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Vehicle reidentification refers to the mission of matching vehicles across nonoverlapping cameras, which is one of the critical
problems of the intelligent transportation system. Due to the resemblance of the appearance of the vehicles on road, traditional
methods could not perform well on vehicles with high similarity. In this paper, we utilize hypergraph representation to integrate
image features and tackle the issue of vehicles re-ID via hypergraph learning algorithms. A feature descriptor can only extract
features from a single aspect. To merge multiple feature descriptors, an efficient and appropriate representation is particularly
necessary, and a hypergraph is naturally suitable for modeling high-order relationships. In addition, the spatiotemporal
correlation of traffic status between cameras is the constraint beyond the image, which can greatly improve the re-ID accuracy
of different vehicles with similar appearances. The method proposed in this paper uses hypergraph optimization to learn about
the similarity between the query image and images in the library. By using the pair and higher-order relationship between query
objects and image library, the similarity measurement method is improved compared to direct matching. The experiments
conducted on the image library constructed in this paper demonstrates the effectiveness of using multifeature hypergraph fusion
and the spatiotemporal correlation model to address issues in vehicle reidentification.

1. Introduction

Currently, traffic video surveillance plays a vital role in ensur-
ing public safety. A critical part of traffic video surveillance in
the urban and major cities is the monitoring of vehicles,
which include detection, tracking, and classification. Tar-
geted reidentification technology has emerged as a prudent
application in the field of vehicle recognition, particularly
important for public safety departments in its efforts to track
target vehicles in intricate urban transportation networks.
The main task of vehicle reidentification is to search for
images of the same vehicle captured by multicameras in var-
ious areas on the precondition that the target vehicle is
known in the surveillance videos. Vehicle reidentification dif-
fers from vehicle detection, classification, and tracking and
can be used to address instance-level target search issues.

Similar to the task of person reidentification, the research
for vehicle reidentification is divided into two aspects. Firstly,
a model is built based on information of the appearance, and
vehicles are distinguished according to their appearance

characteristics. The second aspect is to use the distance
measurement method that utilizes samples to train a dis-
tance measurement model to carry out vehicle reidentifica-
tion through the principle of reducing and expanding the
differences within intraclasses and between interclasses,
respectively. However, vehicle reidentification faced greater
challenges. Compared to person reidentification, the infor-
mation of different vehicle images has higher similarities,
and the same vehicle will display appearance disparities
due to external factors such as lighting and weather. In
addition, vehicles of the same make and model are identi-
cal, and it is difficult to distinguish the different IDs of
the vehicles visually. As such, a robust method for vehicle
reidentification is required to distinguish target vehicles
from nontarget vehicles.

In the process of image identification, the image informa-
tion is stored on the graph structure with strong description
capability and high validity. The vertices in the graph repre-
sent the image feature elements, while the edges represent the
relationship between these feature elements. Although graph
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matching is often used to address image feature matching
issues, these graphs only represent the binary relations
between vertices. Comparatively, hypergraphs can describe
multiple and higher-order relations of objects as the edges
can contain multiple vertices.

This paper uses various feature extraction methods, con-
structs a hypergraph for each feature, and combines these
hypergraphs. Through hypergraph learning, the query image
is matched with image sets and, combined with spatiotempo-
ral information of the vehicle image, achieves multitarget
identification from multichannel traffic surveillance videos.

Unlike the traditional method that only calculates pairing
distance or similarities for matching, this method utilizes
hypergraphs optimization to learn about the similarities
between the query image and library of images. In this way,
the pairing and higher-order relation between query objects
and image library objects are utilized, thereby improving
the similarity measurement method as compared to direct
matching. In addition, complementary information of differ-
ent feature descriptors can be effectively utilized through
learning multiple hypergraphs and feature descriptors. The
fusion of multiple hypergraphs is realized through regularis-
ing a completely connected graph with each vertex represent-
ing the weight of a hypergraph. Our method is compatible
with any feature description methods. Figure 1 illustrates
an overview of the method.

There are three main contributions of this paper:

(1) We use different algorithms to extract different fea-
tures of vehicles and construct hypergraphs, respec-
tively, to represent their relationships. In the form of
hypergraphs, we can express their deeper relationships

(2) We explored hypergraph learned algorithms to inte-
grate multiple traditional feature extraction methods.
This contribution combines the advantages of multi-
ple methods to improve the accuracy of apparency
matching

(3) The trickiest challenge of vehicle re-ID problem is the
high similarity of the vehicles. It is known that the
same production has the same appearance in most
cases. However, the camera time of similar-looking
cars passing through different regions may be differ-
ent; there is a spatiotemporal correlation. Thus, we
applied the spatiotemporal features of the vehicle as
additional constraints to improve the matching accu-
racy of similar vehicles

2. Related Work

Common reidentification systems such as facial recognition
[1, 2] and person recognition [3, 4], and vehicle reidentifica-
tion has gradually become a popular research topic in recent
years. Researchers in China and other countries have made
numerous attempts on tracking vehicles. Currently, feature
extraction methods are commonly used, combined with an
SVM classifier, background modeling [5], etc. to build a
tracking model for the target. Building a classifier requires
certain initial samples. It also requires the target vehicle to
have the same feature distribution when it appears between
multiple cameras in order to have an improved tracking out-
come. The backgroundmodeling method is based on the cor-
relation of pixels between frames and robust real-time
performance, but it is sensitive to light changes and camera
movements and is unable to track targets across cameras.

The common vehicle feature classifications include con-
tour and length. However, with the distance between cameras
and the placement of cameras, the scale and angle changes
and is not suitable for cross-camera tracking of vehicles [6].
Previous research utilizes a combination body. SIFT feature
is invariant to rotation, scaling, changes in brightness, etc.,
which is a highly stable local feature [7]. Researchers ensured
the stability by updating SIFT feature of the target in real-
time [8]. However, the intermediate frame information is
lacking after the target crosses between cameras as a SIFT
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Figure 1: Overview of vehicle reidentification methods based on multifeature hypergraph fusion.
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feature is unable to describe the target information after it
reappears, resulting in the loss of tracking of the target and
is unable to guarantee the accuracy of cross-camera tracking.

Since 2012, major breakthroughs have been achieved in
object detection due to deep learning, among which the most
critical technologies are Convolution Neural Network
(CNN) [9–11] and region proposal algorithm [12]. In 2012,
Hinton et al. successfully improved the accuracy of the Top
5 classification of 1000 object categories from 75% to 85%
through the use of the deep learning AlexNet network. Since
then, the convolutional neural network has been widely rec-
ognized by academics and in the industrial industry for its
excellent performance. Apart from its application in vehicle
verification [13], vehicle classification [14], vehicle driving
safety [15, 16], and attribute prediction [17, 18], it has also
been continuously applied to the fields of artificial intelli-
gence such as computer vision and language recognition.
During this period, the architecture and performance of con-
volutional neural network have continuously improved. Lit-
erature [19, 20] studies the comprehension and codification
of contextual information to improve the performance of
neural networks. In the paper, Liu et al. [21–23] combined
texture, color, and depth features and, through the fusion of
low-level and high-level features for vehicle reidentification,
achieved positive results for the “VeRi” data set. Xu et al.
[24] proposed RepNet, a multitask learning framework that
can be used to learn about the characteristics of both
coarse-grained and fine-grained vehicles. The paper also uses
the bucket search method to improve retrieval speed.

Based on the theory of deep learning, this paper proposes
a cross-camera vehicle tracking method based on feature
matching and hypergraph fusion. The algorithm extracts
multidimensional features of vehicle images, combines a spa-
tiotemporal distribution model of the monitoring points, and
utilizes a multifeature hypergraph fusion method for vehicle
reidentification. This ensures efficiency and improves the
accuracy of vehicle reidentification.

3. Multifeature Hypergraph Fusion

In this section, we first outline the concept of hypergraphs
and why we need hypergraph representation to model the
vehicle Re-ID problem. In the second part, we describe how
we construct hypergraphs for vehicle features extracted by
different methods. In the third part, we show the multiple
hypergraphs learning processes.

3.1. Problem Definition. For graph-based image identifica-
tion, the image information is stored on the graph structure
with strong description capability and high validity. But
traditional graphs only consider the pairing relationship rep-
resented by the edge that connects the two vertices. Compar-
atively, hypergraphs can describe multiple and higher-order
relations of objects as the edges can contain multiple vertices.

A hypergraph consists of sets of vertices and hyperedges.
The vertices in the hypergraph represent the image feature
elements, while the hyperedges represent the relationship
between these feature elements. Each hyperedge can connect
to more than two vertices. For hypergraph, the correlation

matrix H of size jV j × jEj is defined, whereby jV j and jEj rep-
resents the cardinality of vertex set and hyperedge set, respec-
tively. The value of each element of H is

h v, eð Þ =
1, if v ∈ e

0, if v ∉ e

(
: ð1Þ

Indicates if vertex v is connected to edge e.
The degree of vertex v ∈ V in the hypergraph is defined as

d vð Þ =〠
e∈E

w eð Þh v, eð Þ, ð2Þ

wðeÞ is the total weight of all related hyperedges of vertex
v and the degree of hyperedge e ∈ E is defined as

δ eð Þ = 〠
v∈V

h v, eð Þ: ð3Þ

Represents the number of vertices connected to hyper-
edge e.

The regularisation framework for classification can be
expressed as

argmin
f

λRemp fð Þ +Ω fð Þ
� �

ð4Þ

f is the classification function,Rempð f Þis the empirical

loss function, λ is the regular parameter, and regular classifi-
cation is defined as ωð f Þ

Ω fð Þ =
1

2
〠
e∈E

〠
u,v∈V

w eð Þh u, eð Þh v, eð Þ

δ eð Þ

f uð Þffiffiffiffiffiffiffiffiffi
d uð Þ

p −
f vð Þffiffiffiffiffiffiffiffiffi
d vð Þ

p
 !2

:

ð5Þ

By solving formula (4), prediction results, such as classi-
fication labels, can be obtained.

3.2. Hypergraph Structure. For vehicle reidentification task,
there are huge differences within the class, often a single type
of feature cannot well describe the vehicle information. In
order to match a vehicle, different feature extraction methods
are used to describe the features of an image. We set hyper-
graphs for the features extracted by each method. A hyper-
graph Gi = ðV i, EiÞ is built for each feature description and
each vertex represents an image.

The construction of the hyperedge adopts a star expan-
sion method. It selects a vertex as the center and connects
with its nearest vertices to form a hyperedge. The strength
of the connection is determined by the similarity between
the center and the connected vertices. Under such circum-
stances, the binary connection of only 0 and 1 in formula
(1) cannot be used. Each element of the correlation matrix
Hi is defined as

hi v, eð Þ =
s v, eð Þ, if s v, eð Þ ≤ η

0 if s v, eð Þ > η

(
, ð6Þ
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where sðv, eÞ represents the connection strength of vertex v
and hyperedge e defined as

s v, eð Þ = exp −
dist v, cð Þ2

σ2

 !
, ð7Þ

where distðv, cÞ is the distance between vertex v and center c, η
is the predefined threshold value; σ is the control parameter.

The i hypergraph can be expressed as

Ωi fð Þ =
1

2
〠
e∈Ei

〠
u,v∈V i

wi eð Þhi u, eð Þhi v, eð Þ

δi eð Þ
×

f uð Þffiffiffiffiffiffiffiffiffiffi
di uð Þ

p −
f vð Þffiffiffiffiffiffiffiffiffiffi
di vð Þ

p
 !2

= 〠
e∈Ei

〠
u,v∈V i

wi eð Þhi u, eð Þhi v, eð Þ

δi eð Þ
×

f 2 uð Þffiffiffiffiffiffiffiffiffiffi
di uð Þ

p −
f uð Þf vð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
di uð Þdi vð Þ

p
 !

= 〠
u∈V i

f 2 uð Þ〠
e∈Ei

wi eð Þhi u, eð Þ

di uð Þ
〠
v∈V i

hi v, eð Þ

δi eð Þ

− 〠
e∈Ei

〠
u,v∈V i

f uð Þhi u, eð Þwi eð Þhi v, eð Þf vð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
di uð Þdi vð Þ

p
δi eð Þ

= f⊤ Ι −Θið Þf,

ð8Þ

where Θi = D−1/2
v,i HiWiD

−1
e,iH

⊤
i D

−1/2
v,i ,Dv,i is a diagonal matrix

whose diagonal element is the degree of the vertex calculated
with formula (2). De,i is also a diagonal matrix whose diago-

nal element is the degree of the hyperedge calculated using
formula (3). W i is the diagonal matrix whose diagonal ele-
ment is the hyperedge weight. Since different connectivity
strength is considered in formula (6), it is set as a unit matrix
in the experiment. f is a learned correlation vector that con-
tains the similarity between the query image and other
images. The regularisation of the hypergraph structure under
the constraint of (8) indicates that the more the two vertices
are connected by the hyperedge, the higher the probability
that they share similar labels. In addition, Δi = I −Θi is the
Laplacian of the hypergraph, then the regularisation of the
graph becomes

Ωi fð Þ = f⊤Δif: ð9Þ

3.3. Hypergraph Fusion

3.3.1. Regularisation of Graphs. To construct a hypergraph
for each feature description, we obtain nf hypergraphs G1 =

ðV1, E1Þ,G2 = ðV2, E2Þ,⋯, Gn f
= ðVn f

, En f
Þ, these graphs

are fused based on different weights and every hypergraph
has weight αi, and the sum of the weights of all hypergraphs
is 1; then, the regularisation terms of multiple hypergraphs
as a whole are expressed as

Ω fð Þ =
1

2
〠
n f

i=1

αi〠
e∈Ei

〠
u,v∈V i

wi eð Þhi u, eð Þhi v, eð Þ

δi eð Þ

×
f uð Þffiffiffiffiffiffiffiffiffiffi
di uð Þ

p −
f vð Þffiffiffiffiffiffiffiffiffiffi
di vð Þ

p
 !2

:

ð10Þ

By combining formula (8), (10) can be expressed as

Ω fð Þ = 〠
n f

i=1

αif
⊤
Ι −Θið Þf = f⊤ 〠

n f

i=1

αi Ι −Θið Þf = f⊤ bΔf, ð11Þ

where Δ̂ =∑
n f

i=1αiðI −ΘiÞ.

3.3.2. Regularisation of Graph Weight. The weights of differ-
ent hypergraphs are correlated. Hypergraphs with similar
structure (i.e., similar correlation matrices) are expected to
have similar weight. The similarity between hypergraphs Gi

and Gj is defined as

γ Gi,Gj

� �
= exp −

Hi −Hj

�� ��2
F

σ2

 !
: ð12Þ

The similarity of two hypergraphs is measured by the F
norm of the two correlation matrices. The correlation matric
Γ between hypergraphs is expressed as Γði, jÞ = γðGi,GjÞ.

The weights of multiple hypergraphs are defined as α =

½α1, α2,⋯, αn f
�; the cost function of the weights of the hyper-

graphs is

J αð Þ = α⊤ Ι − Sð Þα, ð13Þ

where S =D−1/2ΓD−1/2, D is a diagonal matrix and Dði, iÞ =

∑jΓði, jÞ. In addition, the hypergraphs weights are L2 regu-

larised to avoid the hypergraphs being too large.

3.3.3. Empirical Loss Function. The empirical loss function
Rempð f Þ in formula (4) can be expressed as

Remp fð Þ = f − yk k2 = 〠
u∈V

f uð Þ − y uð Þð Þ2: ð14Þ

y is the vector of the binary tags. In this paper, connecting
the query image and image to be matched can be regarded as

a classification issue. The label vector y ∈ RN+1, N is the total
number of images in the image library to be matched, and the
first element corresponding to the query image is set to 1,
while the rest are set to 0.

3.3.4. Objective Function. Combining the target loss function
RempðfÞ in formula (14), regularisation of graphs Rempð f Þ in

formula (14), hypergraph weight regularisation JðαÞ in for-
mula (13), and L2 weight regularisation in α, the overall
objective function to be optimized is

‘argmin
f,α

Ω fð Þ + λ1Remp fð Þ + λ2 J αð Þ + λ3α
⊤
α

� �
, s:t:α⊤1 = 1:

ð15Þ

The purpose of introducing λiði = 1, 2, 3Þ is to balance all
parts of the cost function and provide an optimal cost func-
tion. Specifically, λ1 is the parameter controlling the loss of
experience, λ2 is the parameter that controls the weight of
the graph defined by cost function in formula (13), and λ3
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is the L2 regularisation parameter of the hypergraph weight
in α. Formula (15) can be expressed as

argmin
f,α

f⊤bΔf + λ1 f − yk k2 + λ2α
⊤
Ι − Sð Þα + λ3α

⊤
α

n o
, s:t:α⊤1 = 1:

ð16Þ

3.3.5. Optimisation. In order to understand the optimized
formula (16), the iterative method is used to update f and α.

When α is fixed, the optimization of f becomes

argmin
f,α

f⊤ bΔf + λ1 f − yk k2
n o

: ð17Þ

Formula (17) derivate f and the analytical solution of f is

f = Ι +
1

λ1
Δ∧

� 	−1

y: ð18Þ

Because an inverse matrix is involved in the matrix, it is

impossible to calculate the inverse of Δ̂ directly when Δ̂
becomes larger. As such, the solution of f can be obtained
iteratively with the following formula.

f t+1ð Þ =
1

1 + λ1
Ι − bΔ

 �

f tð Þ +
λ1

1 + λ1
y: ð19Þ

t is the number of iterations to ensure the convergence of
the iteration process in formula (19).

When f is fixed, the optimization of α becomes

argmin
α

f⊤ bΔf + λ2α
⊤
Ι − Sð Þα + λ3α

⊤
α

n o
, s:t:α⊤1 = 1: ð20Þ

The Lagrangian function of formula (20) can be written as

L α, γð Þ = f⊤ bΔf + λ2α
⊤
Ι − Sð Þα + λ3α

⊤
α + γ α

⊤1 − 1
� �

= f⊤ 〠
n f

i=1

αi Ι −Θið Þf + λ2α
⊤
Ι − Sð Þα + λ3α

⊤
α + γ α

⊤1 − 1
� �

= 〠
n f

i=1

αif
⊤
Ι −Θið Þf + λ2α

⊤
Ι − Sð Þα + λ3α

⊤
α + γ α

⊤1 − 1
� �

= α⊤P + λ2α
⊤
Ι − Sð Þα + λ3α

⊤
α + γ α

⊤1 − 1
� �

,

ð21Þ

where P = ½ f⊤ðI −Θ1Þf,⋯, f⊤ðI −Θn f
Þf�

⊤
. Formula (21) deri-

vate α and sets it to 0, and α can be solved using formula (22).

α =
1

2
λ2S − λ2 + λ3ð ÞΙð Þ−1 γ1 + pð Þ: ð22Þ

Because α⊤1 = 1⊤α = 1, γ can be solved with the following
formula.

1

2
1⊤ λ2S − λ2 + λ3ð ÞΙð Þ−1 γ1 + pð Þ = 1: ð23Þ

In addition, Q = λ2S − ðλ2 + λ3ÞI, the solution of γ can be
derived from formula (23) as shown in the following formula.

γ =
2 − 1⊤Q−1p

1⊤Q−11
: ð24Þ

Substituting the solution of γ back into formula (22), the
hypergraph weight vector α can be obtained with the following
formula.

α =
1

2
Q−1 2 − 1⊤Q−1p

1⊤Q−11
1 + P

� 	
: ð25Þ

Iteratively, update f and α until convergence and the rei-
dentification result is obtained by ranking the learned correla-
tion of the matching results in correlation vector f.

4. Spatiotemporal Correlation

In the process of vehicle reidentification, apart from utilizing
the feature extraction method for image matching, we also
need to consider the spatiotemporal relationship when the
vehicle is moving. The data set proposed in this paper has
low image clarity, and it is difficult to achieve the optimal
results for vehicle reidentification by using only feature
matching. At the same time, this data set has abundant and
comprehensive spatiotemporal information compared to
other public vehicle reidentification data sets, including vehi-
cle location, speed, and elapsed time. Therefore, the spatio-
temporal correlation model built based on this data set can
provide targeted and efficient extraction of spatiotemporal
information.

Vehicle reidentification differs from person reidentifica-
tion. People have strong particularities and the degree of
uniqueness of each person is made up of appearance, dress-
ing, hairstyle, and other personal characteristics, making it
easy to determine whether two images are of the same per-
son. Vehicles have a high degree of similarity. Disregarding
license plate information and external car modification
details, vehicles of the same brand, make and model has a
high degree of similarity. With the low vehicle image resolu-
tion of this data set, license plate information cannot be used
as the basis for the judgment and other unclear details such as
window stickers, determination of whether it is the same
vehicle based on appearance characteristics will have a great
impact on the accuracy.

When this data set is built, the comprehensive traffic flow
parameters are saved as reference factors of spatiotemporal
relationship. Each vehicle image has a corresponding moni-
toring point, the time it passes this point, and the speed.
The distance between the monitoring points is measured
and stored in the distance matrix. In addition, apart from
recording the current speed of the vehicle, it also calculates
the average speed of the vehicle passing through two moni-
toring points as a reference, thereby improving the accuracy
of spatiotemporal correlation calculation.

The spatiotemporal relationship can be expressed in
many ways, but it follows the same principle. The same
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vehicle will not exist in two distant locations within a short
time range, and the same vehicle appearing in two locations
will be within a short period of time. This paper calculates
the conformity of the average speed of the vehicle passing
through two points and the actual situation as the spatiotem-
poral distance of two vehicles. The calculation method is

Dis i, jð Þ =
λ1 V i + V j/2
� �

+ λ2Vave i, jð Þ + λ3V lim − S i, jð Þ/T j − T i

�� ��
S i, jð Þ/T j − T i

,

ð26Þ

where i and j represent two vehicle images, V i and V j is the

current speed of two vehicles, and Vaveði, jÞ represents the
average speed of the vehicles between the two points where
the two vehicles are located, respectively. V lim is the maxi-
mum speed limit of 60 km/h, and λ1, λ2, λ3 represent the
weight parameters of the average speed of two points, the
average speed of the road section, and the maximum speed
limit of the road. Sði, jÞ/T j − T i indicates the actual average

speed of the two vehicles passing through two points, Sði, jÞ
is the distance between two points, and T jandT i refer to the

time recorded when two vehicles travel to the current posi-
tion. The spatiotemporal distance Disði, jÞ calculates the
probability if the two vehicles are the same vehicle in terms
of spatiotemporal correlation. The larger the value, the far-
ther the spatiotemporal distance is, the less likely they are
the same vehicle. The smaller the value, the closer the spatio-
temporal distance is, the more likely they are the same vehi-
cle. After obtaining the similarity vector calculated with the
multifeature hypergraph fusion method, the spatiotemporal
distance between the query image and each matching image
is calculated, and the matching sequence is reordered by
combining the similarity and spatiotemporal distance to
obtain a more accurate reidentification result.

5. Dataset

In practical application scenarios, vehicle image quality is
often poor, making it impossible to apply methods using
existing HD data sets. Therefore, we propose a vehicle rere-
cognition data set based on real traffic monitoring with low
resolution. And our data set contains the space-time relation-
ship of the vehicle.

Our data set is based on the high-speed monitoring of
Beijing Airport and the monitoring of Tongzhou G103. The
camera points are shown in the Figures 2 and 3, and we have
clearly recorded these points. Faster R-CNN and Hungary
algorithm were used to detect and track the vehicle in the
traffic surveillance video to propose the vehicle type, speed,
and time and store the vehicle ID and the video point ID
together with the vehicle image to the local area.

Our data set consists of three parts: 606 vehicles entering
Beijing on Airport Expressway, 662 vehicles leaving Beijing
on Airport Expressway, and 638 vehicles in the direction of
Tongzhou G103 entering Beijing. The three parts of the data
set are relatively independent, and the shooting angle of the
same part of the data is relatively consistent. The resolution
of some airport expressway images is 80 × 80. The angle of

the camera in the direction entering Beijing shows the rear
of the vehicle, and the camera in the direction of leaving
Beijing shows the front of the vehicle. The image quality
of Tongzhou G103 is relatively high, with a resolution of
150 × 150. Some examples are shown in Figure 4.

6. Experimental Results and Analysis

6.1. Evaluation Indicator. The evaluation indicator, mean
Average Precision (mAP), is the sum of the average precision
(AP) in multiclassification tasks. To calculate the average
accuracy, we need to first obtain the accuracy rate and recall
rate. Precision is the proportion of the image with the same
ID as the query image in the query result, that is, how many
of the matching vehicle images are correct. Recall if the ratio
of the number of images with the same ID as the query image
in the query results to the total number of images in the
search database, that is, how many of the correct results have
been retrieved. If the number of positive samples with correct
prediction is TP, the number of positive samples with incor-
rect prediction is FP, the number of negative samples with
correct prediction is TN, and the number of negative samples
with prediction error is FN, the calculation method of the
accuracy rate P and the recall rate R is as shown in the follow-
ing formula.

P =
TP

TP + FP
,

R =
TP

TP + FN
:

ð27Þ

Although the accuracy rate and recall rate seem to have a
certain significance, they cannot be used directly to evaluate
the performance of the ReID model. Therefore, a PR graph
is derived and the number of query results is gradually
increased. From the first to the last query results given by
the system, the accuracy and recall rate corresponding to
the middle of each point are plotted on the graph to obtain
a curve graph.

The area enclosed by this PR curve and the coordinate
axis, or AP, can reflect the performance of the model to a cer-
tain extent. By sorting AP, the formula can be expressed as

AP =
∑n

k=1P kð Þ × gt kð Þ

Ngt

ð28Þ

Where n is the number of vehicles in the test set, Ngt rep-

resents the number of vehicle images that are actually related
to the query image at other locations, PðkÞ represents the
accuracy of matching in the first k results, and gtðkÞ is a sym-
bolic function. If the kth image and the query image belong to
the same ID, return to 1, otherwise, return to 0. AP is the
average accuracy of query images, as such, the average accu-
racy of all query images mAP can be expressed as

mAP =
∑Q

q=1AP qð Þ

Q
, ð29Þ
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where Q is the total number of query images. In addition to
mAP, this paper also selects rank-1 and rank-5 as the auxil-
iary criteria for performance evaluation. Rank-1 represents
the probability that the image ranked first in the matching
result sequence is the correct result, and rank-5 represents
the probability of a correct result in the first 5 digits.

6.2. Algorithm Performance and Result Analysis. In this
paper, the data set selected for the vehicle reidentification
experiment is the vehicle reidentification image library based

on traffic video surveillance constructed in Chapter 5. The
image pairs were randomly and uniformly selected as the
training and test set. The experiment was conducted multi-
ples times, and the average value is taken as the final experi-
ment result.

This method selects three feature extraction algorithms,
namely, SIFT, ORB, and HSV. On this basis, multifeature
hypergraph fusion and spatiotemporal correlation con-
straints are added, and the accuracy is significantly improved.
Tables 1–4 show the specific experimental results.

Figure 3: Points distribution and vehicle orientation in the direction of leaving Beijing.

Figure 2: Points distribution and vehicle orientation in the direction of entering Beijing.
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Tables 1–3 show the reidentification results of the three
data sets of Beijing inbound and outbound vehicles on the
Airport Expressway and on Tongzhou G103. SIFT+ORB
+HSV are the three feature extraction methods selected in
this paper through the simple fusion of setting weight param-
eters. HG is the added multifeature hypergraph fusion
method, and S-T is the added spatiotemporal correlation

constraint. The results of Table 1—Airport Expressway vehi-
cles entering Beijing—are relatively poor. The shooting angle
of some data sets is the rear of the vehicle, and the character-
istics are not obvious compared to the front of the vehicle.
The shooting angle in Table 2—Airport Expressway vehicles
leaving Beijing—is the front of the vehicle and the identifica-
tion accuracy slightly improved. However, the clarity of the
expressway is poor, and the image quality of the data set is
low, which has a great impact on vehicle reidentification,
thereby lowering the reidentification accuracy on the part
of the airport expressway. Compared to the 80 × 80 image
pixels of the airport expressway, the image resolution of the
partial data set of Tongzhou G103 is 150 × 150, and the clar-
ity of the vehicle significantly improved. Therefore, the rei-
dentification experiment results of partial data sets of
Tongzhou G103 significantly improved compared to the air-
port expressway. It can be found in these three tables that the
addition of the multifeature hypergraph fusion method has
significantly improved the accuracy of reidentification and
with the adding of spatiotemporal correlation constraints,
the accuracy further improved, proving the effectiveness of
combining multifeature hypergraph fusion with spatiotem-
poral correlation. Table 4 compares the experimental results
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Figure 4: Dataset of five points of Tong Zhou G103 entering Beijing.

Table 1: ReID accuracy of Airport Expressway vehicles entering
Beijing.

Method mAP (%) Rank-1 (%) Rank-5 (%)

SIFT+ORB+HSV 14.34 33.54 46.87

SIFT+ORB+HSV+HG 18.36 42.71 51.32

SIFT+ORB+HSV+HG+S-T 23.46 51.11 68.63

Table 2: ReID accuracy of Airport Expressway vehicles leaving
Beijing.

Method mAP (%) Rank-1 (%) Rank-5 (%)

SIFT+ORB+HSV 16.15 35.64 48.24

SIFT+ORB+HSV+HG 19.73 44.54 57.95

SIFT+ORB+HSV+HG+S-T 24.79 52.68 72.15

Table 3: ReID accuracy of Tong Zhou G103 vehicles entering
Beijing.

Method mAP (%) Rank-1 (%) Rank-5 (%)

SIFT+ORB+HSV 22.21 47.25 66.95

SIFT+ORB+HSV+HG 26.52 56.24 81.31

SIFT+ORB+HSV+HG+S-T 30.46 75.11 88.63

Table 4: Accuracy comparison of ReID methods.

Method mAP (%) Rank-1 (%) Rank-5 (%)

AlexNet 9.69 42.39 55.09

GoogLeNet 17.88 58.87 74.10

FACT 18.49 50.95 73.48

FACT+Plate+STR 27.77 61.44 78.78

SIFT+ORB+HSV+S-T+HG 30.46 75.11 88.63
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of this method with the other four methods on the VeRI data
set and proves to a certain extent the advanced nature of the
method proposed in this paper.

Although the reidentification methods proposed in this
paper have significantly improved the results compared
with some other methods, its accuracy has not reached the
best and optimal state. There are many factors affecting
the accuracy of the vehicle reidentification method in this
paper. Firstly, some cameras are installed at the intersection.
When the vehicle arrives at the intersection, it will slow
down, stop, or start gradually, affecting the accuracy of
speed measurement. Secondly, the spatiotemporal correla-
tion model does not take into account the number of traffic
lights between the monitoring points, which has different
waiting times, causing the use of spatiotemporal features
to be inaccurate. Lastly, the video definition lacks clarity,
saved vehicle images are fuzzy, vehicle contour is unclear,
and there is a certain degree of color disparity in some vehi-
cle images. All these factors cause the reduction of reidenti-
fication accuracy.

Due to our data set is derived from real traffic footage, its
video resolution is low and so are the images saved. In addi-
tion, the image disparity of the same vehicle in this data set
under different cameras is far greater than that of the same
make and model but different vehicles under the same cam-
era. The vehicle images in the data sets used by other
methods are clear and display sharp details, which makes
the data set in this paper unsuitable to be used for other rei-
dentification methods. In addition, this data set contains a
relatively comprehensive spatiotemporal correlation infor-
mation, including position, speed, and time, and considers
vehicle speed as an important parameter, while other data
sets do not store information such as vehicle speed, making
other public data sets unbefitting to be applied to this
method.

7. Conclusion

We used three feature extract methods to extract features
from vehicle images, constructed a hypergraph for each fea-
ture, and through hypergraph learning, fused multiple hyper-
graphs to match the query image and the image set. In
addition, the spatiotemporal correlation between vehicles
constrains the degree of image matching and improves the
accuracy of vehicle reidentification. The complementary
information of different feature descriptors can be effectively
utilized through learning and using multiple hypergraphs
and feature descriptors, respectively. The experiments con-
ducted on the image library constructed in this paper proves
the effectiveness of using multifeature hypergraph fusion and
the spatiotemporal correlation model to address issues in
vehicle reidentification.
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