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ABSTRACT
A novel method is presented for automatically visually monitoring a highway when the camera is 
relatively low to the ground and on the side of the road. In such a case, occlusion and the 
perspective effects due to the heights of the vehicles cannot be ignored. Using a single camera, 
the system automatically detects and tracks feature points throughout the image sequence, 
estimates the 3D world coordinates of the points on the vehicles, and groups those points 
together in order to segment and track the individual vehicles.  Experimental results on different 
highways demonstrate the ability of the system to segment and track vehicles even in the 
presence of severe occlusion and significant perspective changes. By handling perspective 
effects, the approach overcomes a limitation of commercially available machine vision-based 
traffic monitoring systems that are used in many intelligent transportation systems (ITS)
applications. The researchers are targeting this system as a step toward a next generation ITS 
sensor for automated traffic analysis.

INTRODUCTION
Traffic counts, speed and vehicle classification are fundamental data for a variety of 
transportation projects ranging from transportation planning to modern intelligent transportation 
systems (ITS). Most ITS applications are designed using readily available technology (e.g., 
sensors and communication), such as the inductive loop detector.  Other sensing technologies 
include radar, infrared (IR), lasers, ultrasonic sensors and magnetometers. In (1) and (2), state of 
the art traffic sensing technologies are discussed along with the algorithms used to support traffic 
management functions.

Since the late 1980s, video imaging detection systems have been marketed in the U.S. and 
elsewhere. One of the most popular video based traffic counting systems is Autoscope, which is 
currently distributed by Econolite. Autoscope uses high-angle cameras to count traffic by 
detecting vehicles passing digital sensors. As a pattern passes over the digital detector, the 
change is recognized and a vehicle is counted.  The length of time that this change takes place 
can be translated into speed estimates. Autoscope includes significant built-in heuristics to 
differentiate between shadows and vehicles in various weather conditions. The accuracy of 
Autoscope and other commercially based video detection systems is compromised if the cameras 
are mounted too low or have poor perspective views of traffic. If the camera is not mounted high 
enough, a vehicle’s image will “spill over” onto neighboring lanes, resulting in double counting. 

A more promising approach to traffic monitoring is to track vehicles over time throughout an 
image sequence.  This approach yields the trajectories of the vehicles, which are necessary for 
applications such as traffic flow modeling and counting turn movements.  In this paper we 
present an automatic technique for detecting and tracking vehicles at a low angle, even in the 
presence of severe occlusion, to obtain those trajectories.  Although the problem of tracking is 
much more difficult at a low angle because of perspective effects, a solution to this problem 
would be greatly beneficial for data-collecting applications in which the permanent infrastructure 
necessary for high-angle cameras is not feasible.

Research in Vehicle Tracking
Over the years researchers in computer vision have proposed various solutions to the automated 
tracking problem.  These approaches can be classified as follows:
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Blob Tracking.  In this approach, a background model is generated for the scene. For each input 
image frame, the absolute difference between the input image and the background image is 
processed to extract foreground blobs corresponding to the vehicles on the road. Variations of 
this approach have been proposed in (3, 4, 5). Gupte et al. (3) perform vehicle tracking at two 
levels: the region level and the vehicle level, and they formulate the association problem between 
regions in consecutive frames as the problem of finding a maximally weighted graph. These 
algorithms have difficulty handling shadows, occlusions, and large vehicles (e.g., trucks, and 
trailers), all of which cause multiple vehicles to appear as a single region. 

Active Contour Tracking.  A closely related approach to blob tracking is based on tracking active 
contours (also known as snakes) representing the boundary of an object. Vehicle tracking using 
active contour models has been reported by Koller et al. (6), in which the contour is initialized 
using a background difference image and tracked using intensity and motion boundaries. 
Tracking is achieved using two Kalman filters, one for estimating the affine motion parameters, 
and the other for estimating the shape of the contour. An explicit occlusion detection step is 
performed by intersecting the depth ordered regions associated with the objects. The intersection 
is excluded in the shape and motion estimation. As with the previous technique, results are 
shown on image sequences without shadows or severe occlusions, and the algorithm is limited to 
tracking cars.

3D-Model Based Tracking.  Tracking vehicles using three-dimensional models has been studied 
by several research groups (7, 8, 9, 10). Some of these approaches assume an aerial view of the 
scene which virtually eliminates all occlusions (10) and match the three-dimensional wireframe 
models for different types of vehicles to edges detected in the image. In (9), a single vehicle is 
successfully tracked through a partial occlusion, but its applicability to congested traffic scenes 
has not been demonstrated.

Markov Random Field Tracking.  An algorithm for segmenting and tracking vehicles in low-
angle frontal sequences has been proposed by Kamijo et al. (11). In their work, the image is 
divided into pixel blocks, and a spatiotemporal Markov random field (ST-MRF) is used to 
update an object map using the current and previous image. One drawback of the algorithm is 
that it does not yield 3D information about vehicle trajectories in the world coordinate system.  
In addition, in order to achieve accurate results the images in the sequence are processed in 
reverse order to ensure that vehicles recede from the camera. The accuracy decreases by a factor 
of two when the sequence is not processed in reverse, thus making the algorithm unsuitable for 
on-line processing when time-critical results are required. 

Feature Tracking.  In this approach, instead of tracking a whole object, feature points on an 
object are tracked. The method is useful in situations of partial occlusions, where only a portion 
of an object is visible. The task of tracking multiple objects then becomes the task of grouping 
the tracked features based on one or more similarity criteria. Beymer et al.(12,13) have proposed 
a feature tracking based approach for traffic monitoring applications. In their approach, point 
features are tracked throughout the detection zone specified in the image. Feature points which 
are tracked successfully from the entry region to the exit region are considered in the process of 
grouping. Grouping is done by constructing a graph over time, with vertices representing sub-
feature tracks and edges representing the grouping relationships between tracks. The algorithm 
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was implemented on multi-processor digital signal processing (DSP) board for real-time 
performance. Results were reported for day and night sequences with varying levels of traffic 
congestion.

Color and Pattern-Based Tracking. Chachich et al. (14) use color signatures in quantized RGB 
space for tracking vehicles. In this work, vehicle detections are associated with each other by 
combining color information with driver behavior characteristics and arrival likelihood. In 
addition to tracking vehicles from a stationary camera, a pattern-recognition based approach to 
on-road vehicle detection has been studied in (15). The camera is placed inside a vehicle looking 
straight ahead, and vehicle detection is treated as a pattern classification problem using support 
vector machines (SVMs).

APPROACH

In comparison with the research just described, the novelty of the proposed approach lies in the 
estimation of the 3D coordinates of feature points in order to track vehicles at low angles, when a 
single homography is insufficient. This research contains several extensions over our previous 
work (16):  a technique for associating tracks is proposed to facilitate long-term tracking, a 
method we call incremental normalized cuts is introduced to improve the quality of the 
segmentation, and a single perspective mapping is used instead of a multi-level homography, 
which increases robustness by taking advantage of the inherent constraints of the data.

The sequence is assumed to be taken from a single grayscale camera pointing at the road from 
the side. The task of segmenting and tracking vehicles in cluttered scenes is formulated as a 
feature tracking and grouping problem. Feature points are tracked in the image sequence, 
followed by estimation of the 3D world coordinates for those points, which are then grouped 
using a segmentation algorithm. The novelty of this work lies primarily in the technique for 
estimating the 3D coordinates from a single camera. 

Offline Calibration
Calibration is required to estimate the 3D world coordinates for corresponding 2D points in the 
image. It should be emphasized that the calibration process described below is for a single 
camera and does not require knowledge about the camera specifications such as focal length or 
sensor dimensions, which makes it possible to process pre-recorded sequences captured from 
unknown cameras. The only information that is needed is six or more point correspondences.

We assume a pinhole camera model exhibiting perspective projection. The general relationship 
between an object point measured with respect to a user-selected world coordinate system and its 
image plane point is denoted by a  3 x 4 homogeneous transformation matrix (17). This matrix 
will be referred to as the camera calibration matrix C.

[1]

            [2]

These equations define a mapping from the world coordinates (x,y,z) to the image coordinates
(u,v) as described in (18). 
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Calibration Process
The camera calibration matrix C can be computed from the correspondence of 2D image points 
with the 3D coordinates of the associated world points.  Each correspondence yields two 
equations of the form [1] and [2]. Six or more correspondences from a non-degenerate 
configuration lead to an over-determined system which can be solved using a standard least 
squares technique.

The offline calibration process depends upon the user-specified point correspondences for the 
calibration process. Although it would be ideal to have known markers placed at known 
locations in the scene, in practice this is often not feasible (e.g., on prerecorded data).  In 
addition, as we will show, sufficient accuracy can be obtained simply by using standard 
specifications such as the width of a lane and the length of a truck, because the algorithm is not 
sensitive to slight errors in calibration.1  We have developed a calibration application that is 
straightforward, simple to learn and use, and provides adequate results.  Our calibration tool is 
similar to that developed by Gupte et al. (3), except that their system finds a planar mapping 
between the points on the road and the image points, whereas ours estimates a full perspective 
mapping, leading to 3D coordinates. 

An example of the calibration process is shown in Figure 1. First, the user places a marker across 
the width of the road and perpendicular to the lane markings as shown in Figure 1 (a). With the 
marker position unchanged, the sequence is advanced till the rear end of the truck appears to 
align with the marker position on the ground. A new marker is placed to align with the height of 
the truck (b). In the same frame a marker is placed on the ground to align with the front end of 
the truck (c). Once again, the sequence is advanced till the marker placed on the ground in (c) 
appears to align with the rear end of the truck. This is shown in (d). For the same frame, the 
marker is realigned with the front end of the truck as shown in (e). A new marker is placed 
across the width of the road (f). One more time, the sequence is advanced for the new marker to 
appear aligning with the rear end of the truck. An additional marker is placed as shown in (g) in 
such a way that it appears to be aligned with the height of the truck. The result looks as shown in 
(h). Using the dimensions of a known type of vehicle, lane width (e.g.  12 feet on an interstate),
and number of lanes yields an approximate method for estimating the world coordinates of the 
control points. The calibration process is simple and takes only a couple of minutes to complete.

Backprojections
The imaging process maps a point in three dimensional space into a two dimensional image 
plane. The loss of dimension results in a non-invertible mapping. The calibration parameters for 
the camera and the image coordinates of a single point determine a ray in space passing through 
the optical center and the unknown point in the world. Rearranging equations [1] and [2] yields 
equations for two planes in 3D space. 

      [3]

     [4]

1. Three untrained users were asked to perform the offline calibration as described. For the standard deviation (in random 
direction) of three pixels for each control point, the segmentation accuracy was observed to fall by 5 %.
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FIGURE 1  Offline calibration process using our calibration application.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(a) – (h) show steps in offline calibration as described in the text.
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The intersection of these two planes is the ray in 3D passing through the point in the world that is 
projected onto the image plane. Because there are two equations and three unknowns, the 
problem is under-constrained. If we know either x, y, or z we can solve for the other two world 
coordinates using the image coordinates and C. In the sections to follow, we present a simple 
technique to overcome the under-constrained nature of the problem, enabling us to solve for all 
three world coordinates of a point.

Processing a Block of Frames
In the algorithm proposed by Beymer et al. (12) and Malik et al. (13), the point features tracked 
successfully from the entry region to the exit region are considered in the grouping step, which 
does not pose a problem when the camera is placed at a high vantage point looking down on the 
road. In our scenario, however, frequent occlusions and appearance changes (as vehicles 
approach the camera) result in the loss of a large number of features. As a result, the number of 
features that are tracked for the whole extent of the detection zone is not enough to achieve 
useful results. This problem is overcome by processing a block of consecutive image frames 
(typically twenty frames per block) in order to segment the vehicles in each block, and then to 
associate the segmented vehicles between the successive blocks. Features are tracked throughout 
a block of F image frames, overlapping with the previous block by N frames. The length of a 
block is determined by the average speed of the vehicles and the placement of the camera with 
respect to the road. If the number of frames in a block is too small, then although a large number 
of features will be tracked successfully throughout the frames in the block, the motion 
information will be insufficient for effective segmentation. On the other hand, using more frames 
in a frame-block will yield more reliable motion information at the expense of losing important 
features. The proposed algorithm relies on human judgment to balance between these tradeoffs. 
The steps described in the following sections are performed on the features tracked over a single 
block.

Tracking Features
Feature points are automatically selected and tracked using the Kanade-Lucas-Tomasi (KLT) 
feature tracker (19) based on the algorithm proposed in (20).

Background Subtraction
Background subtraction is a simple and effective technique for extracting foreground objects 
from a scene. The process of background subtraction involves initializing and maintaining a 
background model of the scene off-line.  At run time, the estimated background image is 
subtracted from the image frame being processed, followed by thresholding the absolute value of 
the difference image, along with morphological processing to reduce the effects of noise, to yield 
foreground blobs. A review of several background modeling techniques is presented in (21). 

For the scope of this research, the median filtering technique was chosen for its simplicity and 
effectiveness. The median filter belongs to a general class of rank filters. It is frequently used in 
image processing for removing noise in an image. For background modeling, we perform one 
dimensional median filtering in the time domain. For each pixel in the background image, the 
median value is selected from the set of values observed at the same pixel location in the 
previous n frames. 
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FIGURE 2 Road projection.

(a)      (b)

(c)

Projecting a feature on the road surface in the image for estimating its height.  (a) the first 
frame of a frame-block, with a feature point on a truck; (b) the foreground mask obtained 
by background subtraction, with the projection of the feature down to the bottom of the 
blob; (c) the corresponding 3D illustration, in which p and g are image points 
corresponding to  P and G respectively, and O is the optical center of the camera.
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Selecting Stable Features
It was shown earlier that the 3D coordinates of a world point can be estimated using its 
corresponding image coordinates, the calibration parameters, and at least one component of the 
world coordinates. A simple technique to achieve the same is presented here which involves 
finding the vertical projection of a point on the road surface in the image. The foreground mask 
generated in the previous step is used to find the projection as shown in Figure 2. P=[x y z] is a 
vector of world coordinates corresponding to the point p=[u, v] in the image.  O is the optical 
center of the camera. G=[x y zg] is a 3 x 1 vector containing world coordinates of ground 
projection of P. From equations [3] and [4] it follows that

  [5]

Since  G  lies on the ground (or at least sufficiently close), we can compute its 3D coordinates by 
assuming zg = 0 (corresponding to the road plane) in the above equation. P and G have the same 
(x, y) coordinates. Now, we know the image coordinates p of the world point P along with its (x, 
y) coordinates, and the camera calibration matrix C. Substituting these values into equations [1] 
and [2], we solve for z:

   [6]

For this technique to work, a simple box-model for the vehicles is assumed. A vehicle is modeled 
using five orthogonal, rectangular surfaces as shown in Figure 2 (c). Two such models have been 
used to represent cars and heavy vehicles. Dimensions of the corresponding models are 
computed using the calibration information (in proportion to the lane width).  In addition, the 
technique assumes that the world point G is directly below P.  In practice these assumptions 
generally hold, because our threshold for the maximum height of a stable feature is 0.8 m, below 
which vehicles are well-modeled as boxes with vertical sides.  Shadows tend not to cause a 
problem because features are rarely detected on the road itself due to lack of texture; as a result, 
shadows usually cause the height prediction of a feature to exceed the threshold, causing the 
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feature to be ignored.  In a similar manner, although occlusions cause the point G to be estimated 
incorrectly, the estimated height will be above the threshold, since the problem only occurs when 
the feature is higher than the hood (or trunk) of the occluding vehicle.  In addition, features 
rarely belong to the top surface, primarily due to insufficient texture and a relatively small 
projection in the image.  Even when the assumptions are violated, the segmentation error is just 
7% when the image height of G is perturbed by an error with standard deviation of 5 pixels, 
which we computed using simulations on equations [5] and [6]. Moreover, it is important to keep 
in mind that our technique only requires that at least one feature on a vehicle satisfy the 
assumption of lying on one of these four surfaces, so that multiple features with erroneous values 
do not pose a problem.

After estimating height of all the features using this technique, features which are close to the 
road surface are selected as stable features. In our previous work (16), stable features were 
selected based on an additional condition of low variance in height estimation for each frame of 
the block, but we have since found that removing this criterion reduces the number of 
computations without any noticeable degradation in the segmentation results.

World Coordinates from Multiple Frames
Factors like occlusion and shadows introduce significant error in the height estimates of many of 
the feature points obtained using the technique presented in the previous section, but as long as 
an accurate height is obtained for at least one feature per vehicle, the coordinates of that point 
can be used to estimate the world coordinates of the rest of the features on the vehicle.  To 
accomplish this task, we employ rigidity constraints and a translational motion model.

A line in 3D can be represented in a parametric form as:

P = PR + α [PH - PR]

where PH and PR are 3 x 1 vectors representing any two points on the line, and α is a scalar 
which defines location of a point along the line. The above representation simplifies the 
mathematical analysis to follow.

As shown in Figure 3, we consider two points, P and Q which undergo a translational motion 
from P 0, Q 0 in initial frame to P t, Q t after duration t. If Q is one of the stable features, then its 
real world coordinates are known. As derived in (18), α can be solved as

    [7]

where • represents translational motion for the respective point.
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FIGURE 3 Estimating world coordinates using rigid motion.

Coordinates of P are unknown.  Q is a stable feature point with known world coordinates.
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Estimates for the world coordinates of non-stable feature points can be computed with respect to
each stable feature point using the two equations above. Among all the estimates, we select the 
estimate that minimizes the weighted sum of Euclidean distance in (x, y) and squared trajectory 
error over all s frames in the block.

             [8]

Affinity Matrix and Normalized Cuts
We form the affinity matrix composed of three components, namely, the 3D Euclidean distance 
in world coordinates, the difference in trajectory and the background content measure. Euclidean 
distance and background content are measured using the coordinates of feature points in the first 
frame of the block. The details of the affinity matrix formulation can be found in (18). In Shi et 
al.(22, 23), it is mentioned that for the normalized cut algorithm to be computationally efficient, 
the affinity matrix (also called the weight matrix) should be sparse. Experiments were performed 
using sparse affinity matrices as well, i.e. using only local edge connections for a feature, but it 
was observed that using full matrices produced better results without a significant increase in the 
computing time.2

Grouping With Incremental Normalized Cuts
Based on Shi and Malik’s normalized cuts, we have developed a grouping procedure that we call 
incremental normalized cuts for segmenting a set of features into meaningful groups. The 
process involves applying normalized cuts to the affinity matrix with increasing number of cuts 
until a valid group is found. The corresponding entries for the features in the detected group are 
removed from the affinity matrix and the process is repeated. The key part of this step is to use 
the calibration information to accept or reject a feature group based on following three criteria:

• The group has a minimum number of required features.
• The centroid (in 3D coordinates) lies inside the detection zone.
• Dimensions of the group are within a valid range.

Using incremental normalized cuts avoids explicitly specifying the number of cuts required for a 
good segmentation, which depends upon quantities such as the number of features and the 
number of vehicles. Further details about incremental normalized cuts can be found in (15).

2. For sparse affinity matrices using 70, 60 and 50 pixel neighborhood, the computational time saved was found to be  3.8%, 
4.6%,  5.8% with the drop in accuracy of 14%, 22% and 31% respectively.
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Correspondence Between Frame Blocks
In the previous sections, we looked at how to track feature points through a block of F frames, 
estimate the corresponding world coordinates, and group features using incremental normalized 
cuts. This procedure is applied to all the blocks of frames (overlapping by F-1 frames), using the 
same set of parameters. Long-term tracking requires us to compute the correspondence between 
the vehicles detected in consecutive frame blocks. In this section we describe our approach for 
correspondence.

Consider two consecutive frame-blocks A and B overlapping by F-1 frames. Let A denote the 
feature groups segmented in a frame-block A, and let B denote the feature groups segmented in 
frame-block B. An undirected graph is formed with the segmented feature groups in both frame 
blocks as nodes and the number of common feature points shared by a pair of groups as the 
weight of an edge connecting the respective nodes. If a group in the previous block shares 
features with only a single group in the current block, then we call this a one-to-one unique 
correspondence. A group in A sharing features with more than one group from B indicates 
splitting. Similarly, two or more groups in A sharing common features with a group in B
indicates merging. A group in A having no association is considered a missing event, and a 
group in B having no association with any of the groups in the previous block is considered as a 
new detection. If a group is associated with a one-to-one correspondence over consecutive 
blocks, it is labeled as a reliable group. If a group is missing for consecutive blocks, it is labeled
as inactive. During initialization, each group in the first frame-block is assigned a unique label. 
For each consecutive frame-block, a graph is constructed as mentioned above. To neglect minor 
segmentation errors, all the edges having weights are removed. This is followed by searching for 
the unique one-to-one correspondences between the groups of previous and current frame-
blocks. Groups of the current block having unique correspondences are assigned the labels of 
respective groups in the previous block. After processing all the unique associations, the graph is 
searched for splits. For a split event, the edge with maximum weight is used for correspondence 
and the remaining edges are removed. Merge events are handled the same way. Groups in A
which are no longer connected to any of the groups in B and are labeled as reliable, are declared 
missing. Groups in B which are not connected with any of the groups in A are declared as new 
detections. Each group that is declared as a new detection is matched with all the active missing 
groups to find a possible correspondence. If a correspondence with missing groups is not found, 
the group is assigned a new label.

EXPERIMENTAL RESULTS
The algorithm was tested on four grayscale image sequences, each containing 1200 frames 
captured at 30 frames per second. The camera was placed on an approximately 10 m pole on the 
side of the road. The sequences were digitized at 640 x 480 resolution. No preprocessing was 
done to suppress shadows or to stabilize occasional camera jitter. For each sequence, offline 
camera calibration was performed once, as explained earlier.
The first sequence was captured on a clear day. Vehicles are traveling in three lanes and there are 
moderate moving shadows. The second sequence shows a four-lane highway with the last lane
blocked for maintenance work. The lane closure results in slow moving traffic with vehicles 
traveling close to each other. The sequence was captured during data collection for studying the 
effect of a workzone on freeway traffic (24). The third sequence was found to be even more 
challenging because the vehicles cast long shadows, making the process of segmentation based 
of size constraints harder. In Figure 4(b) the small vehicle traveling next to a trailer is correctly 
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segmented and tracked demonstrating the system’s ability to handle severe partial occlusions. 
One simple method was tested for detecting and removing groups that belong to shadows as 
shown in Figure 4 (f). If the height of a group is below a threshold value, it is classified as a 
shadow group and is discarded. Having zero as the threshold (which is theoretically correct) does 
not yield the desired results, since the estimation process is based on the approximate calibration 
along with simple assumption for the shape of vehicles resulting in height estimation error. If the 
threshold is set higher, more shadow-groups are detected and discarded at the cost occasionally 
detecting a small vehicle (e.g. a compact sports car) as a shadow group. The fourth and the last 
sequence was also captured for the workzone study, and the vehicles are traveling close to each 
other at low speeds. Because of the presence of fog, the images in this sequence are noisy 
compared with those in the other sequences. 

A quantitative assessment of the results on all the sequences is presented in Table 1.  The 
algorithm is able to detect all of the cars and trucks in Sequence 4, and nearly all of them in 
Sequence 1.  Sequences 2 and 3 proved to be more challenging, but the system nevertheless 
detects over 90% of the cars, and over 85% of the trucks.  The detection rate for occluded 
vehicles ranges from 55% to 84%, showing that significant progress over previous systems has 
been made, while pointing to the need for further research.  The false positive rate is generally 5 
to 10% of the total number of vehicles and is usually caused by shadows. 

Video sequences demonstrating the performance of the system can be found at 
http://www.ces.clemson.edu/~stb/research/vehicle_tracking.

TABLE 1  Accuracy of the algorithm on the test sequences

Sequence C T O DC DT DO FP
1 116 9 19 114 (98%) 9 (100%) 16 (84%) 4
2 120 8 17 115 (96%) 7 (88%) 11 (65%) 4
3 57 7 11 53 (93%) 6 (86%) 6 (55%) 5
4 43 3 9 43 (100%) 3 (100%) 6 (67%) 2

The columns show the sequence, number of cars (C), number of trucks (T), number of 
vehicles among the cars and trucks that were significantly occluded (O), number of cars 
tracked (DC), number of trucks tracked (DT), number of occluded vehicles detected and 
tracked (DO) and number of false detections (FP) respectively.
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FIGURE 4 Experimental Results.

(a)  Sequence 1, frame 35        (b)  Sequence 1, frame 592

(c)  Sequence 2, frame 330        (d)  Sequence 3, frame 311

(e)  Sequence 4, frame 415 (f)  removing shadow groups
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CONCLUSIONS AND RECOMMENDATIONS
Most approaches to segmenting and tracking vehicles from a stationary camera assume that the 
camera is high above the ground, thus simplifying the problem. A technique has been presented 
in this paper that works when the camera is relatively at a low angle with respect to the ground 
and/or is on the side of the road, in which case occlusions are more frequent. In such a situation, 
the planar motion assumption for vehicles is violated, especially in case of heavy vehicles like 
trailers. The approach proposed is based upon grouping tracked features using a segmentation 
algorithm called incremental normalized cuts, which is a slight variation of the popular 
normalized cuts algorithm. A novel part of the technique is the estimation of the 3D world 
coordinates of features using a combination of background subtraction, offline camera 
calibration (for a single camera), and rigidity constraints under translational motion. 
Experimental results on real sequences show the ability of the algorithm to handle the low-angle 
situation, including severe occlusion. This is a significant achievement in automated vehicle 
detection over commercially available systems.  With further development, the proposed 
approach may lead to a next generation ITS sensor as well as an automated turn movement 
counter for use in conducting various traffic studies.  In this later scenario, a camera mounted on 
a tripod set back from an intersection can collect video that can be digitally post-processed to 
determine turn-movement counts.

Some of the aspects of the proposed algorithm need further analysis and improvement. A simple 
approach has been adopted for associating the results between the frame-blocks which is based 
solely upon the number of common features. Using the spatial proximity, color, and motion 
information will help in making a more robust association. In addition, future research should be 
aimed at handling low-angle image sequences taken at intersections, where the resulting vehicle 
trajectories are more complicated than those on highways.
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