
1. INTRODUCTION 

The ability to accurately measure or estimate vehicle 

sideslip and absolute longitudinal velocity is a critical 

determinant in the performance of many vehicle control 

systems such as braking control, stability control and 

lateral control systems [1,2]. In emergency situations, 

sideslip is necessary to detect a sliding or skidding 

vehicle, which may have normal yaw rates. Also in 

these situations, the absolute vehicle velocity cannot be 

accurately measured by wheel speed because of 

excessive wheel slip. Both sideslip and absolute velocity 

are necessary in determining the vehicle’s behavior in 

such situations. 

However, these values are not directly measured on 

production cars and therefore must be estimated instead. 

Two common techniques for estimating these values are 

to integrate inertial sensors directly and to use a 

physical vehicle model [3,4]. Some methods use a 

combination or switch between these two methods 

appropriately based on vehicle states [1,4]. Direct 

integration methods can accumulate sensor errors and 

unwanted measurements from road grade and 

superelevation (side-slope). In addition, methods based 

on a physical vehicle model can be sensitive to changes 

in the vehicle parameters and are only reliable in the 

linear region. 

Bevly and others proposed a method to estimate 

vehicle sideslip and absolute longitudinal velocity using 

the Global Positioning System (GPS) and Inertial 

Navigation System (INS) sensors which avoids these 

estimation errors [5,6]. The estimation method is based 

on a planar vehicle model with single antenna GPS 

setup. However, out-of-plane vehicle motions due to 

roll and pitch cannot be taken into account with the 

planar vehicle model and can lead to false vehicle state 

estimates. In addition, heading estimates from simple 

gyro integration can be corrupted by an unknown sensor 

bias. 
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This paper presents a new method to estimate 

vehicle sideslip angle, longitudinal velocity, and attitude 

using GPS measurements from a two-antenna system 

combined with INS sensors. INS sensors are integrated 

with GPS measurements to provide higher update 

estimates of the vehicle states because the update rate of 

common GPS receivers, which is usually 1~10 Hz, is 

not high enough for control purposes. A two-antenna 

GPS receiver with antennas placed laterally provides the 

ability to determine the vehicle’s attitude, roll and yaw, 

and eliminates errors due to gyro integration. Vehicle 

sideslip can be estimated by the difference between the 

vehicle heading and the direction of vehicle velocity 

because a GPS receiver provides an absolute velocity of 

the vehicle. 

This paper also investigates the influence of road 

grade, superelevation, and vehicle roll on the GPS-

based vehicle sideslip and longitudinal velocity 

estimation. A new method is proposed to compensate 

for these effects when estimating vehicle sideslip. While 

the road grade can be estimated by examining the ratio 

of vertical velocity to horizontal velocity from a single-

antenna GPS receiver because the longitudinal motion 

of the vehicle dominates over the lateral motion [7], a 

two-antenna GPS receiver is required to measure the 

road superelevation. Knowledge of road superelevation 

and vehicle roll (or tolerance to their effects) are also 
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Since a two-antenna GPS receiver provides both 

velocity and attitude measurements, the vehicle heading 

and direction of velocity can be directly measured and 

the sideslip angle can be calculated using Equation (3). 

necessary in lateral and stability control systems 

because they directly influence both the vehicle lateral 

dynamics and lateral acceleration measurements [8]. 

Experimental results of the sideslip estimation from 

the new scheme and the earlier approach without the 

compensation are compared with predicted values from 

a validated bicycle model. The results provide evidence 

that the scheme can correct for changes in grade and 

roll. In addition to the sideslip and longitudinal 

measurements, roll and yaw of the vehicle, gyro bias, 

accelerometer bias, and corrected acceleration are also 

available from the proposed method. 

3. GPS/INS INTEGRATION BY KALMAN FILTER 

INS sensors are integrated with GPS measurements 

to provide higher update rate estimates of the vehicle 

states because the update rate of common GPS receiver 

is not high enough for control purposes [6]. The vehicle 

states could be estimated from the physical model in 

Equation (1) but it is valid only in the linear region and 

uncertainties in the vehicle parameters and sensor biases 

may result in significant estimation errors. Therefore, a 

kinematic model, which is independent of physical 

parameters, is used to estimate the vehicle states and 

several Kalman filters are applied to estimate the sensor 

biases and integrate the GPS measurements with INS 

sensors. 

In addition, the laterally placed GPS antennas 

suggest a distinctive way to estimate parameters related 

to vehicle roll dynamics. These parameters could be 

used, for instance, in rollover warning [9] or active 

suspension systems. It is shown that the roll-related 

parameters - roll stiffness and damping - can be 

accurately estimated using GPS and INS measurements. 

The traditional Kalman filter is comprised of a 

measurement update and time update. Because of the 

lower update rate of the GPS measurement, the 

measurement update is performed only when GPS is 

available in order to estimate the sensor bias and zero 

out the state estimate error. The measurement update is 

generally described by: 

2. PLANAR BICYCLE MODEL AND SIDESLIP 

The bicycle model shown in Figure 1 is a 2 DOF 

vehicle model in a plane with lateral velocity and yaw 

rate as the states. The lateral and yaw motions are 

described in Equation (1). 
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Fig. 1 Bicycle Model 
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x and y represent vehicle states of interest and 

available measurements, respectively, for a general 

filter. Simple integration of the INS sensors is 

performed during the time update because GPS 

measurements are not available. The time update can be 

written as: 
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where: 
Given longitudinal and lateral velocity, ux and uy, at 

any point on the vehicle body, the sideslip angle can be 

defined by: 
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1tanβ  (2) This Kalman filter structure is used throughout the 

paper for estimating various vehicle states and sensor 

biases. The sideslip angle at the center of gravity (CG) is 

shown by βCG in Figure 1. The sideslip angle can also be 

defined by the difference between the vehicle heading 

(ψ) and the direction of the velocity (γ) at any point on 

the body. 

4. STATE ESTIMATION WITH PLANAR MODEL 

Following on earlier work [6], INS sensors are 

integrated with GPS measurements to estimate vehicle 

states. In the previous approach, the vehicle heading is 
ψγβ −=  (3) 
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estimated by integrating a yaw gyro. However, this 

estimate is problematic since the gyro bias cannot be 

known exactly. Therefore, two separate Kalman filters 

are constructed by utilizing a two-antenna GPS receiver 

to improve the previous work. One estimates vehicle 

heading (yaw) to eliminate errors arising from gyro 

integration and the other estimates absolute longitudinal 

and lateral velocities of the vehicle without using wheel 

speed. 

For the yaw Kalman filter, the kinematic relationship 

between yaw rate measurements and yaw angle can be 

written as: 

noiserr biasm ++=ψ&
 (6) 

where: 

bias andt measuremen gyro rateyaw ,
heading) (vehicle angleyaw 

=
=

biasm rr
ψ  

The yaw angle can be measured using a two-antenna 

GPS receiver. 

noiseGPS

m +=ψψ  (7) 

where: 

GPS fromt measuremen angleyaw =GPS

mψ  

A linear dynamic system can be constructed from 

Equation (6) and (7) using the INS sensors as the input 

and GPS as the measurement. 
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When GPS attitude measurements are available, 
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The Kalman filter in Equations (4) and (5) is then 

applied to the system to estimate the vehicle heading 

and the gyro bias. State vector x in the Kalman filter is 

[ψ  rbias]
T, which are yaw angle of the vehicle and yaw 

rate gyro bias, respectively. The measurement y in the 

Kalman filter is the yaw angle from GPS, ψm
GPS, with 

observation matrix C, which is [1 0] only when GPS 

measurements are available. Observation matrix C is [0 

0] when GPS measurements are not available. 

For the velocity Kalman filter, the kinematic 

relationship between acceleration measurements and 

velocity components at the point where the sensor is 

located can be written as: 
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The longitudinal and lateral velocity can be 

measured using GPS velocity along with the yaw 

Kalman filter. First, the sideslip angle (β GPS) needs to 

be calculated using the velocity vector (UGPS) from the 

GPS measurement and the vehicle heading (ψ) from the 

yaw Kalman filter by Equation (3). Then, the 

longitudinal velocity measurement (ux,m
GPS) and lateral 

velocity measurement (uy,m
GPS) are simply by: 
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(11) 

Assuming the primary GPS antenna that gives 

velocity measurements is placed right above the sensor 

location, the measured velocity components from GPS 

can be written as: 
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Note that Equation (12) holds only when the primary 

GPS antenna is located above the sensor location. If not, 

an additional velocity term from yaw rate must be taken 

into account. 

A Kalman filter is then applied to the following 

linear dynamic system from Equation (10) and (12) to 

estimate the vehicle velocities and the sensor biases. 
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where: 

rate yaw dcompensate=−== biasm rrr ψ&  

When GPS velocity measurements are available, 
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In the Kalman filter of Equations (4) and (5), state 

vector x is [ux,sensor ax,bias uy,sensor ay,bias]
T and 

measurement y is [ux,m
GPS  uy,m

GPS]T. 

5. EXPERIMENTAL RESULTS ¯ PLANAR MODEL 

A Mercedes E-class wagon is used for the 

experiment. The test vehicle is equipped with a 3-axis 

accelerometer/rate gyro triad sampled at 100 Hz. Sensor 

noise levels (1σ) are 0.06 m/s2 for the accelerometers 

and 0.2 deg/s for the rate gyros. The vehicle is also 

equipped with Novatel GPS antenna/receiver pairs 

providing 10 Hz velocity measurements and 5 Hz 

attitude measurements with a noise level (1σ) of less 

than 3 cm/s and 0.2 deg respectively. 

Because the GPS receiver introduces a half sample 

period inherent latency and a finite amount of time is 

needed in computation and data transfer, the time tags in 

the GPS measurement messages and the synchronizing 

pulse from the receiver are used to align the GPS 

information with the INS sensor measurements. This 

synchronizing process is very important when the INS 
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The surface grade can be estimated by examining 

the ratio of vertical velocity to horizontal velocity from 

the GPS measurement because the longitudinal motion 

of vehicle dominates over the lateral motion [7]. 

sensors are combined with the GPS measurements 

because any time offset between two measurements 

may result in significant estimation errors [6]. 

Figure 2 shows heading angle estimates compared to 

measurements. Experimental tests consisting of several 

laps around an uneven parking lot are performed. Note 

that integration of INS sensors fills in the gaps between 

GPS measurements. The combination of GPS 

measurements with INS measurements provides 100 Hz 

updates of the vehicle state. 
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Fig. 2 Heading Angle Estimates 

Figure 4 shows the comparison of longitudinal 

accelerometer bias and grade estimate using filtered 

GPS velocities. 
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Fig. 4 Longitudinal Accelerometer Bias and Grade 
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Yaw rate and sideslip angle estimates from the 

GPS/INS integration compared with the bicycle model 

are shown in Figure 3. Since the velocity Kalman filter 

estimates the velocity at the sensor location, the velocity 

estimates are translated to the center of gravity with yaw 

rate for comparison with the bicycle model. The 

similarity between estimated and model yaw rates 

demonstrates that the bicycle model used in the 

comparison is valid and calibrated.  

It is clearly seen that the there is a strong correlation 

between longitudinal accelerometer bias and the grade 

along the test path. Similarly, the lateral accelerometer 

bias follows the roll. The comparison of lateral 

accelerometer bias and roll angle measurement is shown 

in Figure 5. Since the two antennas of the GPS receiver 

are placed laterally, the combination of road 

superelevation (road side-slope) and vehicle roll can be 

directly measured. 

 

Fig. 3 Yaw Rate and Sideslip Angle Estimates 

 

Fig. 5 Lateral Accelerometer Bias and Roll Angle 

However, it is interesting to note that there are 

differences between estimated and modeled sideslip 

angles. It is found that these differences are consistent 

with the uneven grade and superelevation of the test 

path. The correlation between the differences and 

unevenness of the surface can be easily seen by 

comparing the accelerometer biases with the surface 

grade and vehicle roll. 

Unlike the gyro measurement, the accelerometer 

measurement will contain a gravity component due to 

vehicle roll and pitch in addition to true vehicle 

acceleration. These undesired components from gravity 

degrade the performance of the velocity Kalman filter. 
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Even so, the estimated sideslip is still much better than 

that obtained from simply integrating the accelerometer 

[6]. 

6. ROLL CENTER MODEL WITH ROAD GRADE 

Due to vehicle roll and pitch, the accelerometer 

measures the desired acceleration along with a gravity 

component. However, the gravity component in the 

acceleration measurement can be compensated if the 

roll and pitch experienced by the vehicle are known. In 

order to fully determine the vehicle’s attitude, a three-

axis gyro and three-antenna GPS receiver, which is 

uncommon and hard to calibrate, are necessary. 

However, assuming vehicle pitch is caused mostly by 

road grade, which can be estimated by examining the 

velocity ratio using Equation (15), gravity components 

in acceleration measurements due to roll and pitch can 

be compensated using only a two-antenna GPS receiver. 

 

Fig. 6 Roll Center Model with Grade and 

Superelevation 

A roll center vehicle model with road grade and 

superelevation is shown in Figure 6. This model 

assumes the vehicle body rotates about a fixed point 

(the roll center) on a frame that remains in the plane of 

the road. Since the grade of the surface can be estimated 

from the GPS velocity measurement and vehicle roll 

including the superelevation of the surface can be 

measured utilizing the two-antenna GPS receiver, the 

expected gravity component in the acceleration 

measurement can be explicitly specified and 

compensated in Equation (10). 

The kinematic relationship between acceleration 

measurements and velocity components at the sensor 

location for this model can be written as: 
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A Kalman filter is then applied as before using Equation 

(16). 

Another important advantage in using the roll center 

model is that the roll motion of vehicle can be taken into 

account. Note that Equation (16) is written for the point 

at which the sensor is located and the two GPS antennas 

are placed on the top of the vehicle roof. Therefore, 

there is an additional velocity component due to vehicle 

roll in the GPS velocity measurement and this additional 

velocity component should be compensated. This can be 

done by translating the velocity at the antenna to the 

point at which the sensor is located using Equation (17). 
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where: 
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This roll rate compensation plays an important role 

when the vehicle is experiencing a heavy roll motion. If 

the primary GPS antenna is not placed right above the 

INS sensor, a yaw rate of the vehicle should be taken 

into account. 

In addition, the sum of road superelevation and 

vehicle roll can be estimated by constructing a roll 

Kalman filter in the same manner as in the yaw Kalman 

filter. Since the GPS antennas and roll gyro are attached 

to the vehicle body, only the sum of road superelevation 

and vehicle roll angle can be estimated. 

For the roll Kalman filter, the kinematic relationship 

between roll rate measurements and roll angle can be 

written as: 

noisepp biastm ++= φ&
 (18) 

where: 

bias andt measuremen gyro rate roll, =biasm pp  

The roll angle can be measured using a two-antenna 

GPS receiver. 

noiset

GPS

m
+= φφ  (19) 

where: 

GPS fromt measuremen angle roll=GPS

mφ  

The roll Kalman filter is then implemented using 

Equation (18) and (19) in the same manner as in the 

yaw Kalman filter. The state vector x is [φt  pbias]
T and 

the measurement y is the roll angle from GPS, φm
GPS. 
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7. EXPERIMENTAL RESULTS - ROLL MODEL 

 

Fig. 7 Comparison of Sideslip Angle Estimates 
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Figure 7 shows the experimental results of sideslip 

angle estimation with and without the compensation. 

Since the velocity Kalman filter estimates the velocity at 

the sensor location, whereas the bicycle model generates 

the sideslip angle at the center of gravity, the velocity 

estimates from the filter are translated with yaw and roll 

rates to the fixed frame for the comparison with the 

bicycle model. Note that the discrepancies between the 

model and estimate are significantly reduced after the 

compensation. The same improvement can be seen in 

the case of longitudinal velocity estimation shown in 

Figure 8. Any difference between the longitudinal 

velocity estimate and wheel speed after the 

compensation is most likely due to longitudinal slip of 

the tire. 

 

Fig. 8 Longitudinal Velocity Estimates 
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Fig. 9 Roll Angle Estimates 

With accurate measurements of roll angle and roll 

rate, it is possible to estimate parameters related to the 

roll dynamics such as roll stiffness and damping ratio. A 

dynamic roll model can be used for a wide variety of 

applications including rollover warning [9] or active 

suspension. In addition, a parameterized vehicle roll 

dynamic model could conceivably be used to separate 

roll and superelevation. 

8. ROLL PARAMETER ESTIMATION 

In order to consider vehicle roll dynamics, the 

related parameters have to be estimated first. The two-

antenna GPS setup with INS sensors suggests a 

distinctive way to estimate parameters related to vehicle 

roll dynamics as well as to estimate vehicle sideslip. 

The following linear second order model (spring-

damper-mass system) is used for the estimation [10]. 

vyvvvxx hgmhamkbI φφφφ ⋅⋅⋅+⋅⋅=⋅+⋅+⋅ &&&  (20) 

where: 

mass ofcenter  andcenter  roll between distance

mass vehicle

stiffness and ratio, damping inertia, ofmoment  roll,,

=
=

=

h
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The roll angle, roll rate, and lateral acceleration can 

be measured from the GPS receiver and INS sensors. 

Because the roll acceleration is not directly available, 

numerical differentiation of the roll rate is used to get 

the roll acceleration. The roll moment of inertia, 

damping ratio, and stiffness can be estimated using a 

least squares estimator. 

Since the roll measurements include the road 

superelevation as well as the vehicle roll, experimental 

runs should be performed with enough length of time 

and test path to average out the contribution from road 

superelevation changes. 

The combination of road superelevation and vehicle 

roll angle is also estimated from the roll Kalman filter. 

Figure 9 shows roll estimates together with GPS roll 

measurements. Integration of INS sensors fills in the 

gaps between GPS measurements giving a smooth roll 

signal. 

9. ROLL PARAMETER ESTIMATION RESULTS 

The roll stiffness and damping ratio are estimated by 

exciting the vehicle roll dynamics. An approximated 

value for the roll moment of inertia [11] is used because 

normal driving does not create enough excitation to 

accurately identify the moment of inertia. In order to 

minimize the interference from road superelevation 
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changes, several experimental runs are performed on a 

fairly flat surface. The estimated roll stiffness and 

damping ratio are shown in Figure 10. The least squares 

fit is shown as a line going through the data points. 

 

Fig. 10 Roll Moment of Inertia and Damping Ratio 
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Fig. 12 Comparison of Step Steer Response 

 

 

Fig. 13 Comparison of Step Steer Response 

To compare the result, the roll stiffness is also 

estimated by performing a series of constant radius turns 

at constant speed. The vehicle will experience different 

roll angles with various speeds since the lateral 

acceleration will be varying along with the speeds. 

Figure 11 shows the plot of roll angle vs. lateral 

acceleration as well as the estimated roll stiffness. A 

line going through the data points represents the least 

squares best fit of the roll rate. 

 

Fig. 11 Plot of Roll Angle vs. Lateral Acceleration 

It is clearly seen that major response characteristics 

such as rise time, overshoot, and steady state value are 

well matched between the measured and simulated roll 

angle and rate. The noisy differences between the two 

values are most likely caused by unevenness of the test 

path since the road is not simulated. The slight 

discrepancies in the roll rate comparisons, especially 

after the peaks, can be explained by nonlinear damping 

characteristic. 

10. CONCLUSION 

In this paper, it is shown that the roll and grade 

corrected vehicle states and roll parameters can be 

estimated using a two-antenna GPS receiver combined 

with INS sensors. The proposed method is shown to 

provide accurate high update estimates of the vehicle 

states, including sideslip and longitudinal velocity. As a 

future step, the obtained sideslip and longitudinal 

velocity can be used to estimate the tire cornering and 

longitudinal stiffness. The obtained vehicle states will 

be used for implementing steer-by-wire control and 

driver assistance system. 

The estimated roll stiffness from the constant speed 

turns is very similar to the roll stiffness estimated in 

Figure 10.  The difference between two roll stiffness 

estimates is less than 5%. 

In addition, several step steer maneuvers are 

performed to validate the estimation result. Figure 12 

and 13 show the measured roll angle and roll rate as 

well as the simulated values using estimated parameters. 
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