representation

from one camera view that would allow modeling transfor-

mations across continuous view variations. Generative Ad-

versarial Networks (GANs) were also explored to generate

samples to facilitate the vehicle identification task [40].

License plate recognition, as we used in this work, is

one of the key attributes for successful vehicle identification

and deep networks have achieved many advances in this

field. Li et al. [41] first extracted sequential features from the

license plate patch using a CNN in a sliding window manner.

Then, Bidirectional Recurrent Neural Networks (BRNNs)

with LSTM were applied to label the sequential features,

while Connectionist Temporal Classification (CTC) was em-

ployed for sequence decoding. The results showed that their

method attained better recognition rates than the baselines.

Nevertheless, Dong et al. [42] claimed that such a method is

very fragile to distortions caused by viewpoint change and

therefore is not suitable for license plate recognition in the

wild. Thus, a license plate rectification step is employed first

in their approach, which leverages parallel Spatial Transform

Networks (STNs) with shared-weight classifiers. Recently,

Selmi et al. [43] trained a Mask-RCNN [44] to predict 37
positive classes (0-9, A-Z, and one Arabic word). Despite the

fact that promising results were reported in their experiments,

the chosen model (with an input size of 530 × 300 pixels)

is much more computationally expensive than those used in

other works (e.g., [45]–[47]) for license plate recognition,

which makes it difficult (or even impossible) for it to be

employed in some real-world applications – especially those

where multiple vehicles can coexist on the scene.

Silva & Jung [48] proposed a YOLO-based model to

simultaneously detect and recognize all characters within
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a cropped license plate. While impressive frames per sec-

ond (FPS) rates were reported in their experiments, less

than 65% of the license plates on the test set were correctly

recognized since the character classes in the training set

used by them were highly unbalanced. Accordingly, Laroca

et al. [47], [49] and Silva & Jung [46], [50] retrained that

model, called CR-NET, with enlarged training sets composed

of real images and many other artificially generated. In all

these works, the retrained networks became much more

robust for the detection and classification of real characters.

As final remarks, although some previous studies have

shown the importance of feature fusion for vehicle identifi-

cation (e.g., [2], [6], [7]), none of them explored a camera

infrastructure specifically designed for traffic law enforce-

ment as those available in many cities, where the vehicle’s

rear license plate is legible in most cases. Considering such

camera views, it is possible to develop a novel and robust

two-stream architecture that combines two decisive features

for vehicle identification: (i) shape features from the vehicle

rear-end and (ii) textual features from the license plate region.

III. DESCRIPTION OF THE VEHICLE-REAR DATASET

As detailed in Table 1, the Vehicle-Rear dataset consists of

10 videos – five from Camera 1 and five from Camera 2
(20 minutes long each video) – captured by a low-cost 5-

megapixel CMOS image sensor, time-synchronized, with a

resolution of 1,920×1,080 pixels at 30.15 frames per second.

TABLE 1. Vehicle-Rear dataset: detailed information about the number of
vehicles, with and without a legible license plate, recorded by Cameras 1
and 2; and the number of true matchings between Camera 1 and 2.

Camera 1 Camera 2

Set # Vehicles # Plates # Vehicles # Plates # Matchings

01 385 342 277 245 199
02 350 301 244 225 179
03 340 312 273 252 203
04 280 258 230 196 147
05 345 299 242 205 165

Total 1,700 1,512 1,266 1,123 893

We chose a busy avenue of the city, with traffic of different

types of vehicles, and different periods of the day to record

the videos so that each set has very specific lighting condi-

tions (see Figure 3). Note that temporal information can also

be explored in the Vehicle-Rear dataset since for each vehicle

we have between [5-25] frame occurrences per camera (de-

pending on the vehicle speed); thus, redundant information

could be used to further improve the vehicle identification.

For each video, we provide a ground truth XML file in

which each entry, corresponding to a distinct vehicle, has

an axis-aligned rectangular box of the first license plate

occurrence, the corresponding identifier in ASCII code, the

frame position, as well as the vehicle’s make, model, color

and year, which were recovered from the database of the

National Traffic Department of Brazil (DENATRAN). We

remark that the DENATRAN database is publicly available,

Camera 1

Camera 2

(a)

Camera 1

Camera 2

(b)

Camera 1

Camera 2

(c)

Camera 1

Camera 2

(d)

FIGURE 3. Image sequences from the proposed Vehicle-Rear dataset. The
temporal sequences show examples of (a) motorcycles; (b) cars and buses;
(c) trucks; (a) and (c) in normal weather conditions; (b) dark frames caused by
the motion of large vehicles; and (d) severe lighting conditions.

that is, there is no restriction on access to such information.

As far as we are aware, the proposed dataset is the first public

dataset for vehicle identification to provide information on

the appearance of the vehicles and also on their license plates.

Figure 4 and Figure 5 show the diversity of our dataset

in relation to vehicle automakers and colors, respectively. As

can be seen, there is considerable imbalance – as is likely the

case for every dataset – since vehicles of certain brands and
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colors sell more than others. Nevertheless, according to our

experiments, such imbalance did not significantly affect the

results obtained by the evaluated models.

FIGURE 4. Vehicle histogram by brand in the Vehicle-Rear dataset.

FIGURE 5. Vehicle histogram by color in the Vehicle-Rear dataset.

Finally, it is worth noting that the licenses plates of

vehicles in Brazil, where the images were collected, are

linked/related to the vehicle and no public information is

available about the vehicle drivers/owners; hence, a license

plate remains the same after a change in vehicle ownership

[51]. Considering the height and distance of the cameras, as

well as the fact that they record the rear view of vehicles,

identifying the driver/owner from the captured frames in

our dataset is not possible, to the best of our knowledge.

Finally, as detailed in Section VI, this study was officially

authorized to collect and explore open data such as the

Vehicle-Rear dataset.

IV. VEHICLE IDENTIFICATION ARCHITECTURE

In order to explore the attributes of the proposed dataset, we

design a two-stream neural network, as shown in Figure 6,

that uses the most distinctive and persistent features available

for vehicle identification: coarse-resolution image patches,

containing the vehicle shape, feed one stream, while high-

resolution license plate patches, easily readable by humans,

feed the other stream. Such a multi-resolution strategy helps

to minimize the computational effort while making it possi-

ble to capture the necessary details for the recognition. We

Shape-Stream OCR-Stream

Camera 1 Camera 2

Shape
64×64 pixels

Plate
352×128 pixels

Shape
64×64 pixels

Plate
352×128 pixels

CNN CNN

Shape descriptor

CNN-OCR CNN-OCR

OCR descriptor

W

Concatenate (Fusion)

2 × Fully Connected (512)

Fully Connected (2) / Softmax

SiameseS(c1) S(c2)

S

P (c1) P (c2)

P

Matching Non-Matching

FIGURE 6. Inference scheme of the proposed two-stream Siamese neural
network for vehicle matching.

developed a text descriptor, i.e., Optical Character Recog-

nition (OCR), which is combined with the shape descriptor

through a sequence of fully connected layers for decision.

Further details on these key steps are presented in the remain-

der of this section.

A. PRELIMINARIES

For our problem, let S(c1) = 〈s
(c1)
1 , s

(c1)
2 , . . . , s

(c1)
m 〉 and

S(c2) = 〈s
(c2)
1 , s

(c2)
2 , . . . , s

(c2)
m 〉 be two m-dimensional vec-

tors representing the deep features extracted with a Siamese

network from shape patches recorded by cameras 1 and 2,

respectively. Also, let Cn = {c0, c1, . . . , cn−1} be a non-

empty alphabet consisting of n unique elements. Then, let

f : C → N be a one-to-one function (bijection) that

maps elements of the alphabet C to unique real numbers N
according to Equation (1)

f(ci) =
i

n− 1
(1)

where i is the element position in the alphabet, such that

0 ≤ i < n, and n denotes the set size. The alphabet used

to build the license plate identifiers is composed by 26 letters

and 10 digits, thus, C36 = {A, . . . , Z, 0, . . . , 9}. This map-

ping is shown in Figure 7. Note that the lexicography order is

used to establish the mapping function f . As a consequence,
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no special arrangement among similar characters, such as D,

O, Q and 0, was done.

C N
f

A
B
. . .

Z
0
1
. . .

9

0.00
0.02..
. . .

0.71..
0.74..
0.77..
. . .

1.00

. . .

. . .

FIGURE 7. A bijective function (f ) to map license plate characters (domain C)
to real numbers (range N ).

B. SHAPE SIMILARITIES

The shape similarities are identified by a Siamese network,

which hereinafter is referred to as Shape-Stream. This partic-

ular class of neural architecture was introduced by Bromley

et al. [52] and consists of two identical networks that share

the same weights. We choose a Siamese network to compare

shape similarities because it is an effective and simple archi-

tecture to solve image matching problems.

The shape descriptor is defined as a new vector according

to Equation (2)

S = S(c1) − S(c2) = (s1, s2, . . . , sm) (2)

where each component si is given by an L1 (Manhattan)

distance, that is, si = |s
(c1)
i − s

(c2)
i | for cameras c1 and c2.

The twin networks guarantee that two similar image patches

will not be mapped to very different locations in the feature

space since they compute the same function and their weights

are tied [53]; therefore, it is expected that the vector com-

ponents are small for two instances of the same vehicle and

large otherwise. The deep features were extracted with a low

complex VGG-based CNN [33], called Small-VGG, formed

by a reduced number of convolutional layers in order to save

computational effort, as shown in Table 2.

TABLE 2. The CNN architecture used by the Siamese network in the
Shape-Stream.

# Layer Filters Size Input Output

0 conv 64 3× 3/1 64× 64× 3 64× 64× 64
1 max 2× 2/2 64× 64× 64 32× 32× 64
2 conv 128 3× 3/1 32× 32× 64 32× 32× 128
3 max 2× 2/2 32× 32× 128 16× 16× 128
4 conv 128 3× 3/1 16× 16× 128 16× 16× 128
5 max 2× 2/2 16× 16× 128 8× 8× 128
6 conv 256 3× 3/1 8× 8× 128 8× 8× 256
7 max 2× 2/2 8× 8× 256 4× 4× 256
8 conv 512 3× 3/1 4× 4× 256 4× 4× 512
9 max 2× 2/2 4× 4× 512 2× 2× 512

C. LICENSE PLATE SIMILARITIES

The plate similarities are then identified by using textual in-

formation extracted from fine-resolution license plate image

patches (OCR-Stream). We observed through a series of ex-

periments, as detailed in Section VI, that the same approach

we used for shape was not very accurate to distinguish be-

tween very similar license plate regions. The textual content,

on the other hand, makes it possible to explore the syntax

that defines the license plate layouts and, thus, to improve

the recognition. Inspired by the tremendous advances in

machine learning achieved by CNNs, we used a state-of-the-

art architecture (CR-NET) [48] for OCR that has proven to be

robust to recognize license plates from various countries [46],

[47], but here it was fine-tuned for the Brazilian license plate

layout (i.e., three letters followed by four digits).

The OCR architecture, as described by Silva & Jung [48]

and later improved by Laroca et al. [47], consists of the first

eleven layers of YOLO [54] and four other convolutional lay-

ers added to improve non-linearity, as shown in Table 3. The

network was trained to predict 35 character classes (0-9, A-

Z, where the letter ‘O’ is detected/recognized jointly with the

digit ‘0’) – however, for the sake of simplicity of definitions,

we will assume a complete alphabet with 36 characters in

the remainder of this section. Furthermore, some swaps of

digits and letters, which are often misidentified, were used

to improve the recognition: [1 ⇒ I; 2 ⇒ Z; 4 ⇒ A; 5 ⇒ S;

6⇒ G; 7⇒ Z; 8⇒ B] and [A ⇒ 4; B ⇒ 8; D ⇒ 0; G ⇒ 6;

I ⇒ 1; J ⇒ 1; Q ⇒ 0; S ⇒ 5; Z ⇒ 7].

TABLE 3. The CNN-OCR architecture for license plate recognition as
proposed by Silva & Jung [48] and improved by Laroca et al. [47].

# Layer Filters Size Input Output

0 conv 32 3× 3/1 352× 128× 3 352× 128× 32
1 max 2× 2/2 352× 128× 32 176× 64× 32
2 conv 64 3× 3/1 176× 64× 32 176× 64× 64
3 max 2× 2/2 176× 64× 64 88× 32× 64
4 conv 128 3× 3/1 88× 32× 64 88× 32× 128
5 conv 64 1× 1/1 88× 32× 128 88× 32× 64
6 conv 128 3× 3/1 88× 32× 64 88× 32× 128
7 max 2× 2/2 88× 32× 128 44× 16× 128
8 conv 256 3× 3/1 44× 16× 128 44× 16× 256
9 conv 128 1× 1/1 44× 16× 256 44× 16× 128
10 conv 256 3× 3/1 44× 16× 128 44× 16× 256
11 conv 512 3× 3/1 44× 16× 256 44× 16× 512
12 conv 256 1× 1/1 44× 16× 512 44× 16× 256
13 conv 512 3× 3/1 44× 16× 256 44× 16× 512
14 conv 200 1× 1/1 44× 16× 512 44× 16× 200
15 detection

We created an OCR descriptor by combining the textual

content extracted from both license plates. For that purpose,

we propose a scheme to map characters to real numbers

as follows.

The OCR descriptor is composed by the mapped charac-

ters, alternated with its classification scores so as to aggregate

knowledge about the confidence of each prediction. More-

over, the descriptor also contains the similarities between

both license plate identifiers. Namely, for two aligned strings,

we compute a character-by-character distance using a step

function, as shown in Equation (3)

d(ci, cj) =

{

0 if f(ci)− f(cj) = 0

1 otherwise
(3)

where ci and cj are two characters that belong to set C36,

detailed in Section IV-A, and f is the mapping function of

Equation (1). Observe that two characters are equal or distinct
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for the step function, i.e., the notion of proximity does not

exist. For example, although letter A is mapped to value

0.00, B to 0.02... and Z to 0.71..., the distance between A

and B is the same distance between A and Z (1 for both

cases). However, the confidence scores, associated with each

character, may help the network to decide the weight of such

distances.

The OCR descriptor is illustrated in Figure 8.
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(Char/Confidence)
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Char mapping (f )

Equation (1)

Char distance (d)

Equation (3)

Char mapping (f )

Equation (1)

〈0.0, 0.91, 0.54, 0.89, ..., 1.00, 0.91〉 〈0, 0, ..., 1〉 〈0.0, 0.89, 0.54, 0.89, ..., 0.80, 0.91〉

Concatenate

P = 〈0.0, 0.91, 0.54, 0.89, ..., 1.00, 0.91, 0, 0, ..., 1, 0.0, 0.89, 0.54, 0.89, ..., 0.80, 0.91〉

P (c1) P (c1) P (c2) P (c2)

Camera 1CNN-OCR Camera 2CNN-OCR

FIGURE 8. The OCR-descriptor scheme: the ASCII characters and the
corresponding classification confidences are extracted from both license plate
regions with the CNN-OCR architecture; then, they are combined to create a
text descriptor.

V. EXPERIMENTS

In this section, we describe an extensive set of experiments

comparing several CNN/OCR architectures.

For training, evaluation and testing it is necessary to

pairwise image patches. If we have n1 vehicles passing

through Camera 1 and n2 vehicles passing through Camera 2,

then we can create n1 × n2 image pairs, where n1 is the

maximum number of matching pairs and (n1 × n2) − n1

is the approximate number of non-matching pairs. Note that

we have highly imbalanced sets from non-matching pairs

((n1 × n2) − n1) compared to matching pairs. Therefore,

in order to have more matching pairs, we used the MOSSE

algorithm [55] to track a vehicle for m consecutive frames,

and only for the matching pairs we used all its m frame

occurrences to create new matching pairs. An advantage

of using such a technique is that the object appearance in

a sequence of consecutive frames usually has small image

variations – due to the vehicle motion, scene illumination

changes, image noise, etc. – that produces distinct pairs. This

process is depicted in Figure 9. Using the strategy described

above, we generated 5 sets of matching/non-matching pairs,

as listed in Table 4.

n1 images

n2 images

. . .

. . .

C
am

er
a
1

C
am

er
a
2

(n1 × n2) - n1

distinct pairs

same vehicle

(a) Non-matching pairs

m images

. . .

. . .

C
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a
1

C
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frame i frame i+1 frame i+m

All m2 pairs
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used for
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(disjoint sets)

(b) Matching pairs

FIGURE 9. Generation of image pairs for training, validation and testing. The
same procedure is used for the license plates.

TABLE 4. Number of matching/non-matching image pairs generated within
each set.

Set # Non-matching pairs # Matching pairs

01 83,250 19,560
02 66,722 17,370
03 76,681 19,520
04 49,650 14,177
05 60,313 16,030

Total 336,616 86,657

A. EXPERIMENTAL SETUP

The CNN-OCR model was trained using the Darknet frame-

work1, while the other models were trained using Keras2.

We performed our experiments on an Intel i7-8700K 3.7GHz

CPU, 64GB RAM, with an NVIDIA Titan Xp GPU.

Our experiments were performed using Ubuntu 14.04,

Python 3.7, OpenCV 3.4.1, Keras 2.3.1 and TensorFlow

1.15.2. All networks were trained using the Adam opti-

mizer with a learning rate of 10-4, batch size = 128, and

epochs = 10. The architectures and trained models are pub-

licly available at https://github.com/ icarofua/vehicle-rear.

We remark that we evaluated different input sizes, as well

as number of filters in the convolutional layers, for both

vehicle and license plate images, but better results were

not achieved. In this sense, it is also worth noting that both

models chosen by us (Small-VGG and CNN-OCR) are rela-

1https://github.com/AlexeyAB/darknet/
2https://keras.io/
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tively lightweight compared to others commonly used in the

literature, despite the fact that they have reached impressive

results [33], [46], [56]. More specifically, Small-VGG has

1.7M parameters and requires 0.317 GFLOPs, while CNN-

OCR has 3.3M parameters and requires 5.899 GFLOPs.

B. EVALUATION METRICS

The quantitative criteria we used to assess the performance

of each model are precision P and recall R, as defined in

Equation (4)

P =
tp

tp+ fp
R =

tp

tp+ fn
(4)

where tp denotes the number of true matchings between

Cameras 1 and 2, fp is the number of false matchings, and

fn the number of true matchings missed by the respective

model. For ranking purposes, we also consider the F -score,

which is the harmonic mean of precision and recall, as shown

in Equation (5)

F =
2

1/P + 1/R
(5)

We chose F -score over accuracy since the number of non-

matching pairs is much larger than matching pairs and, thus,

for highly imbalanced data, we can have a very low true

matching rate but a very high accuracy.

C. DATA AUGMENTATION

For data augmentation in vehicle shape images, we used

random crops between 0 and 8 pixels, scale between 0.8 and

1.2, and shear between −8 and 8. In license plate images, we

used scale between 0.8 and 1.2, translation between −10%

and 10%, rotation between −5 and 5, and shear between −16
and 16 (note that these parameter values were defined based

on experiments performed in the validation set). We used

Albumentations [57], which is a well-known Python library

for image augmentation, to apply these transformations.

D. ABLATION STUDY

As shown in Table 5, we evaluated the use of several CNNs

architectures for the identification task. In all experiments,

we used 5 rounds of cross-validation using the 5 sets listed

in Table 4. For each round, we used 2 sets for training, 1
for validation, and 2 for testing. We started with sets 01 and

02 for training, 03 for validation, and 04 and 05 for testing;

then we used 02 and 03 for training, 04 for validation, and

05 and 01 for testing; then 03 and 04 for training, and so on.

Therefore, P̄ , R̄ and F̄ are the average values of precision,

recall and F -score for these 5 rounds.

For license plate recognition, we compared the perfor-

mance of the CNN-OCR architecture against two commercial

systems: Sighthound [58] and OpenALPR3 [59]. These sys-

tems were chosen since they are commonly used as baselines

3Although OpenALPR has an open source version, the commercial ver-
sion (the one used in our experiments) employs different algorithms for OCR
trained with larger datasets to improve accuracy [49], [59].

TABLE 5. Vehicle identification performance based on shape: for these
experiments, we evaluated several CNN architectures, exclusively based on
shape features, in the Siamese Shape-Stream using different image sizes.

One-Stream (Shape-only) P̄ R̄ F̄

Resnet8 (128× 128 px) 54.01% 89.89% 66.86%
Lenet5 (128× 128 px) 89.74% 71.09% 78.61%
Resnet6 (128× 128 px) 73.70% 86.59% 78.74%
MC-CNN (64× 64 px) 83.00% 82.42% 82.63%
GoogleNet (112× 112 px) 79.51% 91.30% 84.38%
Matchnet (128× 128 px) 89.05% 92.86% 90.75%
Small-VGG (64× 64 px) 90.43% 92.54% 91.35%

in the license plate recognition literature [46], [47], [60] and

also because they are robust for the detection and recognition

of various license plate layouts [58], [59]. It should be noted

that, due to commercial reasons, little information is given

about the network models used in such systems. As can be

seen in Table 6, the CNN-OCR architecture achieved an

F -score of 94.1% if we consider a perfect match (correct

matching of all characters), however, if we consider partial

OCR readings, then we can have an F -score of 97.7% by

allowing one misreading and 98.6% for two misreadings.

In any scenario, CNN-OCR considerably outperformed the

Sighthound and OpenALPR commercial systems.

TABLE 6. Vehicle identification performance based on OCR: comparison of
the results achieved by the CNN-OCR architecture with those obtained by two
well-known commercial systems. For this evaluation, we consider as true
matchings the cases where exactly the same license plate characters were
predicted in cameras 1 and 2.

Partial matching Partial matching Perfect matching
2 errors 1 error

OCR P̄ R̄ F̄ P̄ R̄ F̄ P̄ R̄ F̄

Sighthound 99.9% 84.5% 91.5% 100% 81.5% 90.0% 100% 66.0% 79.3%
OpenALPR 99.9% 83.2% 90.7% 100% 80.4% 89.1% 100% 70.0% 82.2%
CNN-OCR∗ 99.8% 92.0% 95.7% 100% 86.7% 92.8% 100% 74.1% 84.9%
CNN-OCR 99.9% 97.3% 98.6% 100% 95.5% 97.7% 100% 88.8% 94.1%

∗ CNN-OCR trained without using any images belonging to our scenario.

It is important to highlight that we employed datasets

proposed by several research groups from different countries

(the same ones used by Laroca et al. [47]), with only 445
more images belonging to our scenario, to train the CNN-

OCR architecture so that it is robust for various license plate

layouts. In this way, as shown in Figure 10, CNN-OCR is able

to correctly recognize license plates from various countries.

(a) BAG0160 (b) APY7367 (c) AXM6295

(d) 3J66282 (e) 997JDG (f) KJW5804

(g) RK069AV (h) ZG4100AC (i) VW4X4WP

FIGURE 10. Examples of license plates that were correctly recognized by the
CNN-OCR architecture. The images in the first row belong to our dataset while
the others belong to public datasets acquired in other countries.
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As the commercial systems were not tuned specifically

for our dataset/scenario, we also report in Table 6 the re-

sults achieved by CNN-OCR when it was trained without

using any images belonging to our scenario. It is remark-

able that CNN-OCR still outperformed both commercial

systems despite the fact that they are trained in much larger

private datasets, which is a great advantage, especially in

deep learning-based approaches [46], [47]. This experiment

also highlights the importance of fine-tuning the CNN-OCR

model to our scenario in order to achieve outstanding results.

Figure 11 shows some examples in which CNN-OCR

failed to correctly recognize all license plate characters. As

can be seen, errors occur mostly due to partial occlusions,

extreme light conditions, and degraded license plates. Note

that such conditions may cause one character to look very

similar to another, and thus even humans can misread these

license plates (we even had to explore multiple frames and

vehicle make/model information to check if the labeled string

was correct in such challenging cases).

(a) AUF5462 - AUF5452 (b) AYK6946 - AYK6945 (c) AUH1338 - ADH1338

(d) AXN0937 - AXX8937 (e) API5424 - APL5423 (f) AOO3681 - AUQ3681

(g) ADS026 - ADS0268 (h) ANA7 - AOA1028 (i) MS938 - AKS9383

FIGURE 11. Examples of license plates that were partially or not recognized
by the CNN-OCR architecture. For each license plate, we show the predicted
and ground truth strings, where the red and blue characters denote the
CNN-OCR misreadings and the ground truth, respectively.

Finally, as can be seen in Table 7, the fusion of appearance

information (vehicle shape features obtained by the best

network found in our experiments shown in Table 5) with

textual information (OCR) using the proposed two-stream

neural network, as described in Section IV, increased the F -

score by nearly 5% over each feature separately.

TABLE 7. Vehicle identification performance based on shape and textual
features: performance of the proposed two-stream network by using the best
CNN for shape (Small-VGG) and the best OCR model (CNN-OCR). For
comparison, we included the performance of each stream when used alone.

Architecture P̄ R̄ F̄

One-Stream (Shape) 90.43% 92.54% 91.35%
One-Stream (CNN-OCR) 100.00% 88.80% 94.10%

Two-Stream (Shape + CNN-OCR) 99.35% 98.50% 98.92%

We believe that both features have a significant level of

complementarity, that is, even if CNN-OCR does not recog-

nize all license plate characters correctly, it is still possible

to correctly match the image pairs in most of the cases by

using the textual and confidence information available, as

well as the characters and shape similarity features. Figure 12

shows some classification results obtained by our two-stream

neural network.

Shape: non-matching ✗
OCR: non-matching ✗
Two-Stream: non-matching ✗

Shape: matching ✗
OCR: non-matching ✓
Two-Stream: non-matching ✓

Shape: matching ✓
OCR: non-matching ✗
Two-Stream: matching ✓

Shape: non-matching ✓
OCR: non-matching ✓
Two-Stream: non-matching ✓

Shape: matching ✓
OCR: matching ✓
Two-Stream: matching ✓

FIGURE 12. Inference results: the first three rows show examples where the
three architectures failed: partial occlusion; CNN-Shape failed (similar shape);
CNN-OCR failed (HBI-20 for the left plate, HLG-297 for the right one, while the
ground truth is HST-2875). In the last two examples, all architectures found a
true non-matching and a matching, respectively.

VI. DISCUSSION

In this section, we compare the proposed Vehicle-Rear

dataset with four other well-known datasets described in

VOLUME 4, 2016 9
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TABLE 8. A comparison of publicly available datasets for vehicle identification with the proposed dataset called Vehicle-Rear. The entries marked with ∗ refer to
cases where only cropped patches (i.e., vehicle bounding boxes and not the entire scene) are provided by the authors.

Dataset Image Resolution # Vehicles # Cameras
# Boxes
Labeled

Multi-view Video-based Motorcycles
License Plate
Information

VeRi-776 [61] ✗∗ 776 20 49,357 ✓ ✗ ✗ ✗

VERI-Wild [8] ✗∗ 40,671 174 416,314 ✓ ✗ ✗ ✗

VehicleID [10] ✗∗ 10,319 2 90,000 ✗ ✗ ✗ ✗

CityFlowV2 [9] [1280× 720] to [1920× 1080] 880 46 333,931 ✓ ✓ ✗ ✗

Vehicle-Rear (ours) [1920× 1080] 2,093 2 26,161 ✗ ✓ ✓ ✓

the literature, namely, VeRi-776 [61], VERI-Wild [8], Ve-

hicleID [10], and CityFlowV2 [9]. An overview of these

datasets is presented in Table 8. As can be seen, our dataset

is the only one with visible/legible/labeled license plate

identifiers and with all videos recorded in Full-HD reso-

lution. Furthermore, Vehicle-Rear and CityFlowV2 are the

only datasets that provide uncropped frames, enabling the

design of vehicle identification approaches that explore the

entire scene. Another point worth noting is that none of the

public datasets for vehicle identification – except ours – have

motorcycle images, despite the fact that motorcycles are one

of the most popular transportation means in metropolitan

areas, especially in developing countries [47], [62]. On the

other hand, the images in the Vehicle-Rear dataset were not

collected by as many cameras as those from CityFlowV2 and

VeRi (776 and Wild), nor in multiple views.

In summary, the main advantage of the proposed dataset,

compared to existing ones, is that it enables the development

of novel approaches/architectures for vehicle identification

(both cars and motorcycles) based on the license plate iden-

tifiers in conjunction with vehicle shape features.

As can be seen in Figure 13, even if we consider only im-

ages from the vehicle’s rear, in most of the cases the license

plate identifier is illegible for the VeRi-776 dataset, and the

authors did not provide the bounding boxes and strings of the

license plates in cases where they are legible, and it would

be impractical (i.e., a very laborious task) to scan/label them

to train/evaluate our networks. Moreover, two state-of-the-

art commercial systems that are widely employed to locate

and recognize license plates from various regions/countries,

Sighthound [58] and OpenALPR [59], rejected or failed in

79% and 96% of all images available in the VeRi-776 dataset,

respectively. We emphasize that even though in [6], [39]

the authors claimed that they extended the VeRi-776 dataset

with license plate annotations, these annotations were not

made available due to privacy restrictions (according to

the first author of [6], [39], [61]). In the VERI-Wild [8],

CityFlowV2 [9] and VehicleID [10] datasets, on the other

hand, it is not even possible to exploit information from the

license plate regions for vehicle identification, as they were

purposely redacted in all images (with a black bounding box)

by the respective authors because of privacy restrictions. For

the record, CityFlowV2 is an updated version – with refined

annotations – of CityFlow [63].

In this sense, we remark that the above datasets – as well

as others available in the literature – have a different purpose

(a) VeRi-776 [61]

(b) VERI-Wild [8]

(c) VehicleID [10]

(d) CityFlowV2 [9]

FIGURE 13. Vehicle rear images of four public datasets: in the VeRi-776
dataset (a), most license plates are not legible and the authors did not provide
any annotations for the plates; in the VERI-Wild, VehicleID and CityFlowV2
datasets (b-d), the license plates were redacted due to privacy restrictions.
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from the one introduced in this work, as they have images

from urban surveillance cameras in different resolutions and

viewpoints. As stated in [13], these datasets have high inter-

similarity (similar visual appearance for two different makes,

model and type of vehicles) and high intra-variability.

Lastly, it is important to highlight that the Vehicle-Rear

dataset is part of a cooperation agreement4 between the

universities involved in this project and the city where the

videos were recorded. This agreement involves free and

open access to the data mentioned in this article.

VII. CONCLUSIONS

In this paper, we introduced a novel dataset for vehicle

identification that, to the best of our knowledge, is the first

to consider the same camera view of most city systems used

to enforce traffic laws; thus, it enables to extract features with

quality and also to retrieve accurate information about each

vehicle, reducing ambiguity in recognition.

To explore the Vehicle-Rear dataset, we designed a two-

stream CNN architecture that combines the discriminatory

power of two key attributes: the vehicle appearance and

license plate recognition. For this purpose, we proposed a

novel approach to compute textual similarities from a pair of

license plate regions which were then combined with shape

similarities extracted from a Siamese architecture.

The proposed architecture achieved precision, recall and

F -score values of 99.35%, 98.5%, 98.92%, respectively.

The combination of both features (vehicle shape and OCR)

brought an F -score boost of nearly 5%, solving very chal-

lenging instances of this problem such as distinct vehicles

with very similar shapes or license plate identifiers.

Finally, although we achieved an F -score of 98.92% there

is still room for improvement. Some open research problems

are (i) designing novel networks that could extract vehicle

information with the same quality from even smaller im-

age patches; (ii) designing a one-stream architecture that

has performance comparable to multi-stream architectures;

and (iii) exploring other fine-grained attributes or temporal

sequences for vehicle identification.
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