{: SCISPACE

formerly Typeset

@ Open access + Book Chapter « DOI:10.1007/978-3-642-13520-0_21
Vehicle routing for food rescue programs: a comparison of different approaches
— Source link [

Canan Gunes, Willem-Jan van Hoeve, Sridhar Tayur

Institutions: Carnegie Mellon University

Published on: 14 Jun 2010 - Integration of Al and OR Techniques in Constraint Programming

Topics: Node (networking) and Vehicle routing problem

Related papers:

» Sequential Resource Allocation for Nonprofit Operations

» The stop-and-drop problem in nonprofit food distribution networks

« Scheduling Food Bank Collections and Deliveries to Ensure Food Safety and Improve Access
« Multi-vehicle sequential resource allocation for a nonprofit distribution system

« Understanding the Sustainability of Retail Food Recovery

Share thispaper: @ ¥ M &

View more about this paper here: https://typeset.io/papers/vehicle-routing-for-food-rescue-programs-a-comparison-of-
cv7mpk29kd

https://typeset.io/
https://www.doi.org/10.1007/978-3-642-13520-0_21
https://typeset.io/papers/vehicle-routing-for-food-rescue-programs-a-comparison-of-cv7mpk29kd
https://typeset.io/authors/canan-gunes-1vyuleihsw
https://typeset.io/authors/willem-jan-van-hoeve-4kxl7ig7pl
https://typeset.io/authors/sridhar-tayur-48i1nto27t
https://typeset.io/institutions/carnegie-mellon-university-2nn2m0cz
https://typeset.io/conferences/integration-of-ai-and-or-techniques-in-constraint-3626dyhr
https://typeset.io/topics/node-networking-2dv26b4f
https://typeset.io/topics/vehicle-routing-problem-2xa2ih94
https://typeset.io/papers/sequential-resource-allocation-for-nonprofit-operations-4aydnbh9i6
https://typeset.io/papers/the-stop-and-drop-problem-in-nonprofit-food-distribution-45ud187h8s
https://typeset.io/papers/scheduling-food-bank-collections-and-deliveries-to-ensure-1o3lykxsn4
https://typeset.io/papers/multi-vehicle-sequential-resource-allocation-for-a-nonprofit-2i2d91yvws
https://typeset.io/papers/understanding-the-sustainability-of-retail-food-recovery-2grksn2or0
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/vehicle-routing-for-food-rescue-programs-a-comparison-of-cv7mpk29kd
https://twitter.com/intent/tweet?text=Vehicle%20routing%20for%20food%20rescue%20programs:%20a%20comparison%20of%20different%20approaches&url=https://typeset.io/papers/vehicle-routing-for-food-rescue-programs-a-comparison-of-cv7mpk29kd
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/vehicle-routing-for-food-rescue-programs-a-comparison-of-cv7mpk29kd
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/vehicle-routing-for-food-rescue-programs-a-comparison-of-cv7mpk29kd
https://typeset.io/papers/vehicle-routing-for-food-rescue-programs-a-comparison-of-cv7mpk29kd

Vehicle Routing for Food Rescue Programs:
A comparison of different approaches

Canan Gunes, Willem-Jan van Hoeve, and Sridhar Tayur

Tepper School of Business, Carnegie Mellon University

1 Introduction

The 1-Commodity Pickup and Delivery Vehicle Routing Problem (1-PDVRP)
asks to deliver a single commodity from a set of supply nodes to a set of demand
nodes, which are unpaired. That is, a demand node can be served by any supply
node. In this paper, we further assume that the supply and demand is unsplit-
table, which implies that we can visit each node only once. The 1-PDVRP arises
in several practical contexts, ranging from bike-sharing programs in which bikes
at each station need to be redistributed at various points in time, to food rescue
programs in which excess food is collected from, e.g., restaurants and schools,
and redistributed through agencies to people in need. The latter application is
the main motivation of our study.

Pickup and delivery vehicle routing problems have been studied extensively;
see, e.g., Berbeglia et al. [1] for a recent survey. However, the 1-commodity pickup
and delivery vehicle routing problem (1-PDVRP) has received limited attention.
When only one vehicle is considered, the problem can be regarded as a traveling
salesman problem, or 1-PDTSP. For the 1-PDTSP, different solution methods
have been proposed, including [3, 4]. On the other hand, the only paper that
addresses the 1-PDVRP is by Dror, Fortin, and Roucairol [2], to the best of our
knowledge. Dror et al. [2] present different approaches, including MIP, CP and
Local Search, which are applied to instances involving up to nine locations.

The main goal of this work is to compare off-the-shelf solution methods for
the 1-PDVRP, using state-of-the-art solvers. In particular, how many vehicles,
and how many locations, can still be handled (optimally) by these methods?
The secondary goal of this work is to evaluate the potential (cost) savings in
the context of food rescue programs. We note that the approaches we consider
(MIP, CP, CBLS) are similar in spirit to those of Dror et al. [2]. Our MIP
model is quite different, however. Further, although the CP and CBLS models
are based on the same modeling concepts, the underlying solver technology has
been greatly improved over the years.

2 Different Approaches to the 1-PDVRP

2.1 Input Data and Parameters

Let the set V' denote the set of locations, and let O € V denote the origin (or
depot) from which the vehicles depart and return. With each location 4 in V' we

associate a number ¢; € R representing the quantity to be picked up (¢g; > 0) or
delivered (g; < 0) at 4. The distance between two locations ¢ and j in V' will be
denoted by d;;. Distance can be represented by length or time units.

Let T denote the set of vehicles (or trucks). For simplicity, we assume that
all vehicles have an equal ‘volume’ capacity () of the same unit as the quantities
q to be picked up (e.g., pounds). In addition, all vehicles are assumed to have
an equal ‘horizon’ capacity H of the same unit as the distances d.

2.2 Mixed Integer Programming

Our MIP model is based on column generation. The master problem of our
column generation procedure consists of a set of ‘columns’ S representing feasible
routes. The routes are encoded as binary vectors on the index set V' of locations;
that is, the actual order of the route is implictly encoded. The columns are
assumed to be grouped together in a matrix A of size V' by S. The length of
the routes is represented by a ‘cost’ vector ¢ € RISl We let z € {0,1}! be a
vector of binary variables representing the selected routes. The master problem
can then be encoded as the following set covering model:

min ¢’z

st. Az =1 1)

For our column generation procedure, we will actually solve the continous re-
laxation of (1), which allows us to use the shadow prices corresponding to the
constraints. We let A; denote the shadow price of constraint j in (1), where
jevVv.

The subproblem for generating new feasible routes uses a model that employs
a flow-based representation on a layered graph, where each layer consists of nodes
representing all locations. The new route comprises M steps, where each step
represents the next location to be visited. We can safely assume that M is the
minimum of |V] 4+ 1 and (an estimate on) the maximum number of locations
that “fit’ in the horizon H for each vehicle.

We let ;55 be a binary variable that represents whether we travel from loca-
tion ¢ to location j in step k. We further let y; be a binary variable representing
whether we visit location j at any time step. The vector of variables y will rep-
resent the column to be generated. Further, variable I, represents the inventory
of the vehicle, while variable Dy, represents the total distance traveled up to step
k,where k =0,..., M. We let Dy = 0, while 0 < Iy < @. The problem of finding
an improving route can then be modeled as presented in Figure 1.

In this model, the first four sets of constraints ensure that we leave from and
finish at the origin. The fifth set of constraints enforce that we can enter the
origin at any time, but not leave it again. The sixth set of constraints model
the flow conservation at each node, while the seventh set of constraints (the first
set in the right column) prevent the route from visiting a location more than
once. The following four sets of constraints represent the capacity constraints
of the vehicle in terms of quantities picked up and delivered, and in terms of

M
min 30 30 30 dijegie = 30 Ajuj

iEV jEV k=1 JEV
M
st > =041 =1 > Y eges<t VieVA{o)
eV JEVN{0} k=1
szzi,j,lzo Vi € V\ {0} In=Ip 1+ 3 Y aqiey, Vke[L.M]
Je iEV jEV
> ziom=1 0< I, <£Q Vk € [0..M]
iev
S e =0 vie v {0} Dj=Dp_1+ > > djjzij, Vk € [1..M]
iev ievjev
€0, j k=0 Vj € V\ {O},Vk € [1..M] 0< Dy <H Vk € [0..M]
. M
> @ijk = D @, k41 Vi EV,Vk € [1.M — 1] S @ik =y vVjev
i€V lev 1€V k=1

Fig. 1. MIP model for finding an improving route.

distance. The last set of constraints link together the ‘flow’ variables x with the
new column represented by the variables y.

As noted above, throughout the iterative process, we apply a continuous
relaxation of the master problem (1). When this process terminates (it reaches
a fixed point, or it meets a stopping criterion), we run the master problem as an
integer program. Therefore, our procedure may not provably find the optimal
solution, but it does provide a guaranteed optimality gap.

As a final remark, when only one vehicle is involved, the MIP model amounts
to solving only the subproblem, to which the constraints are added that we must
visit all locations.

2.3 Constraint Programming

Our CP model is based on a well-known interpretation of the VRP as a multi-
machine job scheduling problem with sequence-dependent setup times. In the CP
literature, this is usually modeled using alternative resources (the machines) and
activities (the jobs). That is, each visit to a location corresponds to an activity,
and each vehicle corresponds to two (linked) resources: one ‘unary resource’
modeling the distance constraint, and one ‘reservoir’ modeling the inventory
of the vehicle. With each activity we associate variables representing its start
time and end time, as well as a fixed duration (this can be 0 if we assume
that the (un-)loading time is negligible). Further, each activity either depletes
or replenishes the inventory reservoir of a vehicle. The distance between two
locations is modeled as the ‘transition time’ between the corresponding activities.
We minimize the sum of the completion times of all vehicles.

All these concepts are readily available in most industrial CP solvers. We have
implemented the model in ILOG Solver 6.6 (which includes ILOG Scheduler).
A snapshot of the ILOG model for a single vehicle is provided in Figure 2. It
shows that the concepts presented above can almost literally be encoded as a
CP model.

IloReservoir truckReservoir(ReservoirCapacity, 0); class RoutingModel {
truckReservoir.setLevelMax(0, TimeHorizon, ReservoirCapacity); ...
IloDimension2 _time;

IloUnaryResource truckTime(); IloDimension2 _distance;
IloTransitionTime T(truckTime, Distances); IloDimensionl _weight;
vector<IloActivity> visit; }

visit = vector<IloActivity>(N);
IloNode node(<read coordinates from file>);
for (int i=0; i<N; i++) {
visit[i].requires(truckTime); IloVisit visit(node);

if (supply[il > 0) visit.getTransitVar(_weight) == Supply);
visit[i].produces(truckReservoir, supply[il); minTime <= visit.getCumulVar (_time) <= maxTime;
else visit.getCumulVar (_weight) >= 0);

visit[i] .consumes (truckReservoir, -1*supply[il);
IloVehicle vehicle(firstNode, lastNode);
vehicle.setCapacity(_weight, Capacity);
vehicle.setCost(_distance);

Fig. 2. Snapshots of the ILOG Scheduler model (left) and ILOG Dispatcher model
(right), for a single vehicle.

2.4 Constraint-Based Local Search

Our final approach uses Constraint-Based Local Search (CBLS). With CBLS
we can express the problem similar to a CP model, which will then be used
to automatically derive the neighborhoods and penalty function needed to de-
fine a local search procedure. Our CBLS is based on the semantics offered by
ILOG Dispatcher (included in ILOG Solver 6.6). These semantics are specifically
designed to model routing problems.

ILOG Dispatcher uses the concepts nodes, vehicles, and wvisits. The nodes
are defined by the coordinates of the locations, and contain as an attribute the
amount to be picked up or delivered. The vehicles contain several attributes,
including time, distance, and weight (load). Vehicles also contain, by default, a
‘unary resource’ constraint with respect to time, and a ‘capacity’ constraint with
respect to the load, similar to the resources in ILOG Scheduler. The attributes
of visits include the location, the quantity to be picked up (positive) or delivered
(negative), a time window, and possibly other problem-specific constraints.

In a first phase, we create a feasible solution. ILOG Dispatcher uses various
heuristics for this, including a nearest-neighbour heuristic that we applied in our
experiments. Where applicable, we started from the current schedule that we
extracted from the data.

The second phase improves upon the starting solution using various local
search methods. We applied successively the methods IloTwoOpt, [loOrOpt,
IloRelocate, lloCross and IloExchange. Within each method, we take the first
legal cost-decreasing move encountered.

3 Evaluation

Our experimental results are performed on data provided by the Pittsburgh Food
Bank. Their food rescue program visits 130 locations per week. The provided
data allowed us to extract a fairly accurate estimate on the expected pickup
amount for the donor locations. The precise delivery amounts were unknown, and
we therefore approximate the demand based on the population served by each

location (which is known accurately), scaled by the total supply. We allow the
total demand to be slightly smaller than the total supply, to avoid pathological
behavior of the algorithm. We note however, that although this additional ‘slack’
influences the results, the qualitative behavior of the different techniques remains
the same. The MIP model is solved using ILOG CPLEX 11.2, while the CP and
CBLS model are solved using ILOG Solver 6.6, all on a 2.33GHz Intel Xeon
machine.

The first set of instances are for individual vehicles, on routes serving 13 to 18
locations (corresponding to a daily schedule). The second set of instances group
together schedules over multiple days, ranging from 30 to 130 locations. The
results are presented in Figure 3. We report for each instance the cost savings (in
terms of total distance traveled) with respect to the current operational schedule.
Here, |V| and |T| denote the number of locations and vehicles, respectively.
The optimal solutions found with MIP and CP took several (2-3) minutes to
compute, while the solutions found with CBLS took several seconds or less. The
time limit was set to 30 minutes.

Our experimental results indicate that on this
problem domain, our MIP model is outperformed VI |[T| MIP CP CBLS
by our CP model to find an optimal solution (we 13 1 19% 12% 12%
note that a specialized 1-PDTSP MIP approach such 14 1 15% 15% 14%
as [4] might perform better than our ‘generic’ MIP 15 1 - % 6%
model on the single-vehicle instances). Further, the 16 1 - 5% 3%
CP model is able to find optimal solutions for up 18 é - 16% 15%

4
9

to 18 locations and one vehicle; for a higher num- 39 - } 4%
ber of locations or vehicles, the CP model is unable 60 - . 8%
to find even a single solution. Lastly, the CBLS ap- 130 - - 10%
proach is able to handle large-scale instances, up to

130 locations and 9 vehicles. The expected savings Fig.3. Savings obtained
are substantial, being at least 10% on the largest with different approaches.
instance.

Bibliography

[1] G. Berbeglia, J.F. Cordeau, I. Gribkovskaia, and G. Laporte. Static pickup
and delivery problems: A classification scheme and survey. TOP, 15(1):1-31,
2007.

[2] M. Dror, D. Fortin, and C. Roucairol. Redistribution of self-service electric
cars: A case of pickup and delivery. Technical Report W.P. 3543, INRIA-
Rocquencourt, 1998.

[3] H. Herndndez-Pérez and J.J. Salazar-Gonzélez. A branch-and-cut algorithm
for a traveling salesman problem with pickup and delivery. Discrete Applied
Mathematics, 145:126-139, 2004.

[4] H. Hernédndez-Pérez and J.J. Salazar-Gonzalez. The one-commodity pickup-
and-delivery traveling salesman problem: Inequalities and algorithms. Net-
works, 50:258-272, 2007.

