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ABSTRACT

The problem addressed in this paper extends the vehicle routing problem with private fleet
and common carriers by three aspects: two types of rental options, a cost function consid-
ering volumes and distances, and volume discounts offered by the common carriers. For its
solution, we present a mixed integer program and three heuristics based on Variable
Neighborhood Search. The computational analysis demonstrates the suitability of these
heuristics and the positive effects of two newly introduced mechanisms. Analyzing the
interdependencies between available outsourcing options and economic benefits, it shows
that a subset of options is sufficient to reduce costs remarkable.
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1. Introduction

In this article, a comprehensive extension to the (capacitated) vehicle routing problem with private fleet and common
carriers (VRPPC) is presented. The VRPPC, as discussed over the last ten years, tackles the problem of delivering products
from a single central depot (e.g., shipping company) to customer locations. This task is accomplished either by the company’s
privately owned homogeneous or heterogeneous vehicle fleet (self-fulfillment) or by employing external common carriers
(subcontracting), i.e., less than truckload (LTL) carriers. This standard VRPPC consists of a selection decision combined with
a clustering decision and a routing decision. The first decision is to select one of the two delivery modes for each customer to
be served; the second decision comprises the standard vehicle routing problem for the private fleet serving the assigned cus-
tomers. Concerning the VRPPC, each customer must be served by exactly one vehicle of the limited private fleet or by exactly
one external carrier (no split-delivery), every route of the private vehicles start and end at the depot, and vehicles of the pri-
vate fleet have a specific capacity and perform at most one route per day. The objective is to minimize total delivery costs to
serve all customers. Regarding the two delivery modes self-fulfillment and subcontracting, it is assumed that full truckload
(FTL) deliveries executed by own vehicles are always cheaper than other delivery modes. Nevertheless, great saving oppor-
tunities are in subcontracting LTL deliveries to external carriers.

In this paper, we extend the VRPPC by three aspects. First, we consider two exclusive rental options as additional options
for subcontracting: one with a rental fee charged on a route basis (mileage) and the second with a rental fee charged on a
daily basis (see e.g., Krajewska and Kopfer, 2009). Both rental options provide the opportunity to reduce total delivery costs
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by increasing the FTL delivery volume. The latter rental option is identical to the consideration of (full) truckload carriers that
account for fixed cost per load up to a given capacity (see e.g., Rieksts and Ventura, 2008 or Toptal and Bingdl, 2011). Second,
a more realistic concave freight function based on volumes and distances is integrated to determine the costs of LTL carriers
(see e.g., Krajewska and Kopfer, 2009). The third aspect is the consideration of volume discounts offered by (some) LTL car-
riers. Generally, volume discounts are a financial incentive used to foster demand and can be characterized as all-unit quan-
tity discounts or incremental quantity discounts (Wilcox et al., 1987; Weng, 1995). From the view of a common carrier, these
discounts provide potential to realize scale effects by freight consolidation in the short term (especially on the inbound route
to a distribution center - see Nguyen et al., 2014; Campbell, 1990, on the effects of freight consolidation). In this context,
Nguyen et al. (2014) discuss the increase of a customer’s order size fostered by volume discounts offered to consolidate
delivery orders. Discounts could also be used by LTL carriers to achieve a higher customer density, which leads to decrease
in total delivery costs (see, Sun et al., 2015 on this relation). Therefore, the external carrier’s operational costs per unit are
likely to decrease and these savings could partially be passed to the shipper (to achieve a competitive advantage). Conse-
quently, the shipper’s delivery costs will also decrease. This and the previous aspect leads to a heterogeneous set of common
carriers defining individually parametrized cost functions. Therefore, the new freight function for common carriers needs to
be concave to represent decreasing freight rates depending on volumes and distances and needs to enable carrier-dependent
discounts.

Altogether, these aspects lead to a new delivery planning approach for shipping companies addressed in this manner for
the first time. We name this new approach the vehicle routing problem with private fleet, multiple common carriers offering
volume discounts, and rental options (VRPPCdR). In order to solve problem instances of virtually any size, new and enhanced
solution methods based on the principles of Variable Neighborhood Search (VNS) are proposed herein. First enhancement is
an explicit shaking mechanism for solution perturbation to support the exploration of the solution space. Second, a distance
proportionate selection mechanism is introduced in order to increase the efficiency of the local search procedures.

The structure of the paper is as follows. The literature review in Section 2 examines similar problems in detail and shows
the relevance of the new planning approach. The VRPPCdR is formally described in Section 3 and a mixed integer program
(MIP) is presented there. The different solution methods and the introduced enhancements are described in Section 4. The
computational analysis in Section 5 shows that the solution methods are suitable to solve the VRPPC and particularly the
VRPPCdR. The analysis also shows that the new planning approach is able to reduce delivery costs remarkable and provides
managerial insights on the effects of different subcontracting scenarios. Finally, conclusions and potential further research
topics are described in Section 6.

2. Literature review

Basically, two main research streams address operational transportation planning problems with subcontracting: one
investigates the planning problem from the perspective of a freight forwarding company; the other one investigates the per-
spective of a shipping company. The main difference between both streams lies in the basic planning problem: freight for-
warding companies have to solve a pickup and delivery problem (PDP), whereas shipping companies owning a private fleet
have to solve a capacitated vehicle routing problem (VRP). Of course, several variants of each of these basic problems are
addressed in the literature. Another difference between a shipper and a forwarder is in the objective: While shippers aim
to lower their total delivery costs, freight forwarders aim to acquire high volumes in order to generate revenues and lower
costs per unit by consolidated full truck loads.

Since this paper takes the shipper’s perspective, only a brief review of the relevant literature concerning the freight for-
warding perspective is given by selected papers. The paper of Krajewska and Kopfer (2009) is one of the first that combines
several subcontracting options in an integrated manner. The authors enhance the underlying pickup and delivery problem
with time windows (PDPTW) by external carriers and the two exclusive rental options, described above. The authors called
this problem the Integrated Transportation Planning Problem (ITPP; later also called Integrated Operational Transportation
Planning - IOTP) and propose a tabu search heuristic extended by special types of moves for the different subcontracting
options. In a similar context, Liu et al. (2010) address a task selection and routing problem in collaborative truckload trans-
portation and solve the problem by a memetic algorithm. In contrast to the VRPPC, the authors include external delivery task
during the shippers’ distribution planning and the private fleet is of unlimited size. Based on the ITPP, Wang and Kopfer
(2014) and Wang et al. (2014) formulate the Collaborative Transportation Planning (CTP) problem. Generally, collaborative
planning can be seen as a joint decision making process and CTP aims at the reallocation of requests among the partners in a
horizontal cooperation. Accordingly, the main difference between the CTP and the ITPP is that CTP bases on an equal part-
nership, while in ITPP (and also the VRPPC) the players have a hierarchical relationship. Ziebuhr and Kopfer (2014) consider
the IOTP from a forwarders perspective extended by compulsory requests, which are only permitted for self-fulfillment or
premium subcontracting mode. Therefore, they use a formulation with common carriers and self-fulfillment and apply a
large neighborhood search. Defryn et al. (2016) for example also address a vehicle routing problem in a collaborative envi-
ronment: Based on the selective vehicle routing problem (SVRP), which can be interpreted as a VRPPC, different cost alloca-
tion methods for the SVRP in a collaborative environment are analyzed.

The first article that considers external carriers in the perspective of a shipping company originates from Ball et al. (1983).
The authors investigate a fleet-size optimization problem, covering the option to outsource destinations to one external car-
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rier. Klincewicz et al. (1990) and Hall and Racer (1995) also aim to determine an optimal fleet size when external carriers are
available. When the private vehicle fleet contains only a single vehicle, the problem is similar to Prize Collecting Traveling
Salesman Problem (PCTSP) without rewards for visiting nodes. Volgenant and Jonker (1987), Balas (1989), Bienstock et al.
(1993), and Diaby and Ramesh (1995) tackled this problem (see also Balas, 2007).

The VRPPC with a heterogeneous private fleet as described in Section 1 is first examined by Chu (2005). Chu (2005) gen-
erally assumes that FTL deliveries are always cheaper to be delivered by own vehicles, whereas there might be saving oppor-
tunities in subcontracting LTL deliveries to an external carrier. In their paper, the costs of the external carrier are determined
by a linear function of the Euclidean distance between the depot and the customer, but are independent of demand quantity.
Chu (2005) proposes a 3-step heuristic: selection of customers to be served by the external carrier, initial solution construc-
tion by a modified savings algorithm (Clarke and Wright, 1964), and solution improvement by a sequence of intra-route and
inter-route exchanges. The Selection, Routing and Improvement heuristic (SRI) proposed by Bolduc et al. (2007) outperforms
Chu’s heuristic by using two initial solutions and a A-interchange procedure as first proposed by Osman (1993). Even better
results for the VRPPC instances used by Chu (2005) and Bolduc et al. (2007) are reported in Bolduc et al. (2008). In contrast to
Chu (2005) and Bolduc et al. (2007), who account for fixed costs independently of whether a private vehicle is used, Bolduc
et al. (2008) account for these private vehicles’ fixed costs only if the corresponding vehicle is actually used (the authors also
apply a linear function for the costs of the external carrier). Their Randomized construction Improvement-Perturbation
heuristic (RIP) combines a descent strategy with two diversification strategies: a randomized savings construction phase
and a perturbation mechanism. This RIP-heuristic also performs better (compared with SRI) when applied to instances orig-
inating from Christofides and Eilon (1969) and Golden et al. (1998). Coté and Potvin (2009) developed a tabu search heuristic
(TS) that achieves better results than does the RIP heuristic when applied to the instances with a homogeneous private vehi-
cle fleet (heterogeneous vehicles are not considered at all). With the extension of this tabu search heuristic by ejection chains
(TS+), Potvin and Naud (2011) have further improved the results for homogeneous and heterogeneous private vehicle fleets.
However, the computation times of the tabu search heuristics TS and TS+ are significantly greater than are those of the RIP
heuristic.

Stenger et al. (2013b) extended the VRPPC by multiple depots and called their problem multi-depot vehicle routing prob-
lem with private fleet and common carriers (MDVRPPC). Their Adaptive Variable Neighborhood Search (AVNS) algorithm uses
cyclic-exchange neighborhoods and incorporates an adaptive mechanism to bias the random shaking step. The AVNS is also
evaluated by selected VRPPC instances (only instances with a homogeneous vehicle fleet are considered) and outperforms the
RIP and TS algorithms. Furthermore, AVNS is almost equivalent to TS+ in terms of solution quality but requires significantly
less computation time. Vidal et al. (2015) consider three different problems, each a particular variant of the vehicle routing
problem with profits and customer selection. The authors propose a new large neighborhood search based on “exhaustive”
solutions that are embedded within three heuristic frameworks (MS-LI, MS-ILS, and UGHS). Regarding the VRPPC, UGHS
slightly outperforms AVNS in terms of solution quality but requires more than twice as much computation time.

All these papers focusing on the VRPPC consider solely the subcontracting to external LTL carriers. Only Kopfer and Wang
(2009) consider all three subcontracting options. The authors extend the VRP to the Vehicle Routing and Forwarding Problem
(VRFP) and their short evaluation based on very small test instances solved by the commercial solver CPLEX shows the eco-
nomic benefit of sub-contracting in general.

There are several papers that consider volume discounts when planning the inbound transportation from suppliers (see
e.g., Tersine and Barman, 1991; Sheen and Tsao, 2007; Tsao and Lu, 2012). To the best of our knowledge, only Stenger et al.
(2013a) consider volume discounts in the outbound transportation (distribution) planning, when discussing routing with
subcontracting. Here, Stenger et al. (2013a) extend the MDVRPPC of Stenger et al. (2013b) by quantity discounts and a min-
imum demand to be delivered by the private fleet. They call it the Prize-Collecting Multi-Depot Vehicle Routing Problem
with Non-Linear costs (PCMDVRPNL) and propose a linear cost function and a non-linear stepwise cost function that depends
on the vehicle capacity. This capacity is assumed to be identical for all vehicles of the private fleet and also for the vehicles of
the LTL carrier. Both cost functions are linked with a maximal discount factor. Similar to Stenger et al. (2013a), we use a
decreasing freight rate with a minimum freight rate but in contrast to them, we consider heterogeneous vehicles and hetero-
geneous common carriers having cost functions with individual parameters (e.g., discount factors).

Summarizing the literature review, there is no planning approach that simultaneously considers different rental options
and volume discounts from the perspective of a shipping company.

3. Problem analysis

Before presenting a mixed integer program for the VRPPCdR, we specify the problem in detail and introduce notations in
the following.

3.1. Problem specification and notation

The VRPPCdAR considers four different transportation options for the delivery of products from the shipper’s depot to cus-
tomer locations. Basic planning tasks include, first, the selection of the transportation option for each customer to be served;
second, the clustering of a subset of the set of customers to one available (own or rented) vehicle or to one available common
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carrier; and third, the routing of private and rented vehicles as necessary. The objective is to minimize total delivery (trans-
portation) costs. Therefore, C represents the set of all vertices h,i,j = 0, ..., n (representing customers and the depot, which is
indexed by 0) and C", which represents the set of n customers where n = |C"|. The distance between two vertices is defined
by d; and the demand quantity of customer i by g;.

The first transportation option is self-fulfillment by the heterogeneous private vehicle fleet of the shipping company. This
set of m vehicles is denoted by V (m = |V|). The heterogeneous, limited capacity for each vehicle k is defined by cap, and the
variable cost rate per distance unit is defined by c,. The route of each of these private vehicles must start and end at the ship-
per’s depot. Although each of the own vehicles is associated with fixed costs cf*, we assume that these costs are not relevant
in the short-term planning process but only when investigating different fleet sizes. This assumption is in line with
Krajewska and Kopfer (2009) but opposes other approaches (e.g., Chu, 2005 or Bolduc et al., 2007). Nevertheless, to compare,
it would be easy to incorporate fixed costs as an additive term in the objective function.

To increase the transportation flexibility of the shipping company to fulfill FTL deliveries, we consider two options for
exclusive vehicle rental. The subcontractor providing the first rental option charges a fee based on the distance of the route
covered by one of his vehicles k. Therefore, a cost rate ¢! per distance unit for each of the m’ vehicles of set R (m’ = |R'|) is
given. The fixed vehicle costs of this subcontractor are partially settled by the cost rate c?. Therefore, c?* > ¢, strictly holds.

To assert a minimum contribution to fixed costs, a minimum distance dkMi” per rentable vehicle k < R is defined by the sub-
contractor. Fees for the second rental option are accounted for on a daily basis. The subcontractor, who is paid on this daily

basis, offers m” vehicles from set R’ (m” = |R"|). These vehicles are charged for at cost rate ¢, if vehicle k is utilized in the

resulting delivery plan. Here, the maximum utilization of vehicle k is limited by maximum distance d’,f"” per vehiclek ¢ R". A
maximum travel time could also be specified and converted to a maximum distance using standard travel speeds. All rent-
able vehicles also have a limited capacity cap, and must start and end their routes at the shipper’s depot. Because we assume
that the company offering rental options is closely located to the shipper’s depot, we neglect distances and travel times
between the shipper’s depot and these companies.

For all vehicles k=1,...,m,....m+m',.... m+m' +m” from the sets V, R, and R’, a subset of customers must be
assigned (clustering), and a travel route must be determined (routing). As a result, those routes define the transportation
costs either by the total traveled distance of the route (k € V UR') or by whether vehicle k is utilized at all (k € R").

The fourth transportation option is offered by a set E of e = |E| common LTL carriers (logistic service providers or freight
forwarding companies). It is assumed that these carriers do not have any capacity limits but accept every subcontracted vol-
ume. Each of these carriers I defines individual parameters that are used to calculate the transportation costs for this type of
subcontracting. In most publications, the cost for delivering a product to the customer only depends on the customer’s loca-
tions and is represented by a linear function of the distance between the customer and depot (e.g., Chu, 2005 or Bolduc et al.,
2007). In contrast, Vahrenkamp (2011) states that a reasonable cost function must increase in both the quantity of delivered
units and the distance from depot to customer location (as is common in public postal services). Krajewska and Kopfer
(2009) also use this approach for the ITPP, defining a freight function by the weight of the cargo g;;, the distance d; between
two vertices i and j, a constant freight rate cfr, and the parameter 1 € (0,1):

1 1-2
fr(dy, qy) = cfr - (dy - (q)") (1)
Transferring this freight function (1) to the VRPPCdR to determine the costs for serving customer i € C" with one of the
heterogeneous external carriers | € E, the following (non-linear) cost function is used:

cfy = try- (do; - (Qi)ZI)]_ZI =tr -y (2)

In cost function (2), tr; represents a constant tariff rate, and parameter 4, € (0, 1) defines the slope of the function (w is
introduced to increase readability in the following): For 4, = 1, the cost function is a horizontal line at the value of tr,. For
/1 = 0, the cost function is a linear function with slope tr, and is independent of quantity g;. Therefore, the usually used cost
function (e.g., by Chu, 2005 or Bolduc et al., 2008) is a special case of (2) in which 4 = 0. The actual parameter values of cost
function (2) and also of the volume discounts described in the following strongly depend on the goals (e.g., to acquire new
customers) and the cost estimation of the common carrier (for the estimation of distribution costs see e.g., Turkensteen and
Klose, 2012 or Sun et al.,, 2015).

In addition to the extension of the VRPPC by rental options and cost function (2), we further consider all-unit volume dis-
counts offered by LTL carriers. Here, we assume that the tariff rate tr; itself is a function depending on the total delivery
quantity outsourced to one of the LTL carriers I € E. Therefore, the volume discount ¢, granted by carrier ! is represented
by a monotonically increasing function of the total quantity outsourced to carrier | (defined by the set O, of customers
assigned to carrier ). Instead of this function, also a piecewise linear function representing incremental freight discounts
could be easily incorporated (like in Sheen and Tsao, 2007; Tsao and Lu, 2012, or Stenger et al., 2013a). In this paper, the
discount is defined by a discount factor df;.

5= dfi-> g 3)

i€,
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To prevent volume discounts increasing to a level above the undiscounted tariff rate tr;, a minimal transportation rate
tr¥in for every carrier I is used. Ozkaya et al. (2010) discuss a similar approach to determine prices of LTL shipments (see also
Stenger et al., 2013a). The following cost function integrates all of the previous considerations:

4 =2 3
¢fy = max {trl — dfi g Z), trf‘/”'”} . (dm . (q,-)”"') =max {tr; — &, tr™} - wy (4)

i€y

Unfortunately, the necessary maximum function (to guarantee a minimum transportation rate for the common carrier)
leads to a non-linear cost function. This function will be linearized in the following to be able to provide a reasonably solv-
able mathematical formulation (the non-linearity of wy is not important in this context, because as a coefficient, it is applied
independently of the selection and clustering decisions).

3.2. Mixed integer program

The objective function of the VRPPCAR consists of four parts, one for each of the transportation options. This approach has
been chosen because of the multiple carriers with individual cost parameters and rental options. Thus, we do not expand the
formulation for the heterogeneous VRP (HVRP) as proposed by Bolduc et al. (2008), but follow the modeling approach pre-
sented in Krajewska and Kopfer (2009).

Within the mathematical formulation, the following decision variables are used:

X — { 1 if vehicle k € VUR UR" visits vertex j immediately after vertex i
%710 otherwise

X — { 1 if vehicle k € R” is utilized(leaves the depot)
710 otherwise

Vo — { 1 if vehicle k € VUR UR" visits vertex i
k=0 otherwise

7 1 if customer i is assigned to carrier [ € E
"7 10 otherwise

Based on these variables and the redefinition of (3) to ¢, = dfi>",.»Z; - q;, the objective function can be defined as follows:

mind 6y Y Xpeody+> @D D Xy dy+ > X

keV icC jeC,i#j keR icC jeC,i#j keR”
) N1
M s
+3 > Zy-max gt — | dfi- > Zy-q; | trm (do:‘ : (qi)/l) (5)
leE  ieC" jecn

Because the maximum operator of the cost function for the external carriers is not linear, this part of the objective func-
tion (5) is linearized to allow use of linear (standard) solution techniques to solve at least small VRPPCdR instances. This lin-
earization (illustrated in detail in Appendix A) leads to the subsequent MIP for the VRPPCdR. The linear objective function is
stated in formula (6), and the constraints are given in formulas (7)-(21). Formulas (22)-(25) define the domain of the deci-
sion variables.

miankZ Z X,‘jk-dij-l—ZC?mZ Z Xijk'dij—FZXk'C,[()ay‘F Ztrlzpil'wil>

keV ieC jeC, i#j keR' ieC jeC, i#j keR" IeE ieC"

DA > Qg |+ D™y (Zi—Py) - wn) (6)

leE ieC" jeC" leE iech
subject to
Zyik . q,' < Capk Vk S V U Rl U RH (7)
ieC"
Z Yik) + ZZ”) =1 VvieC" 8)
keVUR'UR" IeE
> X =Yy Vke VURUR'jeC )

ieC
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> Xj=Yu Vke VURUR"ieC (10)

jeC

Yo <1 Vke VUR UR' (11)

> Xo =Xi VkeR' (12)

ject

D> dy Xy <dy™ VkeR (13)

ieC jeC.i#j

Z Z dyj - Xk = dﬁ”m Yo« VkeFR (14)

ieC jeC,i#j

Ui < Z Yi - Capk) + Zzil : Qi> VieC" (15)
keVUR'UR" IeE

UzU+g+ > Xm<~capk> - > Y capk> - > Z q;) Vi, je C" with i#j (16)

keVUR'UR" keVUR'UR" leE
U=>gq Vie c

Zy—Py >0 VieC'lcE
Zi+Zy+P;—3Qy; >0 VijeC'lcE
(tr)-Zy— &) —trMn <Py -M VieC'1cE
(trj— &) —trMm > (Py—1)-M VieC"IcE
Xix, Ya € {0,1} Vke VUR UR',ijeC
Xk €{0,1} VkeFR

Py,Qu €{0,1} VieC"lcE

UeZs YielC
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(=]
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The capacity constraints (7) are defined for all own and rented vehicles. Constraint set (8) represents the single-delivery
constraint. Constraint sets (9) and (10) ensure that the same vehicle enters and leaves a customer exactly once, and con-
straint set (11) ensures that all routed vehicles start from the depot. Constraint set (12) establishes the relationship between
the “renting variable” X, and the “routing variable” Xj;. The maximal route length for vehicles rented on a daily basis is
obeyed by (13), whereas (14) ensures the minimal distance of routes performed by vehicles charged per distance unit.
The next constraint sets (15)-(17) are sub-tour elimination constraints. Those are Miller-Tucker-Zemlin (MTZ) constraints
(Miller et al., 1960) and are modified from the HVRP; formulation presented in Yaman (2006). Note, that we also tested for-
mulations using the sub-tour elimination constraints as first proposed in Dantzig et al. (1954), but we found that for the
VRPPCdR, the MTZ constraints provide a higher solution quality in shorter computation times. Constraint sets (18)-(21)
are used for the linearization of volume discounts. Constraint set (18) allows P; only being equal to 1 if Z; = 1, but permits
Py = 0. The constraint set (19) works similarly for Q;;: All three variables Zy, Z;, and B; must be equal to 1 to permit Q; = 1.

Due to the minimization objective, the constraints defined by (20) and (21) prohibit Py = 1 if tr; — §; < trM", and vice versa.
Here, the character M represents a sufficiently large number. For the formulation at hand, M can be approximated by

M > max(try).
IeE

4. Solution method

Because the VRPPCdR generalizes the NP-hard VRP and VRPPC (see Lenstra and Rinnooy Kan, 1981; Stenger et al., 2013b),
it is also NP-hard. Thus, we develop three heuristic solution methods able to solve virtually any size of problem instances.
Concerning the problem at hand, we especially focus on the development of very efficient heuristics, i.e., heuristics that are
very fast in terms of computation time and achieve a sufficient good solution quality.

Starting with an initial solution calculated by a problem-specific construction heuristic, all three proposed heuristics are
based on the principles of Variable Neighborhood Search (VNS; first described in Mladenovic¢ and Hansen, 1997). VNS is
applied because several papers show the suitability of VNS to solve VRPs and closely related problems (e.g., Hertz and
Mittaz, 2001; Brdysy, 2003; Polacek et al., 2004; Kytojoki et al., 2007; Stenger et al., 2013b). Generally, VNS is a metaheuristic
embedding a local search mechanism within a framework that uses multiple, varying neighborhood structures to exploit
local optima and to escape from them (Hansen et al., 2010). These neighborhood structures are also used to define a solution
perturbation mechanism (“shaking”).

In addition to this well-known features of VNS, a completely new enhancing mechanism for VNS-based heuristics is intro-
duced: “explicit shaking”. This enhancement is meant to explicitly interrupt the search procedure in already exhaustively
searched areas of the solution space and thus, to direct the search process to other areas. The actual implementation of this
explicit shaking mechanism is of course problem specific but the mechanism itself could be transferred to any VNS-based
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solution method. Furthermore, we introduce a distance proportionate vehicle selection mechanism to increase the likelihood
of the local search for improvements.

All components of the proposed solution methods for the VRPPCAR, the problem-specific construction heuristic, the (new)
VNS variants, the neighborhood structures and local search procedures, and the new explicit shaking mechanism are
described in detail in the following sections.

4.1. Initial construction heuristic

The proposed construction heuristic for the initialization is a problem specific adaption of the procedure described in
Bolduc et al. (2007). It integrates the two rental options and is able to handle multiple external carriers with individual
parameters. Furthermore, we have modified the used savings heuristic (Clarke and Wright, 1964) to the specific require-
ments defined by the two rental options. Additionally, the route construction procedure is terminated before the load of
a vehicle k reaches 100% of its capacity (cap,). The reason for this is that the succeeding solution improvement heuristic per-
forms better if there is a certain amount of remaining capacity in each vehicle (also stated by Kytéjoki et al., 2007). This ini-
tial vehicle utilization is controlled by the parameter ¢ € R (0 < ¢ < 1). o can be considered the percentage initial maximum
utilization of every vehicle of the private fleet. The pseudocode Listing 1 illustrates the main course of action of the construc-
tion heuristic.

The heuristic starts with the calculation of the total customer demand (Listing 1-1) and the total capacity provided by the
vehicles of the private fleet and all rentable vehicles (Listing 1-2; adjusted by o). Here, we use the total capacity of the private
fleet and all rentable vehicles because we follow the assumption that (full) truckloads lead to lower costs than LTL subcon-
tracting for individual shipping.

Then, the set of customers C" is sorted in ascending order by their mean external delivery costs (Listing 1-3). Because not
only one external carrier is available but multiple ones, mean external delivery costs cM¢" are calculated for each customer i
(naturally, volume discounts are not considered here):

e = 25y (26)
leE
Based on this ordering, a separation index h is calculated (Listing 1-4; see Bolduc et al., 2007) and C" is divided into the sets
"R and CE (Listing 1-5) such that CF contains the customers with the lowest mean external delivery costs and C'* contains at
most as many customers as can be served with respect to the adjusted capacity of the available vehicles in V, R, and R".
The following modified sequential savings heuristic (Listing 1-6) constructs route by route as the original savings heuris-
tic (Clarke and Wright, 1964) but only as many routes as vehicles (including both the private fleet and the rentable vehicles)
are available. The heuristic starts with the largest unused (i.e., no route is assigned) vehicle k and constructs feasible routes
with respect to the adjusted capacity (cap, - ¢) and, where necessary, with respect to minimum distance d’,i’"" (ifkeR)orto
maximum distance dkM‘”‘ (if k € R"). Once all routes are constructed, the feasible route with the largest assigned demand
quantity is assigned to k, all served customers are removed from C"*, and k is marked as in use. This procedure is repeated
until either all customers are assigned to routes or no vehicle from V, R, or R” is unused. Potentially unassigned customers
are added to C* (Listing 1-7).
Having all routes constructed and assigned, these routes are optimized (Listing 1-8) by Helsgaun’s LKH-2 implementation
(see Helsgaun, 2000; Helsgaun, 2009; available at http://www.akira.ruc.dk/~keld/research/LKH/) of the Lin-Kernighan algo-

1: td « getTotalDemand (C");,

2 tc < getTotalCapacity (V , R, R”, 0);

3: customerList «— sortCustomersByAscendingMeanExternalCarrierCosts (C", E);
4: h « calculateSeparationlndex (customerList, td, tc);

5: C"*, CF «— seperateCustomers (customerList, h);

6: routes, remainingCustomerList «— executeModifiedSavings ( c”r ,V,R,R, o0)
7: merge( C* , remainingCustomerList);

8: applyLKH-2(routes);

9: addExternalCarrierRoutes(routes, e);

10: assignRemainingCustomers(routes, C*);

Listing 1. Main course of action of the construction heuristic.
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—

s «— § « getlnitialSolution ();

2: loopl: execute i"* iterations

3: vehiclel, vehicle2 « getTwoRandomVehicles ( §, {);

4: loop2: iterate through neighborhood structures

S: if (not RVNDisActive) then

6: applyShaking ( vehiclel, vehicle2, getRandomOperator() );

7 end if;

8: s” « executeLocalSearch ( vehiclel, vehicle2 , additional parameters);

9: if (costs(s”) < costs(s") ) then // new ever best solution

10: s« § « s exit loop2; // stop iterating through the neighborhood structures
11: else

12: if (costs(s”) < costs(5) // improvement of the incumbent solution
13: or ( VNSaclsActive and isDegradationAcceptable (s”, §,T) ) then
14: § s ; exit loop2;

15: end if;

16: end if;

17: end loop2;

18: if (x>0 and " is reached ) then

19: executeExplicitShaking (S , vehiclel, vehicle?),

20: end if;

21: if (x>0 and i*™" is reached ) then

22: § —s"; Il reset explicit shaking

23: end if;

24 if (VNSaclsActive) then T «— updateTemperature(T, T );

25: end loopl;

Listing 2. Main course of action of the VNS-variants.

rithm (Lin and Kernighan, 1973). This heuristic is used because it is one of the most powerful heuristics to solve Traveling
Salesman Problems (Johnson and McGeoch, 2007; Karapetyan and Gutin, 2011) and, thus, for intra-route optimization.

To model subcontracting with external carriers, we use the concept of “virtual vehicles” (as, e.g., proposed by Bolduc et al.,
2007; Stenger et al., 2013b), and e virtual routes are added to the list of “real” routes (Listing 1-9). This concept of virtual
vehicles is used by all proposed solution methods. Finally, all customers from CF are assigned to the external carrier with
the lowest cost (calculated by cost function (2)) for serving this customer (Listing 1-10). Because all constraints are consid-
ered throughout the construction of the solution, the initial solution is always feasible. This feasibility of a solution is also
ensured by all subsequently described solution transformations, and only feasible solutions are considered by the solution
methods.

4.2. Main course of action of the VNS-variants

To solve the VRPPCAR, we propose a basic VNS variant as described in Hansen et al. (2010), a randomized Variable Neigh-
borhood Descent (RVND) variant, and a VNS variant (named VNSac) that uses an acceptance criterion such as the Simulated
Annealing (SA) metaheuristic. The RVND variant is inspired by the RandVND metaheuristic proposed in Gahm et al. (2014)
and extends the basic Variable Neighborhood Descent (VND; Hansen et al., 2010) method by a random component. For all
variants proposed here, we randomly select two vehicles (routes) before starting the neighborhood search. Therefore, we do
not investigate all two-route combinations as was done by Kytdjoki et al. (2007) but only two randomly selected ones. Due to
the random selection procedure, the RVND-variant is no longer deterministic but stochastic. The VNSac variant is developed
because Hemmelmayr et al. (2009) reported a superior behavior of their SA-based VNS approach compared with their
Skewed VNS and their VNS approach incorporating an acceptance criterion based on the Threshold Accepting concept.
The main course of action for all three variants is described by the pseudocode in Listing 2.
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The course starts with the initialization of the best known solution s* and the incumbent solution s by the construction

heuristic. After this initialization, the main control loop is traversed for a maximum number of iterations i"* (Listing 2-2).
The maximum number of iterations can be used by the decision maker to balance the trade-off between solution quality and
computation time.

Regardless of the specified variant, each iteration starts with the random selection of two different vehicles/routes
(Listing 2-3). Here, to increase the likelihood for improving moves within the subsequent local search, a new distance pro-
portionate vehicle selection mechanism is introduced (see Section 4.4 for details).

The inner control loop (Listing 2-4) iterates through the defined neighborhood structures ns; to nss as described in detail
in Section 4.3 (see Table 1). Then, for the two variants VNS and VNSac, a shaking step is performed by a randomly selected
operator (from the currently active neighborhood structure) and the two randomly selected vehicles (Listing 2-6). Because
the RVND variant bases on VND, no shaking step is executed (see Hansen et al., 2010).

The current (“shaked”) solution is then improved by a specified local search procedure and returns the new solution s’
(Listing 2-8; the local search procedure is described in the following section).

When the costs of solution s’ (calculated by cost function (6)) are less than that of the best known solution s*, solution s’
becomes s* and also the new incumbent solution § and iterating through the neighborhood structures is terminated (Listing
2-9...10). If only the costs of incumbent solution s are improved by s’ (Listing 2-12) or the VNSac variant is active and the
cost degradation is acceptable (Listing 2-13), then the new solution s’ becomes § and iterating through the neighborhood
structures is also terminated (Listing 2-14). The acceptance probability of non-improving solutions is defined by
exp(—(costs(s") — costs(s))/T), where T represents the (current) temperature. In any other case, iterating through the neigh-
borhood structure is continued.

If the explicit shaking mechanism is activated at all (x > 0) and a specified number of iterations without improvement i’
is reached, an “explicit shaking” mechanism as described in Section 4.5 is executed (Listing 2-18...20). To avoid the explo-
ration of unpromising parts of the solution space when explicit shaking is activated, a mechanism is available to reset the
incumbent solution § to the best known solution s* if no improvement of s* can be achieved within i** "' iterations (Listing
2-21...23).

The last step within loop1 is the update of the temperature for the VNSac variant (Listing 2-24). To update the temper-
ature, we use a linear cooling scheme based on cooling factor t: T,,; = T; - 7. Different cooling schemes (exponential cooling
and step functions) have also been considered, but linear cooling with 7 = 0.3 provided the best results.

4.3. Neighborhood structures and local search procedure

The most important aspects when applying VNS to a specific problem are the definition and number of appropriate neigh-
borhood structures (Listing 2 loop2), the order in which these neighborhoods are investigated, the strategy that is used for
changing neighborhoods, and the local search procedure (Hansen and Mladenovic, 2001).

Neighborhood structures and also the local search procedures are based on transformation rules, which define the
transformation of a solution to obtain another solution. For the VRPPCAR, we use increasingly large neighborhood struc-
tures with changing local search mechanisms based on A-interchanges (Osman, 1993). Each neighborhood structure is
defined by a set of operators that define the \-interchanges and the extraction/insertion (e/i) mechanism to use. Accord-
ing to Osman (1993), shifting or transferring one customer from one route to another is defined by the (1,0) and (0,1)
operator, respectively. Specifically, the operator (1,0) means that a single customer is extracted from one route and
inserted into another route. Shifting two customers is defined by (2,0) and (0,2), shifting three by (3,0) and (0,3),
and so on. Interchanging or swapping customers between two routes is defined by operators such as (1,1) and (2,2).
In contrast to Stenger et al. (2013b), we only consider two routes for inter-route optimization because this approach
is also used by the very performant VNS metaheuristic presented in Kytdjoki et al. (2007). To improve the efficiency
of the inter-route optimization, we introduce a new mechanism to randomly select these two routes. This mechanism
is described in Section 4.4.

To extract and insert customers from and into a route, we use two local-search mechanisms: “sequence-e/i” and “single-
e/i”. To transfer promising sequences between two routes, the sequence e/i-mechanism extracts customers in sequence and
inserts this sequence into the other route, preserving the sequence. In contrast, the single e/i-mechanism extracts randomly
chosen customers and inserts them individually. With this mechanism, the sequence of both routes is broken up. To insert
either the complete sequence of customers or all customers individually, the position with the lowest cost is calculated for
insertion. Of course, if customers are going to be transferred to virtual routes, no insertion position is calculated but only the
costs. Due to the heterogeneous vehicle fleet considered by the VRPPCdR, it is not possible to use the very fast cost estimation
procedure as described in Bolduc et al. (2008). After applying one of the operators, the routes are tested for cost improve-
ments and for feasibility and, if they are feasible, an intra-route optimization step is performed by 2-opt exchanges (Lin,
1965). We use 2-opt exchanges because tests have shown that more-sophisticated methods for intra-route optimization
such as the outstanding LKH-2 heuristic have only marginal positive effects on the solution quality but significantly increase
computation time.
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Table 1

Neighborhood structures.
Neighborhood structure e/i-mechanism \-operator sets
ns; Single-insertion {(1,0), (0,1), (1,1)}
ns, Sequence-insertion {(2,0), (0,2), (2,1), (1,2), (2,2), (3,0), (0,3), (3,1),(1,3), (3,2), (2,3), (3,3)}
nss Single-insertion
nS4 Sequence-insertion {(4,0), (0,4), (4,1), (1,4), (4,2), (2,4), (4,3), (3,4), (4,4), (5,0), (0,5), (5,1),
nss Single-insertion (1,5), (5,2), (2,5), (5,3), (3,5), (5,4), (4,5), (5,5)}

Based on preliminary tests, we also identified the sequence of five neighborhood structures ns; to nss listed in Table 1 as
most appropriate concerning solution quality and computation time.

Input data and parameters for the local search procedure applied to each neighborhood structure are two routes, one oper-
ator, the e/i-mechanism and the improvement strategy. The improvement strategy parameter s defines the manner in which
solutions will be selected to become the incumbent solution. The strategies “best improvement/steepest decent (BI)” and
“first improvement/first descent (FI)” are used (for details see, e.g., Hansen et al., 2010). The Bl-strategy evaluates all possible
solutions defined by one neighborhood structure and returns the best of these solutions. In contrast, using the Fl-strategy, the
evaluation of a neighborhood structure stops as soon as some improvement is detected. Obviously, this parameter influences
the number of neighboring solutions to be explored and thus, has a strong influence on the computation time. This influence
on the computation time and on the solution quality will be analyzed in detail within the computational analysis in Section 5.

4.4. Vehicle selection mechanism

Two mechanisms are used to select the two vehicles for inter-route optimization (local search). The binary parameter ¢
controls their application. The first mechanism ({ = 0) randomly selects two vehicles from all available real and virtual vehi-
cles. The second mechanism ({ = 1) also selects vehicles randomly, however, if the first selected vehicle ¢1 is a real vehicle
(in one of the sets V, R, or R"), then we apply a distance proportionate mechanism for the selection of the second vehicle v2.
If the first vehicle represents a common carrier, the second one is randomly selected from all other real or virtual available
vehicles. In this case, all vehicles have a uniform probability to be selected for first or second vehicle. This procedure is
inspired from fitness proportional selection often used in Genetic Algorithms (see e.g., Grefenstette, 2000).

Basicidea of the distance proportionate selection mechanism is to guide the selection of vehicles for inter-route optimization
in a way that increases the probability of finding an improvement. Vehicle routes in close proximity to the first selected vehicle
(route) have a greater probability for a successful inter-route improvement move than routes that are far away. To determine
the proximity of two routes, the Euclidean distance of their center points cp,; and cp,, is used. The center point cp, of a route
(vehicle) is calculated by the centroid of the axis-aligned minimum bounding rectangle (AAMBR) of all customers on the route
(Fig. 1 illustrates the calculation of Cartesian coordinates of the routes’ center points). Of course, there are more (sophisticated)
ways to calculate a center of a route (like the geometric median or solving a p-median problem). However, we decided for the
AAMBR due to its low computational effort. For all common carriers, we use the mean distance of the real vehicles.
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Fig. 1. Route center calculation with AAMBR.
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The intended effect can be best illustrated considering the vehicle routes in Fig. 1. Assuming that vehicle A with cp,(5, 14)
is selected as first vehicle, the probability that vehicle B with cpg(14,15) and dist, 3 = 9.06 is chosen as second vehicle should
be higher than that of vehicle C with cp.(9,3) and distsc = 11.7. Therefore, the selection is based on a reciprocal distance
proportionate mechanism. The effect of the distance based vehicle selection is analyzed in Section 5.2.

4.5. Explicit shaking mechanism

To support the exploration of the solution space and to avoid cycling in local optima, we use two additional mechanisms
for solution perturbation. Because both mechanisms have a high intended perturbation effect, these rules are not used to
define neighborhood structures but rather to define “explicit” shaking mechanisms (Listing 2-18...20).

The first of these very specific transformation rule is called “route swapping” (RS) because it swaps complete routes
between two vehicles (similar to Krajewska and Kopfer, 2009). In contrast to Krajewska and Kopfer (2009), we swap routes
not only between own and rented vehicles but between all (real and virtual) vehicles. The second transformation rule “route
dividing” (RD) has also a very large perturbation effect and is only used if route swapping is not possible due to capacity or
distance constraints (see (7), (13), and (14)). The RD-rule takes a real vehicle’s route, extracts all customers, and inserts each
of these customers to the external carrier with the lowest costs for serving this customer. After applying RD, one vehicle has
an empty route and thus great potential for shifting customers to this route.

In principle, these explicit shaking mechanisms are applied whenever it is not possible to improve the best known solu-
tion s* for a certain number of iterations i"' (see Listing 2-20...22). To avoid a too exhaustive ineffective exploration of
unpromising regions of the solution space after an explicit shaking step, we stop searching after a predefined maximum
number of iterations (i* ") without improvement of s*, reset to the best known solution so far (s*), and perform another
explicit shaking step (see Listing 2-23...25). The usage of the explicit shaking mechanisms is controlled by the parameter
K € R(with 0 < k¥ < 1), whereby x = 0 has an additional meaning and avoids any explicit shaking. The additional parameter
0 specifies whether the RD-transformation rule is used as an explicit shaking mechanism at all.

In the next section, the explicit shaking mechanisms RS and RD and the specific parameter settings of x and 0 are ana-
lyzed with respect to their influence on the performance of the three VNS-variants. Furthermore, this analysis covers the
influence of the improvement strategy parameter y and the vehicle selection mechanism controlled by parameter (.

5. Computational analysis

The computational analysis consists of two parts. In the first part, the performance of the proposed VNS-variants com-
bined with different parameter settings is evaluated by the variants’ solution quality and computation time. The second part
assesses the economic benefits of considering multiple external carriers offering volume discounts and rental options. Fur-
thermore, the particular circumstances of achieving these benefits are analyzed.

5.1. Problem instances and basic parameter settings

Before presenting the analysis, the used test instances and the basic parameter settings are described in this section. The
first two sets of instances CHU and BOL contain the instances used in Chu (2005) and Bolduc et al. (2007). Unfortunately, we
discovered some inconsistency using the objective values presented in these papers (we think caused by different rounding
of the Euclidean distances); therefore, we calculated new objective values with the model described above and the commer-
cial standard solver IBM CPLEX Optimizer 12.5 (the new reference values can be found in Appendix C, Table 14). To handle
the rounding issue for these instances, we calculate the Euclidean distance d; € N between two vertices i and j by their coor-

dinates in advance by d; = {\/(xi — %)’ + —yj)zJ.

The next four instance sets are based on the instances of Christofides and Eilon (1969) and Golden et al. (1998) and
have been adapted by Bolduc et al. (2008) for the VRPPC. These four instance sets are named CE and G for instances with
a homogeneous private vehicle fleet and CE-H and G-H for instances with a heterogeneous private vehicle fleet. The
instances are available at http://www.mcbolduc.com/VRPPC/tests.htm. Reference values for instances in sets CE and G
are taken from Stenger et al. (2013b); specifically, the objective values with their mean computation times as listed in
“Table 4: Results on VRPPC Instances” in the paper of Stenger et al. (2013b) (but not the values in column “BKS” because
computation times for these values are not given). For the instances in the sets CE-H and G-H, we use the objective values
with their mean computation times as listed in “Table 8: Heterogeneous instances” in the paper of Potvin and Naud
(2011).

For the VRPPCdR, we define seven new instance sets based on the BOL-instance set. We combine each of the basic sce-
narios BOL-1 to BOL-5 (basic data can be found in Appendix C, Table 15) with a downsized private fleet (vehicle data are
listed in Table 2) and seven “carrier and rental option”-scenarios (Table 5). The data of the private vehicles, the capacities
and the cost factors, are the same as used in Bolduc et al. (2007). All used instances are available for download or can be
requested by email.
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Table 2

Vehicle data of the private fleet (k € V).
Identifier capy, Ck cfix
V1 40 1.5 60
V2 75 1.5 120
V3 110 1.5 150
v4 100 1.5 140
V5 4500 1.5 250
V6 4000 1.5 200

The parameters of rental options M1 to M3 (Table 3) and D1 and D2 (Table 4) are deduced from the original vehicles’
parameters to obtain reasonable settings. Reasonable means that the cost factors for both rental options are specified accord-
ing to the assumption that the cost rate per distance unit of the private fleet is always cheaper than the freight rate of any
other delivery mode. In addition, this kind of parameter setting reflects the fact that shipping companies usually prefer the
use of their own fleet before considering any type of subcontracting (not using the private vehicles is a kind of waste).

To get fitting parameter settings, the maximum capacity per rentable vehicle and the daily rate cf“y are calculated based
on the corresponding maximum values of all vehicles of the private fleet R associated with the carrier and rental option sce-
nario (the private vehicles data derive from Bolduc et al., 2007). Another factor that the cost factors c2* are greater than are

those of the private vehicles is that they contain proportional fixed costs. The dkMi" and d’,f'“x parameters are estimated based
on the length of the optimal routes reported in Bolduc et al. (2007).

Table 3

Rental options paid on a mileage basis (k € R').
Identifier  cap, cpist diin
M1 |max{cap, : Yk € V} - 1.33| 2.50 60
M2 max{cap, : Vk € V} 2.25 60
M3 |max{capy : Vk e V}-0.5] 2.00 60

Table 4

Rental options paid on a daily basis (k € R").
Identifier capy, ot i
D1 |max{capy : Vk € V} - 1.33] [max{cf* : Vk e V}-2.66] 120
D2 max{cap, : Vk € V} max{cf¥ : vk e V} -2 120

The seven carrier and rental option scenarios S1 to S7 contain different combinations of rental options and external car-
riers; however, S7 contains all possible options (Table 5).

Parameters of the four considered external carriers are shown in Table 6. In turn, these parameters are specified according
to the assumption that subcontracting should generally be more expensive than self-fulfillment.

Table 5
Carrier and rental option scenarios.
Identifier Rental options Carriers
S1 Cc2,C3
S2 C1,C2,C3,C4
S3 M1, M3, D1, D2 C1
S4 M2, M3, M3, D2 C1
S5 M2, D2 C2,C3,C4
S6 M3, M3, D1, D2 c2,C3
S7 M1, M2, M3, D1, D2 C1,C2,C3,C4

The first two external carriers C1 and C2 offer no volume discounts and have a constant tariff rate tr,. The tariff of C1 is
independent of the delivered quantity, whereas C2 has a slope of /;, = 0.4. Carriers C3 and C4 offer volume discounts and thus
have a discount factor df; and minimum tariff rate trM" specified (the effect of the specified volume discount parameters for
the carriers C3 and (4 is illustrated in Fig. 2 in Appendix B).
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Table 6

Carrier data (I € L).
Identifier try r df; ¢rMin
C1 4 0.0 0 0
C2 7 0.4 0 0
c3 7 0.2 0.02 3
c4 5.5 0.2 0.015 4

Altogether, these specifications lead to 35 problem instances (Table 7) grouped into five sets N1 to N5 (with respect to
their basic data based on the BOL-instance set), each comprising the seven carrier and rental option scenarios S1 to S7 listed
in Table 5.

Table 7
New problem instances for the VRPPCdR.
Instance identifier Private fleet Carrier and rental option scenarios Basic data (locations and order quantities)
N1-01 ... N1-07 \%! $1-S7 BOL-1
N2-01 ... N2-07 V2 S1-S7 BOL-2
N3-01 ... N3-07 V3, V4 S1-S7 BOL-3
N4-01 ... N4-07 V5 S1-S7 BOL-4
N5-01 ... N5-07 V5, V6 S1-S7 BOL-5
Table 8
Parameters for the three VNS-variants (based on preliminary tests).
Parameter Description Definition
o Initial vehicle utilization g =0.85
T Linear cooling factor 7=03
MAX Maximum number of total iterations MAX max{200,n-(m+m +m" +e)-¢)
£ Maximum iteration factor
i Maximum number of iterations without new best known solution § i = max{30,n- (m+m' +m" +e) -k}
ES—WI
i

Number of iterations without new best solution after explicit shaking I

The parameters listed in Table 8 are the result of comprehensive preliminary tests. With these parameter settings, best
results can be achieved considering the trade-off between solution quality and computation time. The effects of the param-
eter ¢ and the other parameters not listed in Table 8 are evaluated in terms of on solution quality and computation time in
the next section.

5.2. Performance of the VNS-variants

The first part of this evaluation assesses the solution quality and computation time of the different VNS-variants at an aggre-
gated level. Here, we consider all instance sets defined above (CHU, BOL, CE, G, CE-H, G-H, and N1 to N5) and compare the
improvements in terms of computation time and solution quality (see Tables 9 and 10). All (mean) computation times resulting
from experiments using one of the proposed VNS variants are performed on a computer with an Intel® XEON® CPU E5 at
2.9 GHz. Because realistic reference computation times are only available for the instance sets CE, G, CE-H, and G-H, the relative
computation time improvements (“CTM®3" imp. [%]")in Tables 9 and 10 are only based on the results for these sets. To assess the
relative improvement of the solution quality, we use the minimum objective values obtained by our proposed solution methods
to calculate the relative improvement “OVMI™ imp. [%]”. Reference values for comparison are the best known objective values
either obtained by IBM CPLEX Optimizer 12.5 (after 50 h) or taken from literature. The minimum objective values result from
ten experiments per VNS-variant and parameter setting. In Tables 9 and 10, the ten experiment results for each instance and of
all instance sets are aggregated to a single value. Tables 9 and 10 show these relative improvements for VNS, RVND, and VNSac
with completely random vehicle selection ({ = 0; Table 9) and with distance proportionate vehicle selection ({ = 1; Table 10);

and with respect to the parameters i"* (maximum number of iterations), y» (improvement strategy), x (explicit shaking factor;
zero means no explicit shaking), and 0 (RD-transformation rule, whereby T (“true”) means that the RD-transformation rule is
available). Bold values in the tables mark the maximum improvements per column.

The numbers in Table 9 show that the Fl-strategy is dominated by the Bl-improvement strategy in terms of solution qual-
ity and that both explicit shaking mechanisms have a positive effect on the solution quality. The numbers also show that the
RVND variant outperforms the other variants in terms of solution quality but at the expense of computation time. Regarding
the maximum number of iterations, the effect of the parameter ¢ on the trade-off between solution quality and computation
time comes obvious. Best setting with respect to solution quality is RVND with { =0, & =1,y = Bl, k = 0.1, and 0 = T, which
achieves a mean improvement of 0.35% (and a computation time improvement of 18.0%). Considering the best trade-off
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between solution quality and computation time, RVND with { =0, £ = 0.5, y = BI, k = 0.1, and 0 = F performs best and
achieves a mean solution quality improvement of 0.15% and a mean computation time reduction by 68.6%.

The effect of the distance proportionate vehicle selection mechanism is shown in Table 10. The numbers show that this
mechanism is able to slightly improve the solution quality for almost all parameter settings with a similar computation time.
For RVND with the first improvement strategy, computation times can be reduced remarkably. For { = 1, the best solution

Table 9
Relative improvements with { = 0 and with respect to the parameters ", y, x, and 0.
VNS RVND VNSac
3 1 0.5 1 0.5 1 0.5
l// K 0 OVMin CTMean OVMin C[-Mean OVMin CTMean OVMin CTMean OVMin C[-Mean OVMin C[-Mean
imp. [%] imp. [%] imp.[%] imp.[%] imp.[%] imp.[%] imp.[%¥] imp.[%] imp.[%] imp.[%] imp.[%] imp. [%]

F. 0 F -261 82.5 —4.26 94.5 —-1.47 16.7 -1.70 68.4 —2.08 85.2 —4.66 95.5
FI 0.7 F —-248 82.6 -3.21 94.2 -1.17 16.3 -1.69 68.5 —2.06 85.0 —4.36 95.8
FI 03 F -2.07 83.6 -3.23 94.2 -0.58 20.2 -1.02 68.0 —2.06 85.2 —4.48 95.4
FI 0.1 F -1.81 83.3 -342 94.5 —0.04 24.0 —0.46 67.8 —243 85.1 —4.49 95.7
FI 0.7 T -2.26 834 -3.51 94.2 -1.09 16.6 -1.67 69.0 —2.55 84.3 —4.22 95.2
FI 03 T -2.29 82.6 -3.15 94.8 -0.15 235 -1.43 69.3 -1.95 83.8 —-4.74 95.8
FI. 01 T -1.81 82.8 -3.33 94.2 -0.19 35.7 -0.40 67.8 -2.15 84.0 -5.42 95.9
Mean -2.19 83.0 -3.45 94.4 -0.67 219 -1.19 68.4 -2.18 84.7 —4.62 95.6
Bl 0 F -063 48.6 -1.43 79.9 -1.36 9.8 -1.42 69.0 -0.31 51.6 -1.08 76.0
Bl 0.7 F -0.84 49.2 -0.98 79.9 -0.52 9.7 -0.12 69.2 -0.27 51.2 -0.98 76.5
Bl 03 F -0.25 50.0 -0.99 79.9 —0.03 12.1 0.14 69.6 -0.20 51.6 -1.16 75.7
BI 0.1 F -027 48.3 -0.80 79.9 0.04 133 0.15 68.6 0.00 51.7 -1.14 75.6
Bl 0.7 T -0.80 50.5 -1.13 79.8 -0.62 11.0 -0.07 68.5 -0.25 49.9 -1.18 77.0
Bl 03 T -032 494 -0.77 79.8 —0.06 13.2 -0.05 69.7 -0.18 50.9 -1.01 76.2
Bl 0.1 T -039 48.3 -1.13 79.8 0.35 18.0 -0.02 73.6 -0.35 51.5 -141 75.7
Mean -0.50 49.2 -1.03 79.9 -0.31 124 -0.20 69.7 -0.22 51.2 -1.14 76.1

method and parameter setting for ¢ = 1 is defined by RVND and y = BI, k = 0.3, and 0 = F; here, a mean improvement of
0.19% (with a computation time improvement of 11.7%) is achieved. For { =1 and & = 0.5, RVND with y = BI, k = 0.3,
and 0 = T performs best and improves solution quality by 0.20% and reduces mean computation time by 69.8%.

Summarizing this first analysis, we conclude that the RVND-variant with { =0, & =1,y = BI, k = 0.1, and 0 = T (RVND’Q)
performs best in terms of solution quality and that RVND with { = 1, ¢ = 0.5, = BI, k = 0.3, and 6 = T (RVND™) performs
best regarding the trade-off between solution quality and computation time. Of course, this trade-off always depends on the
decision maker’s preferences.

In the second part of this evaluation, we compare the objective values achieved by RVNDS? and RVND'® with the refer-
ence values of the instance sets CE, G, CE-H, and G-H to assess the solution quality in a more detailed way. Therefore, for each
instance in these sets, Tables 11 and 12 list the solution method (“SM”; for abbreviations, see Section 1) the best known

Table 10
Relative improvements with { = 1 and with respect to the parameters i"**, , x, and 6.
VNS RVND VNSac
MAX 1 0.5 1 0.5 1 0.5

l// K 0 OVMin CTMean OVMin CI-Mean OVMin CTMean OVMin CTMean OVMin CI-Mean OVMin CI-Mean
imp. [%] imp. [%] imp.[%] imp.[%] imp.[%] imp.[%] imp.[%] imp.[%] imp.[%] imp.[%] imp.[%] imp. [%]

F. 0 F -1.87 82.7 -3.95 94.8 -1.64 46.9 -1.65 67.9 -2.04 86.3 —-4.74 95.6
FI 0.7 F -2.53 82.6 —3.66 94.0 -1.10 45.5 —-1.66 70.1 -2.10 86.1 —4.29 95.9
FI 03 F -221 82.3 -3.25 94.1 -0.37 47.9 —0.65 68.5 -1.78 86.4 —4.51 95.8
FI. 0.1 F —-1.40 82.2 —3.04 94.9 —0.02 49.4 -0.32 67.9 -1.73 86.4 —4.80 95.8
FI. 0.7 T -233 82.5 -3.20 94.1 -1.19 46.6 -1.50 68.2 —2.30 85.4 —4.79 95.6
FI. 03 T -1.83 82.9 -3.23 94.0 —0.36 49.9 —0.81 69.3 —2.12 86.6 —4.52 95.9
FI. 01 T -1.76 82.2 -3.28 94.0 -0.37 54.8 -0.29 67.6 -1.99 86.2 —4.93 95.8
Mean -1.99 82,5 -3.37 94.3 -0.72 48.7 -0.98 68.5 -2.01 86.2 —4.65 95.8
Bl 0 F -062 50.2 -1.45 79.8 -1.33 10.4 -1.39 69.2 -0.35 51.5 —0.96 78.2
Bl 0.7 F -045 479 -0.97 80.0 -0.30 10.1 0.18 69.3 -0.40 58.2 -1.30 78.2
Bl 03 F 0.02 49.7 -0.67 80.2 0.19 11.7 0.16 69.7 -0.25 58.3 -1.02 78.3
Bl 0.1 F -036 48.0 -1.04 79.8 0.12 13.3 0.06 68.8 -0.24 51.0 -1.29 78.1
Bl 0.7 T -056 57.5 -1.02 77.0 -0.48 11.7 -0.03 69.4 —-0.26 58.2 —0.98 78.2
Bl 03 T 0.16 49.0 -0.99 79.9 0.08 12.9 0.20 69.8 -0.39 58.1 -1.06 78.3
Bl 0.1 T -0.13 484 -0.80 79.9 -0.04 18.4 0.10 69.7 -0.21 58.6 -1.27 78.2

Mean -0.28 50.1 -0.99 79.5 -0.25 12.7 -0.10 69.4 -0.30 56.3 -1.13 78.2
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objective value (“BKOV") is achieved with and the mean computation time of the BKOV (“CT”) in seconds. For both param-

eter settings (RVND? and RVND™), the minimum objective value (“OV”) from the ten calculated solutions, the correspond-

ing relative improvement concerning BKOV and OV (“Imp. OV”), and the mean relative computation time improvement
(“Imp. CT™), are presented. In both tables, improvements of the BKOV are marked bold. Because no detailed computation

times for MS-LI, MS-ILS, and UGHS are given in Vidal et al. (2015), their results are not used for comparisons in Table 11
(a comparison between RVND®?, RVND'®, and all other solution methods is provided by Tables 16-19 in Appendix C).

The results of Tables 11 and 12 show the general suitability of RVND5? and RVND'® to solve VRPPCs. However, it has to be
remarked that the effectiveness of RVND, particularly designed for the VRPPCdR, is inferior compared to the other solution
methods developed for the VRPPC. Nevertheless, for the three instances G-19, G-H-04, and G-H-19, improvements of the best

known objective values are achieved.

Table 11

Results of RVND? and RVND™ on instance sets CE and G.
Instance SM BKOV CT [s] RVNDSQ RVND™

ov Imp. OV [%] Imp. CT [%] oV Imp. OV [%] Imp. CT [%]

CE-01 TS 1119.47 243 1135.81 -1.46 87.1 1126.24 —-0.60 94.0
CE-02 TS 1814.52 33.0 1841.69 -1.50 79.9 1835.45 -1.15 95.9
CE-03 AVNS 1920.86 2121 1965.90 —-2.34 88.9 1967.35 —2.42 96.6
CE-04 AVNS 2512.05 279.7 2564.22 —2.08 79.5 2565.11 -2.11 94.1
CE-05 AVNS 3099.77 228.6 3162.54 -2.03 60.8 3171.29 —-2.31 88.8
CE-06 TS+ 1207.47 25.2 1209.62 -0.18 85.9 1220.91 -1.11 94.4
CE-07 TS 2006.52 32.7 2049.29 -2.13 84.4 2051.09 —2.22 95.7
CE-08 AVNS 2052.05 2531 2087.58 -1.73 91.3 2087.62 -1.73 97.2
CE-09 AVNS 2432.51 259.0 2451.90 -0.80 791 2454.59 —-0.91 94.1
CE-10 AVNS 3391.35 201.0 3445.89 -1.61 54.9 3459.41 -2.01 87.2
CE-11 AVNS 2332.21 316.0 2338.83 -0.28 83.1 2339.11 -0.30 94.9
CE-12 TS+ 1952.86 59.5 1970.87 -0.92 71.8 1956.71 -0.20 92.1
CE-13 AVNS 2858.94 278.5 2864.16 -0.18 81.0 2868.93 -0.35 94.1
CE-14 AVNS 2215.38 93.2 222425 -0.40 81.9 2234.57 -0.87 94.7
Mean CE -1.26 79.3 -1.31 93.8
G-01 AVNS 14,157.08 652.6 14,283.09 -0.89 -5.6 14,295.11 -0.97 479
G-02 AVNS 19,204.36 1558.4 19,394.37 -0.99 -52.2 19,436.23 -1.21 251
G-03 TS+ 24,592.18 5940.4 24,824.57 -0.94 -28.9 24,834.50 -0.99 36.8
G-04 AVNS 34,415.82 2500.9 34,793.08 -1.10 -520.7 34,841.65 -1.24 —168.5
G-05 TS+ 14,261.31 847.8 14,489.59 -1.60 —-57.2 14,572.95 -2.19 36.5
G-06 AVNS 21,440.79 1783.5 21,684.74 -1.14 -79.2 21,820.27 -1.77 30.5
G-07 AVNS 23,375.60 2262.8 23,767.21 —1.68 -168.1 23,739.21 —-1.56 -2.6
G-08 AVNS 29,797.62 2339.7 30,079.61 —-0.95 -301.2 30,082.38 —0.96 —58.2
G-09 TS+ 1325.62 819.1 1358.61 —-2.49 33.0 1354.38 —-2.17 76.3
G-10 TS+ 1590.82 17623 1621.51 -1.93 345 1633.94 —-2.71 76.5
G-11 TS 2172.28 1492.7 2218.96 -2.15 -67.6 2222.61 —-2.32 385
G-12 TS 2492.75 2309.7 2549.76 -2.29 -117.0 2540.85 -1.93 21.0
G-13 TS+ 2274.12 504.5 2326.12 -2.29 78.9 2326.26 -2.29 92.9
G-14 TS+ 2703.31 976.9 279245 -3.30 75.5 2802.60 -3.67 91.6
G-15 TS 3158.92 924.8 3270.84 -3.54 49.4 3280.20 -3.84 82.8
G-16 TS+ 3638.39 4675.1 3779.11 -3.87 81.4 3772.98 -3.70 93.6
G-17 TS+ 1633.35 472.0 1658.32 -1.53 76.4 1657.05 -1.45 92.2
G-18 TS 2705.90 622.0 2708.61 -0.10 70.7 2729.05 -0.86 90.6
G-19 TS 3497.54 1012.5 3473.82 0.68 73.2 3501.38 -0.11 91.1
G-20 TS+ 4306.89 2476.3 4321.60 -0.34 85.2 4335.79 -0.67 95.1
Mean G -1.62 -37.0 -1.83 44.5
Mean —-1.47 10.9 -1.61 64.8

Table 12

Results of RVNDS? and RVND™ on the instance sets CE-H and G-H.
Instance SM BKOV CT [s] RVNDSQ RVND™

oV Imp. OV [%] Imp. CT [%] ov Imp. OV [%] Imp. CT [%]

CE-H-01 TS 1191.70 25.7 1210.28 -1.56 86.7 1199.03 -0.61 93.8
CE-H-02 TS+ 1791.21 34.8 1828.29 -2.07 85.1 1834.25 -2.40 95.6
CE-H-03 TS+ 1917.96 80.8 1944.63 -1.39 70.8 1936.65 -0.97 91.1
CE-H-04 TS 2481.64 195.6 2539.38 -2.33 68.5 2500.89 -0.78 923
CE-H-05 TS+ 3143.01 3424 3219.14 -2.42 76.9 3195.91 -1.68 94.6
CE-H-06 TS+ 1206.82 25.1 1218.85 -1.00 87.0 1220.39 -1.12 953
CE-H-07 TS+ 2031.85 32.0 2053.31 -1.06 85.2 2061.65 -1.47 96.4
CE-H-08 TS+ 1986.51 84.5 2024.93 -1.93 66.7 2024.96 -1.94 92.0
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Table 12 (continued)

Instance SM BKOV CT [s] RVNDSQ RVND™
ov Imp. OV [%] Imp. CT [%] ov Imp. OV [%] Imp. CT [%]

CE-H-09 TS 2445.49 188.9 2502.81 —2.34 71.2 2497.76 -2.14 93.2
CE-H-10 TS 3271.70 309.5 3304.86 -1.01 66.9 3331.62 -1.83 92.3
CE-H-11 RIP 2308.76 18.8 2323.08 -0.62 -183.3 2331.63 -0.99 30.5
CE-H-12 RIP 1908.74 13.0 1920.32 -0.61 -30.8 1918.97 ~0.54 70.1
CE-H-13 RIP 2842.18 19.5 2855.39 -0.46 ~156.6 2882.67 -1.42 33.7
CE-H-14 TS+ 1907.75 67.2 1914.08 -0.33 71.1 1917.14 -0.49 93.1
Mean CE-H -1.37 333 -1.31 83.1
G-H-01 TS 14,174.27 642.5 14,191.65 ~0.12 -17.5 14,197.28 -0.16 55.6
G-H-02 TS+ 18,537.70 4955.3 18,541.59 -0.02 412 18,571.03 -0.18 78.0
G-H-03 TS+ 25,177.92 11,996.2 25,297.58 —0.48 394 25,306.09 —-0.51 75.6
G-H-04 TS+ 34,991.21 4079.1 34,794.70 0.56 —284.4 34,747.39 0.70 -55.7
G-H-05 TS+ 15,411.82 754.2 15,714.24 -1.96 —-50.1 15,751.18 -2.20 411
G-H-06 TS+ 19,859.30 1954.1 20,116.24 -1.29 —534 20,204.73 -1.74 41.2
G-H-07 TS+ 23,481.28 9167.3 23,751.16 -1.15 33.3 23,716.72 —-1.00 72.4
G-H-08 TS+ 27,334.84 18,625.2 27,482.48 —-0.54 36.0 27,433.18 -0.36 75.1
G-H-09 TS+ 1329.27 1829.3 1373.90 -3.36 74.2 1371.14 -3.15 90.9
G-H-10 TS 1554.96 1087.1 1611.09 -3.61 -134 1604.15 -3.16 55.0
G-H-11 TS 2191.23 1445.5 2246.13 -2.51 -384 2244.60 —2.44 459
G-H-12 TS+ 2482.92 42240 2554.43 -2.88 72 2559.52 -3.09 60.0
G-H-13 TS 2231.88 405.8 2307.28 -3.38 75.0 2300.13 -3.06 91.4
G-H-14 TS+ 2684.70 1042.9 2752.90 —-2.54 78.8 2767.00 -3.07 92.8
G-H-15 TS 3123.60 976.6 322233 -3.16 52.6 3237.13 -3.63 84.5
G-H-16 TS+ 3621.85 6217.4 3768.94 —-4.06 87.7 3770.16 —4.09 95.9
G-H-17 TS+ 1664.08 522.6 1680.94 -1.01 80.8 1685.81 -1.31 93.7
G-H-18 TS+ 2708.73 11325 2730.16 -0.79 86.5 2727.52 -0.69 95.6
G-H-19 TS+ 3443.59 1627.1 3439.96 0.11 86.4 3449.35 -0.17 95.3
G-H-20 TS 4306.53 1392.2 4312.65 -0.14 80.2 4334.54 -0.65 93.0
Mean G-H -1.62 19.4 -1.70 68.9
Mean -1.51 25.1 ~-1.54 74.7

Regarding the trade-off between solution quality and computation time, it has to be emphasized that RVND has a
remarkable efficiency for almost every instance compared to the other solution methods: RVND™ achieves for homogeneous
and heterogeneous vehicle fleets small mean degradations of 1.61% and 1.54%, whereby computation times are reduced by
64.8% and 74.7%.

5.3. Economic benefits and implications of solving the VRPPCdR

Purpose of this part of the analysis is the assessment of the economic benefits (cost reductions) achieved by solving the
VRPPCdR and the investigation of further managerial implications. Therefore, we compare the costs between the two plan-
ning approaches VRPPCdR and VRPPC with regard to the basic data scenarios provided by the BOL instance set. Table 13 first
lists the objective value (“OV”), the relative gap reported by CPLEX (“Rel. Gap”), and the “used vehicles” for the solutions
calculated by CPLEX 12.5 (terminated after 50 h) for the VRPPCdR instance sets N1 to N5. Next columns contain the objective
value (“OVRYNP-5Q") the relative improvement of RVND3? comparing OVRYNP-5Q and OV (“Rel. Imp. OV”), and the list of
“used vehicles” for the best solution (out of ten) calculated by RVND2 The column “Identical” compares the list of used
vehicles and the calculated delivery costs:

- Used vehicles and cost are identical: /

- Used vehicles are identical and the costs achieved by RVND? are lower:+

- Used vehicles are not identical and the costs achieved by RVND*? are lower: ++
- Used vehicles are identical and the costs of RVND®? are higher: —

- Used vehicles are not identical and the costs of RVND®? are higher: ——

The last two columns compare the total cost (“TC”) improvements of the RVND? solutions of the VRPPCAR instance with
the total costs (“TCgor.1, ..., 5"; including fixed costs) of the original VRPPC instance (see first column or Table 14 in
Appendix C). The column “used vehicles” shows that the private fleet is utilized before any other delivery mode is applied.
This is in line with the assumption that FTL deliveries with the private fleet are more cost-efficient than using other delivery
modes. Concerning this, we conclude that the parameters of the rental options are reasonable.

Comparing the solutions calculated by CPLEX and RVNDS?, RVND? selects almost for each problem instance the most suitable
delivery modes (or even better ones) and makes only in three cases (N3-04, N3-05, and N3-06) another mode selection decision
than CPLEX leading to higher costs. Based on this observation, it can be stated that the RVND3? solution method is able to determine
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Table 13
Results of RVNDSC? on instance sets N1 to N5.
Instance  CPLEX 12.5 (after 50 h) RVNDSQ
ov¢ Rel. Used OVRVND-SQ = Rel, Imp. CT[s] Used Identical TCgor1, ... s TC Rel. Imp.
Gap [%] vehicles oV [%] vehicles TC [%]

N1 -01 33376 0.0 V1;C2 333.76 0.0 0.2 V1;C2 v TCgor1=4235 39376 7.0
—02 33264 0.0 V1;C1;C2 332.64 0.0 0.4 V1;C1;C2 v 39264 7.3
—03 23400 0.0 V1;D2 234.00 0.0 0.4 V1;D2 v 294.00 30.6
—04 23400 0.0 V1;D2 234.00 0.0 0.6 V1;D2 v 294.00 306
—05 23400 0.0 V1;D2 234.00 0.0 0.7 V1;D2 v 294.00 306
—06 23400 0.0 V1;D2 234.00 0.0 0.6 V1;D2 v 294.00 306
—07 23400 0.0 V1;D2 234.00 0.0 0.7 V1;D2 v 294.00 306

N2 -01 43152 0.0 V2;C2;C3 431.52 0.0 0.2 V2;C2;C3 v TC goL2=476.5 55152 —15.7
—02 38552 0.0 V2;C4 385.52 0.0 0.6 V2;C4 v 505.52 —6.1
—03 29850 0.0 V2;M1 298.50 0.0 1.3 V2;M1 v 41850 122
—04 293.00 0.0 V2;M2;C1 293.00 0.0 1.3 V2;M2;C1 v 413.00 133
—05 30454 0.0 V2;M2;C4 304.54 0.0 1.0 V2;M2;C4 v 42454 109
—06 37297 0.0 V2;D2;C3 372.97 0.0 1.3 V2;D2;C3 v 49297 -35
—07 293.00 0.0 V2;M2;C1 293.00 0.0 2.0 V2;M2;C1 v 413.00 13.3

N3 -01 50149 253 V3:;V4;C3 501.49 0.0 0.8 V3;V4;C3 v TC gor3=777.0 79149 -1.9
—02 456.00 204 V3:V4;C1 456.00 0.0 1.5 V3;V4;C1 v 746.00 4.0
—03 393.00 374 V3;V4;M1 385.50 1.9 1.7 V3;V4;M1 + 675.00 13.1
—04 38625 0.0 V3;V4;M2 388.50 -0.6 1.7 V3;V4;M2;C1  —— 68525 11.8
—05 38625 0.0 V3;V4;M2 399.10 -33 1.3 V3;V4;M2;C4 —— 650.00 16.3
—06 49050 57.8 V3;V4;D2 507.02 -34 2.2 V3;V4;C3 - 79149 19
-07 38525 31.1 V3;V4;M2 385.00 0.3 0.7 V3;V4;M1 ++ 67550 13.1

N4 -01 1802.75 48.1 V5;C2;C3 133924  25.7 1.0 V5;C3 ++ TC poLa=1515.0 1589.24 —4.9
—02 1278.00 263 V5;C1;C3 127800 0.0 0.3 V5;C1;C3 v 1528.00 0.9
—03 1056.00 43.9 V5;M1 104350 1.2 2.3 V5;M1;M3 ++ 1293.50 14.6
—04 111250 263 V5;M3;C1 108250 2.7 1.9 V5;M3;C1 + 133250 12.0
—05 138575 35.7 V5;M2;D2 1185.14 145 1.5 V5;M2;C3 ++ 1435.14 5.3
—06 1400.00 59.3 V5;M3;D2 117114 163 1.6 V5;M3;C3 ++ 1391.14 8.2
—07 104350 44.4 V5;M1;M3 104350 0.0 2.6 V5;M1;M3 v 1309.50 13.6

N5 —01 149448 50.6 V5;V6;C2;C3  1133.05 242 0.8 V5;V6;C3 ++ TC goLs=1617.0 1333.05 17.6
—02 1073.50 299 V5;V6;C1 107350 0.0 1.5 V5;V6;C1 v 127350 21.2
—03 93850 618 V5;V6;M1 938.50 0.0 1.7 V5;V6;M1 v 1138.50 29.6
—04 1033.00 46.4 V5;V6;M3;C1  940.50 9.0 2.5 V5;V6;M2 ++ 114050 29.5
—05 95850 41.0 V5;V6;M2 943.50 1.6 2.0 V5;V6;M2 + 114350 29.3
—06 138942 732 V5;V6;M3;C2 1028.14  26.0 2.8 V5:V6;M3;C3  ++ 1228.14 24.0
—07 1091.00 65.6 V5;V6;M3;C1  938.50 14.0 1.4 V5;V6;M1 ++ 1138.50 29.6

Mean 3.7 1.3 13.6

delivery modes appropriately, performs well in terms of solution quality, and requires an extraordinarily small computation time.
Compared to the OV€ after 50 h, RVNDS? provides significant solution quality improvements for larger problem sets (N4 and N5).

Regarding the economic potentials of the VRPPCdR approach, the mean relative cost improvement of 13.6% is impressive.
Nevertheless, for some instances no cost reduction can be achieved (e.g., N2-01). For these cases, the downsizing of the pri-
vate vehicle fleets (see Section 5.1) cannot be compensated by the newly available subcontracting options. This fact and the
comparison of the used vehicles lead to the conclusion that the available subcontracting possibilities (and their specific
parameters) are directly related to the cost reduction potential. In this context, it has to be highlighted that the largest cost
reduction for a specific basic data scenario (BOL-1 to BOL-5) is not only achieved with the carrier and rental option scenario
S7 (including all possible rental options) but also with carrier and rental option scenarios offering only a subset of all possible
rental options (e.g., S4 for BOL-2 or S3 for BOL-4). Because different carrier and rental option scenarios (all with the same
parameters) achieve this for different basic data scenarios, we conclude that there is not only one most preferable set of sub-
contracting options but it depends on basic data scenario.

Summarizing this analysis, it is shown that the VRPPCdR approach leads to notable cost reductions, that the best combi-
nation of private fleet and subcontracting options depends on the basic data scenario, and that the available subcontracting
possibilities should be considered during fleet size planning to establish a reasonable equipped private fleet.

6. Conclusions and further research

In this paper, we tackle a very comprehensive delivery planning problem for shipping companies. It integrates two types
of rental options, one based on mileage costs and one based on daily costs, a carrier-dependent cost function considering
volumes and distances, and common carriers that offer volume discounts. All these aspects are considered simultaneously
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for the first time and define the new VRPPCdR. The presented MIP specifies the problem in detail and can be used by standard
solvers to solve small instances to optimality. Because of the NP-hardness of the VRPPCdR and the goal to solve problem
instances of virtually any size, three solution methods based on the principles of VNS are developed: VNS, RVND, and VNSac.
The evaluation of these methods shows that RVND enhanced by the explicit shaking mechanism (including the RD-
transformation rule) is superior to the other proposed methods. Furthermore, the second enhancement by the distance pro-
portionate vehicle selection mechanism additionally improves the effectiveness of RVND.

The economic potentials of the VRPPCdR approach are assessed based on 35 problem instances and a remarkable mean
cost reduction by 13.6% is reported. Furthermore, we have shown a dependency between the available subcontracting pos-
sibilities, basic data scenario, and the economic potentials for cost reduction. In addition, the influence between available
subcontracting possibilities on the tactical fleet size planning problem is carved out.

This dependency between the available subcontracting possibilities on the fleet size planning problem suggests further
research opportunities. Also, an improvement of the proposed solution methods for very large problem instances, particu-
larly instances with long routes, appears to be a promising issue. For example, ejection chain transformations or the adaptive
mechanism proposed by Stenger et al. (2013b) could be integrated. Moreover, the integration of one of the proposed VNS-
variants as local search procedure within a population based metaheuristic like a Genetic Algorithm or Ant Colony Optimiza-
tion seem to be worth to be investigated in future. For example, Nagata and Brdysy (2009) and Bohnlein et al. (2009) have
shown the suitability of such approaches to solve VRPs or an VRP variant. In this context, problem specific operators com-
bining solutions with different combinations of used vehicles and common carriers might be interesting.

In addition, the idea of the vehicle selection mechanism for inter-route optimization procedures based on route charac-
teristics (like the absolute distance of their center points) could be extended in the future: For example by considering their
relative or absolute position to each other. Also the relative or absolute position of customers could be used to increase the
probability of improving A-interchanges. Beside the investigation of other solution methods or their components, the prob-
lem definition itself could be extended by adding characteristics such as time windows or multiple depots.

Appendix A. Linearization of the last part of objective function (5)

In a first step, we introduce an auxiliary decision variable B; that indicates whether the minimal transportation rate tr}" is
used.

B 1 iftr,— | df;- szl g | = trf‘/”"
0 otherwise

This new variable leads to the following transformation of the last summand of (5):

(ZZZ,-I -Bl . trl — (dfl . ZZJ" . qj - | + ZZZ” . (1 — Bl) . tr{"”" . wil) (27)

IeE ieC" jecm I€E ieC"

= ZZZH ~Bl -try - C{)”) — (ZZZZ” ~Bl . df1 - Wy ~Zj1 . q]> + Ztrf’""Z(zu - Bl 'Zil) . C01’1) (28)

IeE jeC® [eE ieC"jeCt IeE ieCt

However, introducing B, eliminates the maximum operator, but (27) and also (28) remain non-linear. To linearize (28), the
product of the decision variables (Z;, Z;, and B;) is substituted by two additional auxiliary variables: P; substitutes the pro-
duct of B; and Zy; Q;; the product of By, Zy, and Z;.
_{] ifZ”:]al'ldBl:l
710 otherwise
1 if Zjl =P = 17 which implicates Zi=B =1
Qi = .
0 otherwise

After incorporating P; and Qy;, formula (28) can be written as follows (note that B; is eliminated):
>ty Py wil) — DAY D> Qi wa-g |+ Y ™ (Z—Pa)- wil) (29)

IeE  ieC" IeE  ieC"jeC" leE ieC"

Appendix B. Illustration of the common carriers’ cost functions
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Fig. 2. Cumulated transportation costs with volume discounts (curves C3 and C4) and without volume discounts (curves C3wo and C4wo).

Appendix C. Tables

Table 14

Reference objective values and relative gaps for instance sets CHU and BOL.
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Instance Objective value without fixed costs Relative gap of CPLEX after 50 h [%] Fixed costs Total costs TC

CHU-1 277.5 0.0 110 387.5

CHU-2 366.0 0.0 220 586.0

CHU-3 403.5 0.0 420 823.5

CHU-4 939.0 6.5 450 1389.0

CHU-5 835.5 37.3 630 1465.5

BOL-1 313.5 0 110 423.5

BOL-2 256.5 0 220 476.5

BOL-3 357.0 0 420 777.0

BOL-4 1065.0 13.1 450 1515.0

BOL-5 987.0 27.6 630 1617.0

Table 15
Basic data with location (x, y), demand quantities (q;), and distance to depot (djo).

Bolduc 1 Bolduc 2 Bolduc 5

i X y i dio i X y di dio i X y i dio

0 35 35 0 30 40 0 162 354

1 28 59 10 25 1 40 33 7 12 1 111 354 300 51

2 35 42 7 7 2 26 43 30 5 2 136 355 3100 26

3 45 53 13 20 3 47 60 16 26 3 183 401 125 51

4 54 22 19 23 4 46 26 9 21 4 214 374 100 55

5 68 63 26 43 5 67 25 21 39 5 131 371 200 35
6 52 57 15 27 6 215 332 150 57

Bolduc 4 7 38 31 19 12 7 141 385 150 37

i X y Qi dio 8 36 59 23 19 8 173 334 450 22

0 266 235 9 50 39 11 20 9 156 388 300 34

1 227 276 125 56 10 47 22 5 24 10 164 352 100 2

2 303 243 84 37 11 126 341 950 38

3 312 196 60 60 Bolduc 3 12 104 402 125 75

4 258 196 500 39 i X y Qi dio 13 171 346 150 12

5 286 195 300 44 0 40 40 14 146 393 150 42

6 204 186 175 79 1 44 43 18 5 15 201 393 550 55

7 249 212 350 28 2 42 59 26 19 16 118 354 150 44

8 209 268 150 65 3 47 57 11 18 17 149 337 100 21

9 323 212 1100 61 4 29 55 30 18 18 221 397 150 73

10 299 267 4100 45 5 29 30 21 14 19 117 385 400 54

11 300 254 225 38 6 46 39 19 6 20 138 403 300 54

12 312 225 300 47 7 67 22 15 32 21 194 409 1500 63

13 300 268 250 47 8 64 65 16 34 22 177 361 100 16

14 305 278 500 58 9 45 52 29 13 23 163 336 300 18

15 251 238 150 15 10 65 68 26 37 24 158 387 500 33

16 294 238 100 28 11 33 29 37 13 25 180 392 800 42

17 256 192 250 44 12 64 24 16 28 26 119 399 300 62

18 293 202 120 42 13 55 66 12 30 27 128 352 100 34

19 291 202 600 41 14 44 54 31 14 28 116 346 150 46

20 221 186 500 66 15 41 22 8 18 29 140 407 1000 57

21 317 181 175 74

22 265 206 75 29




Table 16

CE-instances: Minimum objective values (“OV”), mean computation times (“CT”), and relative improvements (“Gap”; OV vs. BKOV).

Inst. RIP (Intel Xeon, 3.6 GHz) TS (AMD Opteron 275, TS+(AMD Opteron 275, AVNS (Intel Core i5, 2.67 GHz) UHGS (Intel Xeon, MS-ILS (Intel Xeon, MS-LS (Intel Xeon, BKOV RVNDS? (Intel Xeon, 2.9 GHz) RVND' (Intel Xeon, 2.9 GHz)
2.2 GHz) 2.2 GHz) 3.07 GHz, mean CT: 3.07 GHz, mean CT: 3.07 GHz, mean CT:
15834 [s]) 996.6 [s]) 1134 [s])
ov Gap [%] CT [s] ov Gap [%] CT [s] ov Gap [%] CT [s] ov Gap [%] CT [s] ov Gap [%] ov Gap [%] ov Gap [%] ov Gap [%] CT [s] ov Gap [%] CT [s]
CE-01 1132.91 -1.20 25.0 1119.47 0.00 243 111947 0.00 249 1123.95 —-0.40 925 111947 0.00 111947 0.00 1128.28 -0.79 1119.47 113581 —-1.46 3.1 1126.24 —-0.60 15
CE-02 1835.76 -1.17 73.0 1814.52 0.00 33.0 1814.52 0.00 339 1814.52 0.00 48.6 1814.52 0.00 1814.52 0.00 1883.44 -3.80 1814.52 1841.69 -1.50 6.6 1835.45 -1.15 14
CE-03 1959.65 -2.12 107.0 1921.10 -0.11 78.6 1930.66 —-0.60 81.0 1920.86 —0.09 2121 1919.05 0.00 1922.18 -0.16 1958.80 -2.07 1919.05 1965.90 —2.44 235 1967.35 —2.52 72
CE-04 2545.72 -1.61 250.0 2525.17 -0.79 193.2 2525.17 -0.79 200.6 2512.05 -0.27 279.7 2505.39 0.00 2505.39 0.00 2568.49 -2.52 2505.39 2564.22 -2.35 57.3 2565.11 -2.38 16.4
CE-05 3172.22 —2.94 474.0 3113.58 -1.04 309.9 3117.10 -1.15 353.2 3099.77 -0.59 228.6 3081.59 0.00 3090.53 -0.29 3201.29 -3.88 3081.59 3162.54 -2.63 89.5 3171.29 -2.91 25.6
CE-06 1208.33 -0.07 250 1207.47 0.00 255 1207.47 0.00 252 1207.81 -0.03 759 1207.47 0.00 1207.47 0.00 1216.57 -0.75 1207.47 1209.62 -0.18 35 122091 -1.11 14
CE-07 2006.52 0.00 71.0 2006.52 0.00 32.7 2006.52 0.00 34.0 2013.93 -0.37 50.9 2006.52 0.00 2006.52 0.00 2079.67 —3.65 2006.52 2049.29 -2.13 5.1 2051.09 —2.22 14
CE-08 2082.75 -1.50 110.0 2060.17 -0.40 85.1 2056.59 -0.22 81.6 2052.05 0.00 253.1 2052.05 0.00 2054.64 -0.13 2100.59 -2.37 2052.05 2087.58 -1.73 219 2087.62 -173 71
CE-09 2443.94 -0.77 260.0 243843 —0.54 185.3 243597 -0.44 188.2 243251 -0.30 259.0 2425.32 0.00 2428.03 -0.11 2505.24 -3.30 2425.32 2451.90 -1.10 54.0 2454.59 -1.21 153
CE-10 3464.90 —2.46 478.0 3406.82 -0.74 311.1 3401.83 —-0.60 345.7 3391.35 -0.29 201.0 3381.67 0.00 3382.23 —-0.02 3491.59 -3.25 3381.67 3445.89 -1.90 90.6 3459.41 -2.30 25.8
CE-11 2333.03 —-0.09 195.0 2353.39 —0.96 126.3 2332.36 —-0.06 131.0 233221 —0.05 316.0 2330.94 0.00 2330.94 0.00 2408.13 -3.31 233094 2338.83 -0.34 53.5 2339.11 -0.35 16.2
CE-12 1953.55 —-0.04 128.0 1952.86 0.00 60.4 1952.86 0.00 59.5 1953.55 -0.04 92.9 1952.86 0.00 1952.86 0.00 1982.06 -1.50 1952.86 1970.87 -0.92 16.8 1956.71 -0.20 4.7
CE-13 2864.21 -0.19 188.0 2882.70 -0.83 130.0 2860.89 -0.07 132.1 2858.94 0.00 278.5 2858.83 0.00 2858.83 0.00 3025.26 —5.82 2858.83 2864.16 -0.19 528 2868.93 -0.35 16.5
CE-14 2224.63 —0.52 110.0 2216.97 -0.18 65.0 2216.97 -0.18 64.2 2215.38 -0.11 93.2 2213.02 0.00 2213.02 0.00 2226.44 —-0.61 2213.02 2224.25 —-0.51 16.9 2234.57 -0.97 5.0
Mean -1.05 178.1 —0.40 118.6 -0.29 1254 -0.18 177.3 0.00 —-0.05 —2.69 -1.38 35.4 -1.43 104

LLC



Table 17

G-instances: Minimum objective values (“OV”), mean computation times (“CT”), and relative improvements (“Gap”; OV vs. BKOV).

Inst. RIP (Intel Xeon, 3.6 GHz) TS (AMD Opteron 275, 2.2 GHz) ~ TS+(AMD Opteron 275,2.2 GHz) ~ AVNS (Intel Core i5, 2.67 GHz) UHGS (Intel Xeon, MS-ILS (Intel Xeon, MS-LS (Intel Xeon, BKOV RVND®? (Intel Xeon, 2.9 GHz) RVND'™ (Intel Xeon, 2.9 GHz)
3.07 GHz, mean CT: 3.07 GHz, mean CT: 3.07 GHz, mean CT:
15834 [s]) 996.6 [s]) 1134 [s])

ov Gap [%] CT[s] ov Gap [%] CT[s] ov Gap [%] CT[s] ov Gap (%] CT[s] ov Gap [%] OV Gap [%] OV Gap [%] ov Gap [%] CT|[s] ov Gap (%] CT[s]
G-01 14,388.58 -1.68 651.0 14,218.83  -0.48 638.3 14,190.01 -0.27 11838 14,157.08 -0.04 652.6 14,151.51  0.00 14,165.45 -0.10 14,329.96 -1.26 14,151.51 14,283.09 -0.93 689.1 14,295.11 -1.01 340.1
G-02 19,505.00 -1.64 11780 1972996  -2.81 12152 19,20852  —-0.09 52206 1920436  -0.07 15584  19,190.77  0.00 19,191.56  0.00 19,52450 -1.74 19,190.77 1939437 -1.06 2371.7 1943623 -1.28 1166.9
G-03 2497817  -1.59 2061.0 25,653.58 -4.33 22413 2459218  -0.02 59404  24,602.61 —-0.06 2356.1  24,588.29  0.00 24,609.36 -0.09 25,038.41 -1.83 24,58829  24,82457 -0.96 7654.6 24,834.50 -1.00 37514
G-04 3495798 -1.58 3027.0 36,022.73  -4.67 38339 3480208 -1.12 5508.7 34,415.82 0.00 25009 3451747 -0.30 3490749 -143 3518278  -2.23 3441582  34793.08 -1.10 155225 3484165 -1.24 6715.4
G-05 14,683.03 —2.96 589.0 14,673.56  -2.89 875.0 14,261.31  0.00 847.8 14,272.32 —-0.08 1301.1 14,296.07 -0.24 14,373.87 -0.79 14,735.12 332 14,261.31 14,489.59 -1.60 13324 14,572.95 -2.19 538.7
G-06 22260.19 -3.82 1021.0 22,27899 -3.91 14453  21,498.03 -0.27 1591.1 21,440.79  0.00 1783.5  21,488.29 -0.22 21,546.18 -0.49 22,024.07 -2.72 21,44079 21,684.74 -1.14 3196.3 21,82027 -1.77 12395
G-07 23963.36 -2.51 1628.0 24,191.41 -3.49 20528 23,513.06 -0.59 55140 23,375.60 0.00 2262.8  23,463.05 -037 23,547.12 -0.73 23,980.00 -2.59 2337560 23,767.21 -1.68 6065.5 23,739.21  -1.56 2321.7
G-08 30,496.18 -2.34 2419.0  30,627.91 -2.79 3059.9 30,073.56 -0.93 5729.0 29,797.62 0.00 2339.7 29918.06 -0.40 30,064.28 —-0.89 30,459.11 -222 29,797.62  30,079.61 -0.95 9385.7 30,08238 -0.96 37004
G-09 1341.17 -1.17 832.0 1328.14 -0.19 611.0 1325.62 0.00 819.1 133545 -0.74 602.0 1332.63 —0.53 1339.06 —-1.01 1397.08 -5.39 1325.62 1358.61 -2.49 549.1 1354.38 -2.17 193.7
G-10 1612.09 -1.34 12940 1590.83 0.00 938.8 1590.82 0.00 17623  1604.50 —-0.86 978.4 1603.82 -0.82 1617.58 -1.68 1682.31 —5.75 1590.82 1621.51 -1.93 1154.7 1633.94 -271 4139
G-11 219845 -1.20 20040 2172.28 0.00 14927  2173.80 -0.07 32843  2189.02 -0.77 15343 219268 -0.94 2228.23 —2.58 2281.79 —5.04 2172.28 2218.96 -2.15 2502.4 222261 -2.32 918.6
G-12 2521.79 -1.16 29000  2492.75 0.00 2309.7  2495.02 -0.09 8587.6  2520.29 -1.10 20439  2529.84 -1.49 2553.40 —2.43 2652.57 —6.41 2492.75 2549.76 -2.29 5010.9 2540.85 -1.93 1824.7
G-13 2286.91 -1.12 802.0 2278.99 -0.77 360.8 227412 —0.56 504.5 2291.83 -1.34 116.5 2261.50 0.00 227757 -0.71 233743 -3.36 2261.50 2326.12 —2.86 106.4 2326.26 —2.86 36.0
G-14 2750.75 -2.35 1251.0  2705.00 —-0.65 6104 2703.31 -0.59 976.9 2708.22 -0.77 183.5 2687.50 0.00 2708.56 -0.78 2791.23 —3.86 2687.50 2792.45 -391 2393 2802.60 —4.28 82.1
G-15 3216.99 —-2.06 1862.0 3158.92 -0.22 924.8 3161.26 -0.29 1952.0 3194.82 -1.36 357.3 3152.00 0.00 3177.53 —-0.81 3296.86 —4.60 3152.00 3270.84 -3.77 467.9 3280.20 —4.07 159.4
G-16 3693.62 -1.70 2778.0  3639.11 -0.19 13137 363839 -0.17 4675.1 367134 -1.08 561.2 3632.04 0.00 3672.62 -1.12 3811.80 —4.95 3632.04 3779.11 —4.05 869.5 3772.98 —3.88 297.6
G-17 1701.58 -4.18 806.0 1636.11 -0.17 402.6 1633.35 0.00 472.0 1682.49 -3.01 1103 1671.72 -2.35 1677.37 -2.70 1717.55 -5.16 1633.35 1658.32 -1.53 114 1657.05 -1.45 36.7
G-18 2765.92 -2.22 1303.0  2705.90 0.00 622.0 2710.21 -0.16 892.0 2741.80 -1.33 156.4 2733.12 -1.01 2741.10 -1.30 2801.70 -3.54 2705.90 2708.61 -0.10 1825 2729.05 -0.86 58.8
G-19 3576.92 -2.27 1903.0  3497.54 0.00 10125 3497.72 -0.01 14184  3507.94 -0.30 194.1 3504.26 -0.19 3515.47 -0.51 3585.64 -2.52 3497.54 3473.82 0.68 2717 3501.38 -0.11 89.8
G-20 4378.13 -1.65 28000 4311.17 -0.10 13689  4306.89 0.00 24763 433244 -0.59 290.3 4319.37 -0.29 4333.59 —-0.62 4433.41 —2.94 4306.89 4321.60 -0.34 366.3 4335.79 -0.67 1209
Mean -2.03 1655.5 -1.38 1366.5 -0.26 2967.8 —0.68 1094.2 —0.46 -1.04 —3.57 -1.71 2902.5 -1.92 1200.3
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Table 18

CE-H-instances: Minimum objective values (“OV”), mean computation times (“CT”), and relative improvements (“Gap”; OV vs. BKOV).

Inst. RIP (Intel Xeon 3.6 GHz) TS (AMD Opteron 275, 2.2 GHz) TS+(AMD Opteron 275, BKOV RVND? (Intel Xeon, 2.9 GHz) RVND™ (Intel Xeon, 2.9 GHz)
2.2 GHz)
ov Gap [%] CT [s] ov Gap [%] CT [s] ov Gap [%] CT [s] ov Gap [%] CT [s] ov Gap [%] CT [s]
CE-H-01 1192.72 -0.09 2.6 1191.70 0.00 25.7 1191.70 0.00 26.0 1191.70 1210.28 -1.56 34 1199.03 —-0.61 1.6
CE-H-02 1798.26 -0.39 72 1795.51 -0.24 33.7 1791.21 0.00 34.8 1791.21 1828.29 -2.07 5.2 1834.25 -2.40 1.5
CE-H-03 1934.85 -0.88 105 1926.33 -0.44 79.0 1917.96 0.00 80.8 1917.96 1944.63 -1.39 23.6 1936.65 -0.97 7.2
CE-H-04 2493.93 -0.50 25.1 2481.64 0.00 195.6 2481.68 0.00 198.5 2481.64 2539.38 -2.33 61.6 2500.89 -0.78 15.2
CE-H-05 3195.66 -1.68 49.0 3143.92 -0.03 2959 3143.01 0.00 342.4 3143.01 3219.14 —2.42 79.1 3195.91 —-1.68 18.6
CE-H-06 1210.23 -0.28 25 1206.82 0.00 254 1206.82 0.00 25.1 1206.82 1218.85 -1.00 33 1220.39 -1.12 1.2
CE-H-07 2042.79 -0.54 7.4 2035.90 —-0.20 325 2031.85 0.00 32.0 2031.85 2053.31 -1.06 4.7 2061.65 -1.47 1.2
CE-H-08 2015.72 -1.47 11.2 1991.23 -0.24 81.4 1986.51 0.00 84.5 1986.51 2024.93 -1.93 28.1 2024.96 -1.94 6.8
CE-H-09 2445.88 —0.02 26.7 244549 0.00 188.9 2447.58 —0.09 193.0 2445.49 2502.81 -2.34 54.4 2497.76 -2.14 12.8
CE-H-10 3304.69 -1.01 48.2 3271.70 0.00 309.5 327237 -0.02 342.4 3271.70 3304.86 -1.01 102.4 3331.62 -1.83 24.0
CE-H-11 2308.76 0.00 18.8 2325.00 -0.70 127.0 2336.51 -1.20 133.9 2308.76 2323.08 -0.62 53.3 2331.63 -0.99 13.1
CE-H-12 1908.74 0.00 13.0 1912.47 -0.20 60.7 1915.05 -0.33 60.4 1908.74 1920.32 -0.61 17.0 1918.97 -0.54 39
CE-H-13 284218 0.00 19.5 2872.14 -1.05 125.0 2868.13 -0.91 136.5 2842.18 2855.39 -0.46 50.0 2882.67 -1.42 12.9
CE-H-14 1920.36 —-0.66 11.4 1925.46 -0.93 65.8 1907.75 0.00 67.2 1907.75 1914.08 -0.33 19.4 1917.14 —-0.49 4.7
Mean —-0.54 18.1 —-0.29 117.6 -0.18 125.5 -1.37 36.1 -1.31 8.9
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Table 19

G-H-instances: Minimum objective values (“OV”), mean computation times (“CT”), and relative improvements (“Gap”; OV vs. BKOV).

Inst. RIP (Intel Xeon 3.6 GHz) TS (AMD Opteron 275, 2.2 GHz) TS+(AMD Opteron 275, 2.2 GHz) BKOV RVNDS? (Intel Xeon, 2.9 GHz) RVND™ (Intel Xeon, 2.9 GHz)
ov Gap [%] CT [s] ov Gap [%] CT[s] ov Gap [%] CT[s] ov Gap [%] CT[s] oV Gap [%] CT [s]
G-H-01 1440831 -1.65 64.7 14,174.27  0.00 642.5 14,194.13  -0.14 1193.7 14,174.27  14,191.65 -0.12 755.0 14,197.28 -0.16 285.5
G-H-02  18,663.15 -0.68 1254 19,056.69  -2.80 1284.9 18,537.70  0.00 4955.3 18,537.70  18,541.59  -0.02 2915.8 18,571.03 -0.18 1092.4
G-H-03 2556155 —-1.52 205.3 25,299.93 048 2258.7 25,177.92  0.00 11,996.2  25,177.92 2529758 -0.48 7265.1 25,306.09 -0.51 2925.7
G-H-04 3549566 —1.44 290.4 35388.06 —1.13 4095.7 34,991.21 0.00 4079.1 34,991.21 34,794.70 0.56 15,6784 34,747.39 0.70 6350.1
G-H-05 16,138.50 -4.72 51.2 15,895.94 -3.14 799.6 15,411.82 0.00 754.2 1541182 1571424 -1.96 1132.2 15,751.18 -2.20 444.4
G-H-06  20,329.04 237 100.5 20,381.35 —2.63 1356.9 19,859.30 0.00 1954.1 19,85930 20,116.24 -1.29 2997.2 20,204.73 -1.74 1149.5
G-H-07  24,184.83 —-3.00 160.8 23,915.77 -1.85 2262.5 23,481.28 0.00 9167.3 23,481.28 23,751.16 -1.15 6112.2 23,716.72  -1.00 2527.9
G-H-08 27,71066 —1.37 258.4 27,521.28 —0.68 3408.2 27,334.84 0.00 18,6252 27334.84 2748248 -0.54 11,921.0 27,433.18 -0.36 4632.0
G-H-09  1346.03 -1.26 81.4 1331.11 -0.14 592.7 1329.27 0.00 1829.3 1329.27 1373.90 -3.36 471.5 1371.14 -3.15 167.0
G-H-10  1575.82 -1.34 133.2 1554.96 0.00 1087.1 1555.59 —0.04 1564.3 1554.96 1611.09 -3.61 12329 1604.15 -3.16 489.4
G-H-11 221891 -1.26 214.0 2191.23 0.00 1445.5 2195.83 -0.21 3207.9 2191.23 2246.13 -2.51 2001.0 2244.60 -2.44 782.4
G-H-12  2510.07 -1.09 297.0 2535.00 -2.10 2108.3 2482.92 0.00 4224.0 2482.92 2554.43 -2.88 4529.1 2559.52 -3.09 1689.7
G-H-13  2253.45 -0.97 733 2231.88 0.00 405.8 2237.38 -0.25 1801.3 2231.88 2307.28 -3.38 101.6 2300.13 -3.06 35.0
G-H-14 271181 -1.01 124.6 2685.51 -0.03 630.3 2684.70 0.00 1042.9 2684.70 2752.90 -2.54 221.0 2767.00 -3.07 74.9
G-H-15  3156.93 -1.07 189.5 3123.60 0.00 976.6 3127.33 -0.12 2111.2 3123.60 3222.33 -3.16 462.7 3237.13 -3.63 151.7
G-H-16  3649.09 -0.75 278.5 3853.21 -6.39 1571.2 3621.85 0.00 6217.4 3621.85 3768.94 -4.06 764.5 3770.16 —-4.09 2543
G-H-17  1705.48 -2.49 76.2 1674.91 —-0.65 396.9 1664.08 0.00 522.6 1664.08 1680.94 -1.01 100.1 1685.81 -1.31 33.1
G-H-18  2759.99 -1.89 129.9 2722.32 -0.50 617.7 2708.73 0.00 11325 2708.73 2730.16 -0.79 152.7 2727.52 —-0.69 49.3
G-H-19  3517.48 -2.15 189.2 3445.85 -0.07 841.8 3443.59 0.00 1627.1 3443.59 3439.96 0.11 221.7 3449.35 -0.17 77.0
G-H-20  4413.82 -2.49 2733 4306.53 0.00 1392.2 4314.16 -0.18 2969.8 4306.53 4312.65 -0.14 275.7 4334.54 —-0.65 97.7
Mean -1.73 165.84 -1.13 1408.76 -0.05 4048.77 -1.62 2965.6 -1.70 1165.5
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