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Abstract Assigning and scheduling vehicle routes in a stochastic time-dependent
environment is a crucial management problem. The assumption that in a real-life
environment everything goes according to an a priori determined static schedule is
unrealistic. Our methodology builds on earlier work in which the traffic congestion is
captured in an analytical way using queueing theory. The congestion is then applied
to the VRP problem. In this paper, we introduce the variability in traffic flows into the
model. This allows for an evaluation of the routes based on the uncertainty involved.
Different experiments show that the risk taking behavior of the planner can be taken
into account during optimization. As more weight is given to the variability compo-
nent, the resulting optimal route will take a slightly longer travel time, but will be
more reliable. We propose a powerful objective function that is easily implemented
and that captures the trade-off between the average travel time and its variance. The
evaluation of the solution is done in terms of the 95th-percentile of the travel time
distribution (assumed to be lognormal), which reflects well the quality of the solution
in this stochastic time-dependent environment.
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364 C. Lecluyse et al.

1 Introduction

Most traffic networks in Europe face high utilization levels, and consequently, con-
gestion occurs. When having a sufficiently high utilization, the smallest stochastic
events (both in arrival processes or in service processes) cause waiting, which in the
case of traffic systems, materializes in lower speeds. As speed changes, travel time
will vary for a given distance. As such, all transportation problems which intend to
minimize total time used, are subject to these physical considerations of congestion.
Consequently, the road and traffic conditions and their resulting variability cannot be
ignored in order to carry out a good quality route optimization. Uncertainty about
the traffic conditions represented in travel times is a pervasive aspect of routing and
scheduling, especially in a just-in-time environment or in highly congested regions
like Europe. As the cost impact due to this uncertainty can be substantial, risk sensi-
tive planners may want to evaluate to what extent their routes and schedules are risky
in terms of travel times. Indeed, a slightly longer route in terms of expected travel
time might be more interesting for a planner if the associated variance is considerably
smaller. In this paper we deal with the VRP problem with stochastic time-dependent
travel times. In a real-life environment the travel times on an individual link are sto-
chastic in nature. Due to weather conditions, car accidents and congestion, among
others, time and spatial fluctuations of traffic flows can be observed. The key issue
considered in this paper is the variability of the travel times which we consider to be
a good approximation of travel time reliability.

In Van Woensel et al. (2008), a dynamic vehicle routing problem with time-
dependent travel times due to traffic congestion, was presented. The developed
approach introduced the modeled traffic congestion component using a queueing
approach to traffic flows. Explicitly making use of the time-dependent congestion
results in routes that are (considerably) shorter in terms of travel time. Moreover, a
first rough expression for the variance of the travel time was obtained (Van Woensel
et al. 2008).

The main contributions of this paper are as follows:

1. We extend the objective function of a VRP with time-dependent travel times with
the standard deviation of the travel time. As such, we control the degree of travel
time variability during the optimization. The method presented is built on classical
methods and as a consequence can be implemented quite easily.

2. We show that extending the objective function with this extra information about the
stochastic travel time distribution provides interesting results when considering
the reliability of travel times. Depending on environmental and road conditions
as well as the risk-taking behavior of the planner, these improvements can be
substantial.

3. The reduction of the travel time variability may come at the cost of an increase of
the expected travel time. To evaluate a solution, we use the 95th-percentile of the
travel time distribution (assumed to be lognormal) as a quality measure. Using this
measure, the quality of the solution improves if the increase in expected travel time
results in a lower travel time associated with the 95th-percentile of its distribution.
Results show that the reliability improves as more weight is given to the variance
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component during optimization. Different environmental and road conditions are
compared and evaluated using this quality measure.
The trade-off between expected travel time and standard deviation of the travel
time and the resulting reliability is demonstrated using an Arena simulation. The
simulation validates the underlying assumption that the travel time over an entire
tour is well approximated by a lognormal distribution.

This paper is organized as follows: in Sect. 2, the literature background on our
VRP variant is presented, followed by a formal description of the VRP , the objec-
tive function and the time-dependency implementation in Sect. 3. The experimental
design with the input data and a tabu search implementation are presented in Sect. 4.
Results on the solution quality are presented in Sect. 5. Finally, conclusions and future
research are presented in Sect. 6.

2 Literature review

Travel times between any two customers are a stochastic process related to traffic
congestion. Depending on the time of the day the traffic network will face a differ-
ent level of congestion. The number of vehicles, the road capacity, road conditions,
weather conditions, …influence the speed of the vehicles. There has been limited
research on solving the VRP problem with stochastic time-dependent travel times.
In one of the first approaches Malandraki and Daskin (1992) treated the travel time
between two customers as a function of distance and the time of the day (if this tem-
poral component causes more travel time variation than travel time variation due to
accidents, weather conditions,…), resulting in a piecewise constant distribution of the
travel time. Although they only incorporate the temporal component of traffic density
variability, they acknowledge the importance of the traffic density variability due to
accidents, weather conditions and other random events. However, the FIFO principle
is not necessarily satisfied with this approach (Ichoua et al. 2003).

Ichoua et al. (2003) introduced a model that guarantees that if two vehicles leave
the same location for the same destination (along the same path), the one that leaves
first will never arrive later than the other. This is satisfied by working with step-like
speed distributions and adjusting the travel speed whenever the vehicle crosses the
boundary between two consecutive time periods. To reduce computational run times,
they limited the number of time slices to three. The speed differences are then mod-
eled using correction factors on the weights of the links. Donati et al. (2003) extended
this line of research by indicating the importance of optimizing the starting time in
addition to optimizing the routes in a time-dependent environment. They show that
the degree of feasibility (defined as not violating a time constraint) and optimality
decreases for the best solutions for the constant speed model when they are used in
a time-dependent context with increasing variability of the traffic conditions. Similar
results were also observed by Haghani and Jung (2005). In contrast with Ichoua et al.
(2003) they model travel time as a continuous function that can accept any kind of
travel time variation.

As indicated by Ichoua et al. (2003) the literature on time-dependency in a VRP
context is limited. Stochastic and time-dependent travel times are more extensively
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operated on in shortest path analysis (e.g., Hall 1986; Fu and Rilett 1998; Gao and
Chabini 2002, 2006; He et al. 2005). He et al. (2005) indicate that although mean
and variance contain the most important information about path travel time, finding
the single route with expected shortest travel time is not appropriate for routing when
planners are not risk neutral. The entire travel time distribution contributes to the
routing choice. Chen et al. (2003) propose using the standard deviation and the 90th
percentile travel time in addition to the mean to measure service quality.

Stochastic travel times are introduced in the vehicle routing problem by Laporte
et al. (1992). Following Gendreau et al. (1996b) a stochastic VRP arises whenever
some elements of the problem are random. A stochastic model usually involves two
stages. In the first stage, a route is planned a priori, followed by a realization of the
random variables. In the second stage, a recourse or corrective action is then applied
to the solution of the first stage. The cost/saving generated through the recourse may
have to be considered when designing the first stage solution.

3 Problem formulation

Formally, the routing problem considered can be represented by a complete directed
graph G = (V, A) where V = {0, 1, . . . , n} is a set of nodes representing the depot (0)

and the customers (1, . . . , n), and A = {(i, j)|i, j ∈ V } the set of directed links. For
each customer, a fixed non-negative demand qi is given (q0 = 0). The aim is then to
find routes with best travel time where the following conditions hold (Laporte 1992):
every customer is visited exactly once by exactly one vehicle; all vehicle routes start
and end at the single depot; every vehicle route has a total demand not exceeding the
maximum vehicle capacity Q. Define a solution as a set S with m routes R1, . . . , Rm

where Rr = (0, r1, r2, . . . , 0) and each vertex i ≥ 1 belongs to exactly one route. For
ease of notation, write i ∈ Rr if the node is part of the route Rr and write (i, j) ∈ Rr if
i and j are two consecutive nodes of Rr . Also define E(˜T T

t0
i j ) and V ar(˜T T

t0
i j ) as the

expected travel time and the variance of the travel time needed to cover the distance
(i, j) leaving vertex i at time t0.

Only taking the expected travel times into account ignores the risk profile of the
planner. An extension of the objective function thus involves adding the standard devi-
ation of the travel time. The weight of the latter is controlled by a (positive) parameter
β, i.e.,

Min
m

∑

r=1

∑

(i, j)∈Rr

E(˜T T
t0
i j ) + β

√

√

√

√

m
∑

r=1

∑

(i, j)∈Rr

V ar(˜T T
t0
i j ) (1)

Note that the proposed approach is similar to the mean-variance analysis used in
financial planning of portfolios (Best and Grauer 1991; Grauer and Hakansson 1993).
In this literature it is argued that risk aversion can be modeled through the inclusion
of a variance term in the objective function (Mulvey et al. 1995).

As the travel times are time-dependent, we need to be careful not to violate the
FIFO principle (Ichoua et al. 2003). Any vehicle starting after time t , cannot arrive
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earlier than any vehicle starting before time t . To adhere this principle, the day is
discretized into P time zones of equal length �p with a different travel speed distri-
bution associated with each time zone p (1 ≤ p ≤ P). A new speed is adopted as the
vehicle crosses the boundary of a given time zone (Ichoua et al. 2003; Van Woensel
et al. 2008).

In our model the speed in each time zone is obtained by applying queueing theory to
traffic flows. Based on traffic counts, analytical queueing models model the behavior
of traffic flows as a function of the most relevant physical and geographical determi-
nants (i.e., free flow speed, maximum road capacity, variability due to the weather, …).
The travel times can then be modeled much more realistically using these speeds (i.e.,
expressed in kilometer per hour) and are directly related to the physical characteristics
and the geographical location on the arc. For a discussion on the queueing model,
the interested reader is referred to Vandaele et al. (2000), Heidemann (1996) and
Van Woensel and Vandaele (2006).

One of the earliest studies explicitly dealing with the travel speed distribution is
that of Berry and Belmont (1951) who looked into the distribution of the measured
speed of a vehicle as it crosses a particular point on the highway. Speed was found
to be normally distributed. Travel times, taken as the reciprocal of speed, are shown
to be also roughly normal, although slightly skewed indicating that a lognormal dis-
tribution might be interesting as an alternative (Kharoufeh and Gautam 2004). Other
empirical results (Taniguchi et al. 2001; Kwon et al. 2000) show that there is always a
certain minimum time needed to cover the distance (i.e., it is impossible to traverse the
distance in a time shorter than this minimum time). After this minimum time, the prob-
ability increases rapidly to a maximum after which the probability slowly decreases
with a long tail (i.e., skewed to the right). Due to these characteristics, Taniguchi et al.
(2001) proposed to use a lognormal distribution rather than a normal distribution.

It can be shown that the convolution of k lognormal distributions is again (approx-
imative) lognormal (Beaulieu and Xie 2004). We assumed a lognormal distribution
of the travel time, but the analysis could also be applied if another distribution was
chosen. Simulation results in Sect. 5 show that the travel time distribution over an
entire tour is again well approximated by a lognormal one.

4 Experimental design

In this section, we first describe the input data used. Secondly, we explain the impact
of the problem as defined supra on the classical Tabu Search implementation.

4.1 Input data

4.1.1 Selection of speed profiles

For the subsequent analysis, we will create four test situations, based on two dimen-
sions of interest. The first dimension is the level of congestion, the second dimension
deals with the road and/or weather conditions.
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For the first dimension, we will use two different speed profiles. The first speed
profile is the result of a congested flow during the entire day, whereas the second one
has heavy congestion only during the morning and evening peak hours. The reasons
for this choice of speed profiles are twofold.

First, today there exists roads that follow those patterns. Some roads have a distinct
morning and evening rush-hour, whereas other roads are congested for the better part
of the day.

Secondly, in the near future it is very likely that the traffic volume will increase.
The 10 Year Plan in the UK confirms this (DfT 2000). On top of that, it states that
despite all governmental policies, the congestion level on all roads in the UK will
increase. In 2000 however, the 10 Year Plan indicated that by 2010 the current level of
congestion (base 2000) would decline by 5–6%. New measurements and predictions
in 2003, however, indicated that by 2010 the traffic will increase by 11–20%, even if
all the measures in the 10 Year Plan work as predicted and will increase by 27–32%
otherwise (DfT 2000, 2003). As a consequence, we could also look at the chosen speed
profiles as being the situation today vs the (nearby) future.

The second dimension deals with the impact of weather (and road conditions) on
the travel times and especially the reliability of the best tour. This will provide us with
four test situations, that will be investigated in depth in Sect. 5.

4.1.2 Empirical data

Since the number of links in a fully connected directed graph is enormous, collecting
data for each link and each time zone is a monumental challenge. Instead, we assume
that the same flow profile applies to all links. Indeed it seems reasonable to assume
that most motorways, on average, follow the same pattern of having a morning and
evening congestion period (see also Ichoua et al. (2003) for a similar reasoning).

We assume that the flow on a road segment is given as well as the free flow speed.
Given an empirical dataset, the remaining queueing parameters can be tuned to rep-
resent the relevant environmental conditions as close as possible (Van Woensel and
Vandaele 2006). As this is not the objective here, we choose the queueing parame-
ters such that the resulting speed profiles matches the four scenarios. As shown in
Figs. 1 and 2, this results in a reasonable speed profile both when there is a con-
gested flow during the entire day (Fig. 1, Congested flow) as when there is only heavy
congestion during the morning and evening peak hours (Fig. 2, Rush-hour flow).

Figures 1 and 2 represent the two different speed profiles used for the analysis.
Figure 1 (Congested flow) is the result of a congested flow during the entire day, Fig. 2
(Rush-hour flow) is the result of heavy congestion only during the morning and even-
ing rush hours. To simulate the effect of bad weather, the queueing parameters are
adjusted in such a way that during bad weather, a large variability of speeds becomes
apparent (Van Woensel and Vandaele 2006).

We model two types of roads for taking specific constraints in real cases into
account, representing highways and rural roads (Ichoua et al. 2003). Due to the lack of
data, we reduced the maximum allowed free flow speed, as such artificially creating
multiple road types. All arcs between even nodes represent highways. All other links
represent rural roads.
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Fig. 1 Speed distribution with
congested flows during the
entire day
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Fig. 2 Speed distribution with
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morning and evening rush hours
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4.2 Tabu search implementation

In this paper Tabu search, first proposed by Glover (1986), is used to generate solu-
tions as it has a number of advantages: general applicability of the approach, flexibility
for taking into account specific constraints in real cases and ease of implementation
(Pirlot 1996). For this Tabu Search implementation the following references where
used as a basis: Gendreau et al. (1994, 1996a), Hertz et al. (2000) and Van Woensel
et al. (2008).

The first change made to this basic algorithm consists of replacing distance by travel
time. The main change however consists of extending the basic objective function with
the standard deviation of the route travel time. The objective function thus becomes

E(˜T T ) + β

√

∑

V ar(˜T T ) (see also Eq. 1), with E(˜T T ) (V ar(˜T T )) the expected
travel time (variance of the travel time) and β a positive parameter to account for the
risk aversion of the planner. This objective function deals with the distribution of the
travel time of the solution and cannot be reduced to the classical objective function
(i.e.,

∑

i j∈A xi j ci j ).
The neighborhood structure used is based on the λ-interchange. With λ limited to

2, up to 2 costumers are exchanged between two routes (Osman 1991, 1993). It must
be noted that the links after the exchanged nodes in the modified routes must be re-
evaluated completely, because of the stochastic time-dependent nature. Indeed, the
travel time distribution of a given link from i to j depends on time of departure at
node i (Donati et al. 2003). This also implies that the best solution of leaving the
depot at 6h00 is not necessarily the best solution of leaving the depot earlier or later
that day. Therefore, the neighboring solutions of the λ-interchange structure are also
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evaluated in a limited number z of adjacent starting times. In case of improvement,
the starting time of the tours are updated. The rationale behind this is that a truck can
decide to leave earlier or later to avoid periods of (anticipated) high congestion. Ini-
tially, the parameter “z” is set to 3 and the starting time at the depot is 6h00, as such all
neighboring solutions are evaluated with starting times: 5h30, 5h40…6h20,6h30. The
parameter “z” is further used for diversification and intensification. As this requires
a full re-evaluation of the tours, we limit the number of non-improving solutions by
using a soft constraint on the excess capacity during the search procedure. The practical
objective function then becomes

Min
m

∑

r=1

∑

(i, j)∈Rr

E(˜T T t0
i j )+β

√

√

√

√

√

⎛

⎝

∑

r

∑

(i, j)∈Rr

V ar(˜T T t0
i j )

⎞

⎠+γ
∑

r

⎡

⎣

∑

i∈Rr

qi −Q

⎤

⎦

+

(2)

where [x]+ = max(0, x) and γ is a positive parameter. If the solution is feasible with
respect to capacity the third part of Eq. 2 reduces to zero. If the solution is infeasible
with respect to capacity a penalty proportional to the excess capacity (γ ) is added.
Decreasing the parameter γ will make it easier for infeasible solutions with respect
to capacity to be picked as best solution for that iteration as the excess load will not
have a large impact, thus enables diversification. Increasing γ punishes solutions with
excess capacity in their tours, forcing the best solution for this iteration to become
feasible again. The best solution evidently has no excess capacity in any of the tours.

5 Results

The impact of the road and environmental conditions are evaluated in this section.
Substantial gain in terms of travel time reliability is found by giving more weight
to this component during optimization. The decrease in variability can be offset by
an increase in expected travel time. To measure the effect of this phenomenon, we
use the 95th-percentile of the travel time distribution as a measure of the quality of a
solution. Giving more weight to the standard deviation improves the 95th-percentile
of the distribution. Finally, an Arena Rockwell Software Inc. (2005) based simulation
is presented, which confirms the results.

5.1 Impact of the variance component

Minimizing the expected total travel time assumes that the planner is risk neutral in
his planning behavior, i.e., the planner does not care about the risk involved. Ignoring
the variance of travel time can be costly since this variance might be unacceptably
large from a managerial or planning point of view. Indeed, one might prefer having a
route that is on average slightly worse, but has a reduced variance, as such increasing
the reliability of the predicted arrival times at all destinations. Depending on the risk
attitude a different route will be chosen (He et al. 2005). By adjusting the parameter
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β in the objective function, the planner can easily insert his risk attitude in the model.
Higher values of β will result in routes that have more reliable travel times. Table 1
shows that the probability that the travel time is smaller than the travel time at TTβ

(defined as E(˜TT )+β

√

∑

V ar(˜TT )) increases as β increases. In addition, the tail of
the distribution to the right of TTβ contributes to the total mass of the distribution. The
higher β, the less mass there is left that contributes to the total mass of the distribution
(Finkel 1990). For instance, for dataset 32k5 from Augerat (Augerat et al. 1998), the
optimal route has a travel time distribution with σ (scale parameter of the lognormal
travel time distribution) equal to 0.376 (E(˜TT ): 1308.87 minutes, SD(˜TT ): 509.62
min). When β = 2.0, 95.73% of the population of travel times is below TTβ . The
remaining 4.27% however still contributes 8.93% of the total mass. Therefore, we
will examine β-values up to 3.0, where the remaining mass is about 3% for this set.

The values in Table 2 indicate the relative decline of the standard deviation of
the total travel time of the best solution found (with associated β) compared to the
standard deviation of the travel time found by a minimization with β = 0 (i.e., not
taking variability into account). The values are an average over 27 Augerat datasets.
If β = 0, then the planner has a risk neutral behavior and treats the variance of the
route as something residual, not worth optimizing. However, as the weight of the stan-
dard deviation of the travel time adopts higher values, the standard deviation of the
associated best route continues to decrease, regardless of the environmental and road
conditions, meaning that the planner can control the degree of variance of the travel
time of the eventual solution in an easy way. The best improvement is obtained by
increasing the value of β from 0 to 0.5, whereas the additional improvement of further
steps reduces in magnitude. It is thus important to include the variability of the travel
times in the objective function. Better improvements will be expected when the road
and/or weather conditions are bad. If road conditions are bad, the speed will fluctuate

Table 1 Probability for T T < T Tβ and associated remaining mass in the tail of the travel time distribution
for different β-values when σ (scale parameter of the lognormal travel time distribution) = 0.376

β β = 0.0 β = 0.5 β = 1.0 β = 1.5 β = 2.0 β = 2.5 β = 3.0

p(T T < T Tβ)(%) 57.4 74.58 85.61 92.11 95.73 97.71 98.77

mass(T T > T Tβ)(%) 57.45 38.76 24.59 15.00 8.93 5.25 3.06

Table 2 Impact of β on the standard deviation of the travel time, compared to the standard deviation of
the travel time with β = 0

Flow Road β = 0.5 (%) β = 1.0 (%) β = 1.5 (%) β = 2.0 (%) β = 2.5 (%) β = 3.0 (%)
conditions

Congested Bad −1.61 −2.18 −2.52 −2.75 −3.14 −3.47

Rush-hours Bad −1.45 −2.05 −2.50 −2.95 −3.32 −3.46

Congested Good −3.30 −4.18 −4.72 −5.17 −5.40 −5.56

Rush-hours Good −3.17 −3.83 −4.20 −4.55 −4.71 −5.04

123



372 C. Lecluyse et al.

1 2 2 1
* *

Distribution 1

Distribution 2

Travel Time

Probability
St. Dev. 1 > St. Dev. 2

Fig. 3 Impact of 95th-percentile on solution quality (Lognormal distribution)

more, which makes it more difficult to predict when a tour is over, as opposed to better
road conditions. If the flow is congested during the entire day, the improvement is also
more substantial compared to a flow which is characterized by two rush-hours. This
is due to the fact that between the two congestion periods, drivers are able to uphold
free flow speed, leading to less variability.

5.2 The 95th-percentile as a quality measure

The reduction of the standard deviation comes at a certain cost, i.e., a likely increase
of the average travel time. To check whether this cost is acceptable, we propose the
use of the 95th-percentile as a quality measure assuming a lognormal distribution for
the travel time. We use the 95th-percentile as a single measure of the quality of the
solution. Figure 3 represents two lognormally distributed solutions. The Figure illus-
trates that if the 95th-percentile of the travel time of the solution with worse average
travel time, but better standard deviation (Distribution 2) is lower than the one with
best average travel time (Distribution 1), we have nevertheless managed to improve
solution quality.

This can also be derived from our test cases. The impact of β on the improvement
in the 95th-percentile can be observed in Table 3. The travel time associated with
the 95th-percentile decreases when more weight (higher β) is given to the standard
deviation in the objective function. The best improvement is observed in the first step,
regardless of the test situation. The additional improvement of higher β values reduces
in magnitude. This means that although the average travel time will become larger with
increasing β, the total travel time will be better in 95% of all cases but with decreasing
importance.

If the road conditions are good, the relative improvement of the travel time of the
95th-percentile is more substantial for the congested flow throughout the day com-
pared to a flow with two rush-hours for equal β values. From Table 4, we see that if
weather conditions are good, the squared coefficient of the travel times of the two flow
types are of the same magnitude. Therefore, since the standard deviation of the travel
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Table 3 Impact of β on the 95th-percentile of the travel time, compared to the 95th-percentile of the travel
time with β = 0 (lognormal distribution)

Flow Road β = 0.5 (%) β = 1.0 (%) β = 1.5 (%) β = 2.0 (%) β = 2.5 (%) β = 3.0 (%)
conditions

Congested Bad −0.62 −0.82 −0.94 −0.98 −1.12 −1.16

Rush-hours Bad −0.52 −0.72 −0.84 −0.91 −1.06 −1.07

Congested Good −1.32 −1.62 −1.75 −1.94 −1.97 −1.99

Rush-hours Good −1.38 −1.66 −1.79 −1.90 −1.99 −2.07

Table 4 Squared coefficient of variation of the travel times for given test situation and β values

Flow Road β = 0.0 β = 0.5 β = 1.0 β = 1.5 β = 2.0 β = 2.5 β = 3.0
conditions

Congested Bad 0.038 0.037 0.037 0.036 0.036 0.036 0.036

Rush-hours Bad 0.038 0.037 0.037 0.036 0.036 0.036 0.036

Congested Good 0.110 0.103 0.101 0.100 0.099 0.098 0.098

Rush-hours Good 0.113 0.106 0.104 0.103 0.102 0.102 0.101

Table 5 Improvement (in min) of the 95th-percentile of the tour travel time when comparing the optimal
routes with β = 3 and β = 0

Flow Road conditions Average Minimum Maximum

Congested Bad 35.11 6.90 93.57

Rush-hours Bad 32.26 0.33 68.10

Congested Good 88.32 15.58 166.32

Rush-hours Good 81.61 15.85 259.98

times is higher for the congested flow, better improvements can be expected for this
flow type with increasing β.

On the other hand, if road conditions are bad, the best relative improvement is
observed for the two rush-hour flow. In bad weather, the squared coefficient of varia-
tion of the travel times for the flow with two rush-hours is larger than the congested
flow (Table 4). This means that for the flow with two rush-hours the standard deviation
is relatively large compared to the mean. Adding some weight to it will thus result in
better relative results.

Table 5 represents the gain in travel time (in min) of the 95th-percentile for the test
cases when comparing β = 3 with β = 0. For instance, the gain over all Augerat sets
for the congested flow in bad road conditions is on average 88.32 min. The minimum
improvement for that test situation is 15.58 min and the maximum improvement is
almost 3 h (166.32 min). It is clear that the reduction of the standard deviation of
the travel time is substantial enough to overcome the increase in average travel time.
Extending the objective function to account for the travel time variability provides
results with better overall reliability, especially when road conditions are bad.
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Fig. 4 Travel time distributions of set 32k5 with a congested flow in good road conditions. Results following
a simulation with Arena are plotted together with the expected lognormal distribution (derived from Tabu
Search solution)

5.3 Simulation

To validate the approximations, used when building the variance estimating model
presented above, we constructed a simulation in Arena in which we reconstructed the
best solution of a given dataset as a sequence of lognormal distributions (representing
the link travel times) with the individual link-based mean and standard deviation. A
number of trucks then have to complete the routes. On each link, a random travel time
is generated according to the distribution for that link. For set 32k5, 3001 trucks com-
pleted the tours and their travel times have been plotted in Fig. 4. The results indicate
that the resulting total travel time distribution is indeed lognormally distributed. In
addition, the plotted results are close to the total travel time used in the Tabu Search.
For instance, the travel time associated with the 95th-percentile is 2205.5 min (Fig. 4,
Table 6), which corresponds with what we expect from the travel time distribution of
the best solution (2262.71 min (95th-percentile of lognormal travel time distribution
with E(˜T T ): 1308.87 min and SD(˜T T ): 509.62 min)).

The positive impact in terms of travel time reliability when optimizing the VRP for
a more heavily weighted standard deviation is validated by the simulation results pro-
vided in Table 6. The best solutions of a Tabu Search optimization with β values equal
to 0.0 and 3.0 are reconstructed. For each set the average travel time increases and
the standard deviation of the travel time decreases, as such increasing the travel time
reliability. The decrease in the standard deviation is substantial enough to improve the
overall quality of the solution (better travel time associated with the 95th-percentile).
Values of β = 0.0 and 3.0 are two extreme situations. The planner can use any value
in between depending on his own risk attitude. From a planning point of view, it is
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Table 6 Comparing the best routes (through Tabu Search optimization with respective β-values) for three
sets in congested flow during the entire day using Arena

E(˜T T ) SD(˜T T ) 95th-percentile TT

32k5 β = 0.0 1320.87 550.77 2205.5

β = 3.0 1332.51 514.51 2169.5

38k5 β = 0.0 1286.60 480.72 2087.7

β = 3.0 1296.14 471.02 2049.4

80k10 β = 0.0 2701.11 746.35 4007.0

β = 3.0 2720.64 685.73 3972.9

Average travel time, standard deviation of the travel time and 95th-percentile are provided after 3001 trucks
completed the best routes

better to have more predictability in the routing than a potentially faster route. The
uncertainty about the actual arrival time will be avoided as the planner becomes more
risk averse.

6 Conclusions and future research

We have argued that taking time dependent travel speeds into account can be of much
interest in routing problems. Indeed, minimizing the expected travel time does not deal
with the true stochastic nature of the travel times. Since the real speed is a realization
of a stochastic process, it is important to account for the variability of the speed and
thus the travel time uncertainty when planning a route. This paper has tackled the
problem and has shown how more reliable routes can be obtained. These routes have
the potential to reduce real operating costs for a broad range of industries which face
daily routing problems.

Including variance as well as expected value of travel time in the objective function
has many potential applications. We have shown that our proposal gives a manager
a simple yet powerful tool to incorporate congestion uncertainty in the planning of
routes and allows for various attitudes towards risk. The resulting routes were shown
to be more reliable and predictable. Although the gain in terms of less travel time vari-
ability will be offset by a higher average travel time, the travel time associated with the
95th-percentile will improve. Depending on the road and environmental conditions,
this improvement will be more or less substantial. These conclusions are confirmed
by independent simulation studies.

It must be noted however, that in some cases the reduction in variability will not be
substantial enough to compensate for the reduction of the expected travel time. If for
instance the initial route has already a small travel time distribution (associated with
a high speed), then it will be hard to find a new route/starting time with a better travel
time distribution.

As there is not much information available on how to model the variance of the
travel times in literature, most analyses are in terms of expected travel time, we have
heuristically determined variances in the analysis presented in this paper. Hence, we
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are currently deriving general conditions on speed profiles that will guarantee the
validity of the conclusions derived here.
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