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Control systems that help the driver avoid accidents, or limit the damage in case of an

accident, have become ubiquitous in modern passenger cars. For example, new cars typically

have an anti-lock braking system (ABS), which prevents the wheels from locking during hard

braking, and they often have an electronic stability control system (ESC), which stabilizes the

lateral motion of the vehicle to prevent skidding. Collision warning and avoidance, rollover

prevention, crosswind stabilization, and preparation for an impending accident by adjusting seat

positions and seat belts are additional examples of control systems for automotive safety.

These systems rely on information about the state of the vehicle and its surroundings. To

obtain this information, modern cars are equipped with various sensors. For a typical car with an

ESC system, necessary measurements include the steering wheel angle, wheel angular velocities,

lateral acceleration, and the rate of rotation around the vertical body-fixed axis, known as the

yaw rate. These measurements alone contain a great deal of information about the state of the

vehicle. The speed of the car can be estimated using the wheel angular velocities, and a linear

reference model taking the speed, steering wheel angle, and additional measurements as inputs

can be used to predict the behavior of the car under normal driving conditions. The predicted
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behavior can be compared to the actual behavior of the car; ESC systems, for example, use the

brakes to correct the deviation from a yaw reference model when the vehicle starts to skid [1].

Although some quantities are easily measured, others are difficult to measure because

of high cost or impracticality. When some quantity cannot be measured directly, it is often

necessary to estimate it using the measurements that are available. Observers combine the

available measurements with dynamic models to estimate unknown dynamic states. Often,

dynamic models of sufficient accuracy are not available, and must be carefully constructed as

part of the observer design. The observer estimates can be used to implement control algorithms,

as Figure 1 illustrates.

Vehicle Sideslip Angle

When a car is driven straight on a flat surface, the direction of travel at the center of

gravity (CG) remains the same as the orientation of the vehicle (that is, the direction of the

longitudinal axis). When the car turns, however, it exhibits a yaw rate, causing the orientation

to change, and a lateral acceleration directed toward the center of the turn. The car also exhibits

a velocity component perpendicular to the orientation, known as the lateral velocity. Nonzero

lateral velocity means that the orientation of the vehicle and the direction of travel are no longer

the same. The lateral velocity differs from one point on the vehicle body to another; as a point

of reference, we use the vehicle’s CG.

The angle between the orientation of the vehicle and the direction of travel at the CG is

called the vehicle sideslip angle. In production cars, the vehicle sideslip angle is not measured,

because this measurement requires expensive equipment such as optical correlation sensors.
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Under normal circumstances, when the car is driven safely without danger of losing road grip,

the vehicle sideslip angle is small, not exceeding ˙2ı for the average driver [1]. Moreover, for

a given speed in normal driving situations, the steering characteristics specify a tight connection

between the steering wheel angle, yaw rate, lateral acceleration, and vehicle sideslip angle.

The vehicle sideslip angle can therefore be estimated using a static model or a simple linear,

dynamic model. In extreme situations, however, when the vehicle is pushed to the physical limits

of adhesion between the tires and the road surface, the behavior of the car is highly nonlinear,

and the tight coupling of the vehicle sideslip angle to various measured quantities is lost. This

behavior is due to the nonlinearity of the friction forces between the tires and the road surface. In

these situations, the vehicle sideslip angle can become large, and knowledge about it is essential

for a proper description of vehicle behavior. Accurate online estimation of the vehicle sideslip

angle has the potential to enable development of new automotive safety systems, and to improve

existing algorithms that use information about the vehicle sideslip angle, such as ESC.

Previous Research

Many designs for estimating velocity and sideslip angle are found in the literature. These

designs are typically based on linear or quasi-linear techniques [2]–[5]. A nonlinear observer

linearizing the observer error dynamics is presented in [6], [7]. An observer based on forcing the

dynamics of the nonlinear estimation error to follow the dynamics of a linear reference system

is investigated in [8], [9]. In [8], [9] availability of the longitudinal road-tire friction forces is

assumed, whereas in [10] the longitudinal forces used in the estimation algorithm are calculated

from the brake pressure, clutch position, and throttle angle. An extended Kalman filter (EKF)

based on a road-tire friction model, which includes estimation of a road-tire friction coefficient,
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the inclination angle, and the bank angle, is developed in [11]. The term inclination angle refers

to the road sloping upward or downward along the orientation of the vehicle; bank angle refers to

the road sloping toward the left or the right. Alternative EKFs are used in [12], which estimates

velocity and tire forces without the explicit use of a road-tire friction model; and in [13], which

is based on a linear model of the road-tire friction forces with online estimation of road-tire

friction parameters. In [14] a linear observer for the vehicle velocity is used as an input to a

Kalman filter based on the kinematic equations of motion. In [15] the sideslip angle is estimated

along with both the yaw rate and a road-tire friction coefficient without the use of a yaw rate

measurement.

A majority of designs, including [1]–[15], are based on a vehicle model, usually including

a model of the road-tire friction forces. The main argument against using such a model is

its inherent uncertainty. Changes in the loading of the vehicle and the tire characteristics, for

example, introduce unknown variations in the model. A different direction is taken in [16],

where a six-degree-of-freedom inertial sensor cluster is used in an EKF that relies mainly on

open-loop integration of the kinematic equations, without a vehicle or friction model. The main

measurement equation comes from the longitudinal velocity, which is calculated separately based

primarily on the wheel speeds. This idea is similar to the kinematic observer approach in [2].

Designs of this type are sensitive to unknown sensor bias and drift, as well as misalignment of

the sensor cluster. Sensor bias refers to a constant error in the measurement signal; drift refers to

a slowly varying error. Drift in inertial sensors is primarily caused by variations in temperature.

To estimate the vehicle sideslip angle in real-world situations, some information about

the surroundings of the vehicle is usually needed. In particular, the road bank angle has a
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significant effect on the lateral velocity. Furthermore, when a design includes modeling of the

road-tire friction forces, as in [1]–[11], [13]–[15], information about the road surface conditions

is needed. When estimating the longitudinal velocity, knowledge of the inclination angle is useful

when the wheel speeds fail to provide high-quality information. Some model-based designs, such

as [3], [5], [11], [12], [13], [15], take unknown road surface conditions into account, but it is

more commonly assumed that the road surface conditions are known, or that the vehicle is

driven in a way that minimizes the impact of the road surface conditions. Similarly, although a

horizontal road surface is typically assumed, [3], [5], [11], [16] consider inclination and bank

angles. Estimation of the road bank angle is considered in [17], which is based on transfer

functions from the steering angle and road bank angle to the yaw rate and lateral acceleration,

and in [18], which uses an EKF to estimate the sideslip angle, which is in turn used in a linear

unknown-input observer to estimate the road bank angle.

Inertial measurements are combined with GPS measurements in [19]–[23] to provide

estimates of the sideslip angle. Designs of this type often include estimates of the bank angle

and inclination angle.

Goal of this Article

The goal of this article is to develop a vehicle sideslip observer that takes the nonlinearities

of the system into account, both in the design and theoretical analysis. Design goals include a

reduction of computational complexity compared to the EKF in order to make the observer

suitable for implementation in embedded hardware, and a reduction in the number of tuning

parameters compared to the EKF. The design is based on a standard sensor configuration, and
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is subjected to extensive testing in realistic conditions.

Parts of the theoretical foundation for the observer design, as well as some preliminary

experimental results, are found in [24], which assumes known road-tire friction properties and a

horizontal road surface, and in [25], where the approach from [24] is extended to take unknown

road surface conditions into account. In [26] a comparison is made between an EKF and an

observer modified from [24], [25], with an added algorithm for bank-angle estimation developed

in [27]. In the present article, we extend the approach of [24], [25] by estimating the inclination

and bank angles. We refer to the resulting observer as the nonlinear vehicle sideslip observer

(NVSO). The NVSO has undergone extensive and systematic testing in a variety of situations.

Tests have been performed on both test tracks and normal roads, on high- and low-friction

surfaces, and with significant inclination and bank angles. Based on the results of this testing, we

discuss strengths and weaknesses of the NVSO design, as well as practical implementation and

tuning. We compare the experimental results with those of an EKF. Since much of the discussion

concerns modeling accuracy, observability, and constraints imposed by the sensor configuration,

the results and observations are applicable in a wider sense to alternative model-based designs

with similar sensor configurations.

Sensor Configuration

A crucial design consideration in estimation problems of this type is the choice of

sensor configuration. Typical automotive-grade sensor configurations are characterized by the

need to minimize costs, which often translates into sensors with low resolution, narrow range,

and significant noise, bias, and drift. The availability and quality of sensors place fundamental
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constraints on the accuracy that can be expected from any estimation scheme. Bias and drift

in inertial sensors is particularly limiting, because it prohibits accurate integration of kinematic

equations, except over short time spans.

We focus on a standard sensor configuration found in modern cars with an ESC system,

consisting of measurements of the longitudinal and lateral accelerations, the yaw rate, the steering

wheel angle, and the wheel speeds. Although GPS measurements would be a valuable addition

to the measurements mentioned above, GPS navigation systems are not yet standard equipment,

even in high-end passenger cars. Moreover, GPS signals are sometimes unavailable or degraded,

for example, when driving through tunnels, under bridges, or near large structures such as steep

mountains or tall buildings. We therefore do not consider GPS measurements to be available.

The ESC-type sensor configuration lacks measurements of the vertical acceleration and

the angular rates around the vehicle’s longitudinal and lateral axes, known as the roll and

pitch rates, respectively. In addition, ESC-type sensors may have significant bias and drift,

which prohibits a design based exclusively on kinematic equations, such as [16]. We therefore

supplement the kinematic equations with a vehicle model that includes a model of the road-tire

friction forces.
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VEHICLE MODEL

For a car driving on a horizontal surface, the longitudinal and lateral velocities at the CG

are governed by the equations of motion [7]

Pvx D ax C P vy; (1)

Pvy D ay � P vx; (2)

where vx and vy are the longitudinal and lateral velocities, ax and ay are the longitudinal and

lateral accelerations, and P is the yaw rate. Each of the equations (1), (2) includes an acceleration

term and a term involving the yaw rate P . The accelerations are directly related to the forces

acting on the vehicle, attributable mainly to road-tire friction. The terms involving the yaw rate

appear because the coordinate system in which we resolve the velocities and accelerations is

fixed to the car, which rotates with respect to an inertial coordinate system. The vehicle is

illustrated in Figure 2, where the velocities and yaw rate are shown together with the vehicle

sideslip angle ˇ, which is given as ˇ D arctan.vy=vx/.

Road-Tire Friction

When the driver turns the steering wheel to make a regular turn, the tires on the front

axle of the car become misaligned with the direction of travel, and we obtain a tire-slip angle.

The tire-slip angle is conceptually similar to the vehicle sideslip angle, except that the relevant

frame of reference is associated with a single tire rather than the vehicle body. In particular,

the tire-slip angle is defined as the angle between the velocity vector at the center of the wheel

and the orientation of the tire. This definition is illustrated for the front left wheel in Figure
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2, where ˛1 denotes the tire-slip angle. A nonzero tire-slip angle implies a nonzero velocity in

the lateral direction of the tire, relative to the road surface. Because the tire is elastic, however,

it does not simply slide laterally over the road surface. As a point on the tire tread rolls into

contact with the surface, its path is deflected and it briefly grips the surface as it passes through

the contact patch. This process results in a deformation of the tire, and the tire’s resistance to

this deformation generates lateral forces that lead the car to start turning [28, Ch. 6]. As the

car starts to turn, tire-slip angles are also built up for the rear tires. After an initial transient, a

steady state is reached where the road-tire friction forces balance to give zero net moment on

the vehicle body, as well as constant lateral acceleration and lateral velocity.

We also define the longitudinal tire slip, as the normalized difference between the

circumferential speed of the tire and the speed of the wheel center along the orientation of

the tire. Longitudinal tire slip gives rise to longitudinal friction forces, as illustrated in Figure 2

by Fx1. Collectively, we refer to the longitudinal tire slip and lateral tire-slip angle as the tire

slips.

During normal driving the road-tire friction forces are approximately linear with respect

to the tire slips. The lateral friction forces are then modeled as Fy1 D Cy˛1, where the constant

Cy is the cornering stiffness. In extreme situations, however, the tire slips may become so

large that this linearity is lost. Beyond a certain point, the tire loses road grip and the road-tire

friction forces begin to saturate, meaning that an increase in the tire slips does not result in a

corresponding increase in the friction forces. This effect can be seen in Figure 3, where the lateral

road-tire friction force is plotted against the tire-slip angle after being normalized by dividing

it by the vertical contact force. The curves in Figure 3 correspond to varying degrees of road
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grip due to various road surface conditions, ranging roughly from ice for the lower curve to dry

asphalt for the upper one. The road surface conditions are represented by a friction coefficient

�H , which is lower for more slippery surfaces. The region where the friction forces are linear

with respect to the tire-slip angle is called the linear region. Beyond the linear region, where

the tire-slip angles are larger, is the nonlinear region.

When the friction forces saturate for the front tires before they do so at the rear, the

car stops responding properly to steering inputs, a situation known as understeer or plowing.

Conversely, when the friction forces saturate for the rear tires first, the car becomes severely

oversteered and may become unstable, a situation known as fishtailing. The point at which severe

under- or oversteer occurs depends on the driving maneuver, the tires, the design of the vehicle,

and the properties of the road surface. As Figure 3 makes clear, road-tire friction forces saturate

sooner on low-friction surfaces, such as ice, than on high-friction surfaces, such as asphalt. For

a more comprehensive description of road-tire friction, and more detailed definitions, see [7],

[29].

Modeling the Road-Tire Friction Forces

As with many alternative designs for vehicle sideslip estimation [1]–[11], [13]–[15], a

key component of the NVSO is a road-tire friction model. The road-tire friction model takes

measurements and observer estimates as inputs, and returns estimates of the road-tire friction

forces. The expression Fy1 D Cy˛1 is an example of a linear friction model, but to account for

the nonlinearity of road-tire friction forces for large tire slips, a nonlinear model is needed. A

widely used nonlinear road-tire friction model is the magic formula [29]. Like linear road-tire
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friction models, nonlinear models such as the magic formula are based on tire slips. But instead

of increasing linearly with the tire slips, the friction forces in nonlinear models are made to

follow curves similar to those seen in Figure 3.

The NVSO is not designed with a particular road-tire friction model in mind. Instead, we

use a nonlinear friction model satisfying specific physical properties, and we base the design and

analysis on these properties. The curves in Figure 3 are created with a friction model for which

the physical road-tire friction curves are approximated by fractional polynomial expressions,

similar to [7, Ch. 7.2].

The Lateral Acceleration

According to Newton’s second law, the vehicle acceleration along each direction is

equal to the total force acting on the vehicle in that direction, divided by the mass. When

the road surface is slanted, rather than horizontal, gravity acts on the vehicle in the tangent

plane of the road surface, which affects the vehicle velocity. Assume for now that the road

surface is horizontal. The dominant forces acting in the plane are the road-tire friction forces;

we ignore smaller influences such as wind and air resistance. The road-tire friction forces are

algebraic functions of the tire slips, which in turn are algebraic functions of the vehicle velocity.

Consequently, measurements of the vehicle accelerations depend algebraically on the vehicle

velocities, and the accelerations can therefore be used as indirect measurements of the velocities.

In particular, the lateral acceleration ay contains valuable information about the lateral velocity.

To see how the relationship between the lateral acceleration ay and the lateral velocity vy

can be used, we consider what happens to the lateral road-tire friction forces when we perturb vy
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while keeping everything else constant. From Figure 2, we see that if vy is increased, the lateral

component of the velocity vector v1 at the center of the front left wheel is also increased, and

the tire-slip angle ˛1 for the front left tire is therefore decreased (note that the sign convention

for the tire-slip angle is opposite from the sign convention for the vehicle sideslip angle). This

decrease in the tire-slip angle leads to a decrease in the lateral road-tire friction force Fy1, as

indicated by the shape of the friction curves in Figure 3. Put differently, Fy1 is perturbed in

a negative direction in response to a positive perturbation in vy . The lateral road-tire friction

forces for the remaining three tires are affected in the same way by a perturbation in vy .

The above discussion suggests that the total lateral force on the vehicle, and therefore the

lateral acceleration ay , is perturbed in a negative direction in response to a positive perturbation

in vy . Indeed, it is demonstrated in [24] that, except in some particular cases that we discuss

below, the partial derivative @ay=@vy is less than some negative number when ay is considered

as a function of vy . We therefore consider ay to be strictly decreasing with respect to vy . This

monotonicity is a key property in the NVSO design.

Roll Correction

During a turn, the vehicle body is typically at a slight roll angle � around the x-axis,

relative to the road surface. The roll angle is roughly proportional to the lateral acceleration and

thus can be approximated as � � p�ay , where the constant p� is the roll-angle gradient and ay

is the lateral acceleration in the tangent plane of the road surface, as above. The roll angle �

causes the lateral acceleration measurement to be influenced by an additive gravity component

sin.�/g � �g, where g is the acceleration of gravity. The measured lateral acceleration is
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therefore approximately .1Cp�g/ay . The gravity influence due to roll angle is undesirable, and

to remove it we divide the acceleration measurement by the constant factor 1Cp�g. Throughout

the article, we therefore assume that ay is a measurement that is not influenced by the roll angle.

OBSERVER DESIGN

To estimate the vehicle sideslip angle, we estimate the longitudinal and lateral velocities

vx and vy at the CG, and then calculate the vehicle sideslip angle from the velocities using the

expression ˇ D arctan.vy=vx/. We assume for now that there is no uncertainty in the friction

model regarding the road surface conditions. We discuss the estimation of longitudinal and lateral

velocity separately, ignoring at first the coupling between the two estimates. Throughout the rest

of this article, a hat indicates an estimated quantity, and a tilde indicates an estimation error;

thus Ovx is an estimate of vx, and Qvx WD vx � Ovx. The goal is to stabilize the estimation error and

make it vanish asymptotically, for example, by making the origin of the observer error dynamics

asymptotically or exponentially stable.

Longitudinal-Velocity Estimation

A conventional speedometer approximates the longitudinal vehicle velocity by using the

wheel speeds. The wheel speeds usually provide good measurements of the longitudinal velocity,

but the accuracy is sometimes severely reduced, for example, during strong acceleration or

braking, and in situations where one or more of the wheels are spinning or locked.

To estimate the longitudinal velocity we use the observer

POvx D ax C P Ovy CKvx
.t/.vx;ref � Ovx/; (3)
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where Ovy is an estimate of the lateral velocity as specified below, Kvx
.t/ is a time-varying

gain, and vx;ref is a reference velocity calculated from the wheel speeds, which plays the role

of measurement. The observer (3) is a copy of the system equation (1) with an added injection

term Kvx
.t/.vx;ref � Ovx/. When vx;ref represents the true longitudinal velocity, the error dynamics

obtained by subtracting (3) from (1) are

PQvx D P Qvy �Kvx
.t/ Qvx: (4)

Ignoring for the moment the error Qvy, global exponential stability of the origin of (4) can be

verified if Kvx
.t/ is larger than some positive number, that is, Kvx

.t/ � Kvx;min > 0. The

primary challenge therefore lies in producing a reference velocity vx;ref and selecting a sensible

gain Kvx
.t/.

Reference Velocity and Gain

The four wheel speeds, together with the steering wheel angle and the yaw rate, can be

used to create four separate measurements of vx. It is possible to create a reference velocity by

taking a weighted average of these four measurements, with weightings determined by various

factors, such as the spread in the four measurements and whether the car is braking or accelerating

[24], [25]. To make speed estimation as reliable as possible in every situation, however, car

manufacturers have developed sophisticated reference velocity algorithms that use information

from a variety of sources, such as the accelerations, brake pressures, engine torque, and status

information from ABS, ESC, and drive-slip control systems. The goal is to determine which

wheel speeds provide accurate information about the longitudinal velocity at any given time, for

example, during heavy braking or acceleration. We therefore assume that a reference velocity is
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available to the observer.

No matter how much effort is put into the reference velocity algorithm, the accuracy of

vx;ref varies. We take this variation into account through the time-varying gain Kvx
.t/, which

is intended to reflect the accuracy of the reference velocity. When the accuracy is deemed to

be low, the gain Kvx
.t/ is reduced to make the observer less reliant on the reference velocity

and more reliant on integration of the system equations. In creating Kvx
.t/, all of the sources

of information that are used to create vx;ref can be used. A measure of the accuracy of vx;ref

may indeed be naturally available from the inner workings of the reference velocity algorithm.

For the experimental results presented in this article, we use a simple algorithm that is based on

reducing the nominal gain depending on the variance of the four measurements, on the theory

that agreement between the measurements indicates high accuracy. Design of Kvx
.t/ is heuristic

and must therefore be empirically based.

Lateral-Velocity Estimation

The wheel speeds can be used to create measurements of the longitudinal velocity. For

the lateral velocity, however, we do not have a similar source of information, and estimating

lateral velocity is therefore more difficult. We start by introducing Oay.t; Ox/, which denotes an

estimate of the lateral acceleration ay . We use Ox to denote the vector of estimated velocities Ovx

and Ovy, and x to denote the vector of actual velocities vx and vy . The estimate Oay.t; Ox/ is formed

by using the nonlinear friction model for each wheel, where measurements of the steering wheel

angle, yaw rate, and wheel speeds, as well as the estimated velocities Ovx and Ovy , are used as

inputs. The friction forces modeled for each wheel are added up in the lateral direction of the
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vehicle and divided by the mass, resulting in the lateral acceleration estimate Oay.t; Ox/. The time

argument in Oay.t; Ox/ denotes the dependence of Oay on time-varying signals such as the steering

wheel angle and yaw rate. We also define Qay.t; Qx/ WD ay � Oay.t; Ox/, where Qx WD x� Ox. To write

Qay.t; Qx/ as a function of t and Qx, we replace Ox with x � Qx and absorb x in the time argument.

To estimate the lateral velocity we use the observer

POvy D ay � P Ovx �Kvy
.ay � Oay.t; Ox//; (5)

where Kvy
is a positive gain. The observer consists of a copy of the original system (2) and an

injection term �Kvy
.ay � Oay.t; Ox//. The error dynamics obtained by subtracting (5) from (2) are

PQvy D � P Qvx CKvy
Qay.t; Qx/: (6)

To see why the injection term asymptotically stabilizes the observer error, assume for

the moment that the longitudinal-velocity estimate Ovx is exact, meaning that the lateral-velocity

estimate Ovy is the only uncertain input to Oay.t; Ox/. Assuming furthermore that the friction model

is continuously differentiable, the assumption that ay is strictly decreasing with respect to vy

means that we can use the mean value theorem to write

Qay.t; Qx/ D ��.t; Qx/ Qvy; (7)

where �.t; Qx/ � �min > 0 for some constant �min. The error dynamics can therefore be written

as PQvy D �Kvy
�.t; Qx/ Qvy . It is then easy to verify that the origin of the error dynamics is globally

exponentially stable.

We have so far ignored the coupling between the longitudinal and lateral observer

components. For each observer component, a quadratic Lyapunov function can be used to verify
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the global exponential stability property. Taking the coupling between the observer components

into account, we use the sum of the two Lyapunov functions as a Lyapunov-function candidate

for the full error dynamics (4), (6). With an additional assumption that the partial derivative

of the friction model with respect to vx is bounded, we can verify that the origin of (4), (6)

is globally exponentially stable, provided Kvx
.t/ is chosen large enough to dominate the cross

terms that occur because of the coupling. The observer is also input-to-state stable with respect

to errors in the reference velocity vx;ref [24].

UNKNOWN ROAD SURFACE CONDITIONS

The observer presented in the previous section depends on the construction of a lateral

acceleration estimate Oay.t; Ox/ as a function of measured signals and velocity estimates. The

approach works well when the road-tire friction model from which Oay.t; Ox/ is computed is

accurately parameterized. However, the friction model is sensitive to changes in the road surface

conditions, as seen in Figure 3. Since information about the road surface conditions is not

available, we modify the observer to take this uncertainty into account by introducing a friction

parameter to be estimated together with the velocities.

Parameterization

The friction parameter can be defined in several ways. In [26], [30] the road-tire friction

coefficient �H is chosen as the parameter to be estimated. We instead scale the friction forces

by redefining Oay as Oay.t; Ox; �/ D � Oa�

y .t; Ox/, where � is the friction parameter. The value Oa�

y .t; Ox/
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is given by

Oa�

y .t; Ox/ D
Oay.t; OxI��

H /

��

H

;

where Oay.t; OxI��

H / represents the lateral acceleration estimate calculated using a nominal value

��

H of the friction coefficient. In words, Oa�

y .t; Ox/ is a normalized lateral acceleration estimate

based on a fixed road-tire friction coefficient, and � is a scaling factor that changes depending

on the road surface. As is evident from Figure 3, variation in �H does not correspond precisely

to a scaling of the friction forces. The friction parameter is nevertheless closely related to �H ,

and, for large tire-slip angles, where the curves in Figure 3 flatten out, � � �H . Because the

friction parameter appears linearly, the design and analysis is simplified compared to estimating

�H directly.

The friction parameter is defined with respect to the lateral acceleration of the vehicle,

rather than the friction forces at each wheel. This definition means that, on a nonuniform road

surface, the parameter represents an average of the road-tire friction properties over all the

wheels. In the stability analysis we assume that the friction parameter is positive and constant.

Modified Observer Design

Since the longitudinal-velocity estimation does not depend on the friction model, we

consider only the lateral-velocity estimation. We modify the lateral-velocity estimate to obtain

POvy D ay � P Ovx CKvy
ƒ.t; Ox/�.t; Ox/.ay � Oay.t; Ox; O�//; (8)

and introduce an estimate of � , given by

PO� D K�ƒ.t; Ox/ Oa�

y .t; Ox/.ay � Oay.t; Ox; O�//: (9)
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The value �.t; Ox/ in (8) is an approximate slope of the line between . Ovy; Oa�

y .t; �1// and

.vy; Oa�

y.t; �2//, with �1 D Œ Ovx; Ovy�
T and �2 D Œ Ovx; vy�

T. The slope is negative, according to (7),

and the approximation can be made in several ways [25]. We choose �.t; Ox/ D Œ@ Oa�

y=@ Ovy�.t; Ox/,

which is sufficiently accurate to give good performance in practical experiments. In the analysis

below, we assume that �.t; Ox/ represents the true slope. The value ƒ.t; Ox/ is a strictly positive

scaling that can be chosen freely. We choose ƒ.t; Ox/ D .�2.t; Ox/ C Oa�
y

2
.t; Ox//�1=2 as a

normalization factor to prevent large variations in the magnitude of the gain on the right-hand

side of (8), (9), because such variations can cause numerical problems when implementing the

observer. In the following discussion of the lateral-velocity and friction estimation, we ignore

the longitudinal-velocity error Qvx.

Analysis of the observer (8), (9) starts with the Lyapunov-function candidate

V D � Qv2
y C

Kvy

K�

Q�2:

The time derivative of V is negative semidefinite, satisfying

PV � �k Qa2
y.t; Qx; Q�/;

for some positive k, where Qay.t; Qx; Q�/ D ay � Oay.t; Ox; O�/. From the negative semidefiniteness

of PV we conclude that the origin of the error dynamics is uniformly globally stable. Stability

is not enough, however; we also need to show that the error vanishes with time. The bound

on PV suggests that this behavior occurs if the observer error is observable from Qay.t; Qx; Q�/.

We therefore use the results from [31] to prove that if Qay.t; Qx; Q�/ satisfies a property known

as uniform ı-persistency of excitation with respect to Qvy and Q� , then the origin is uniformly

globally asymptotically stable.
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The excitation condition takes the form of an inequality. Specifically, for each . Qx; Q�/ we

assume that there exist positive constants T and " such that

Z tCT

t

Qa2
y.�; Qx; Q�/ d� � ". Qv2

y C Q�2/ (10)

holds for all t � 0. The inequality (10) requires the error Qay.t; Qx; Q�/ to contain information about

both the lateral-velocity error and the friction-parameter error, when taken over sufficiently long

time windows. An implication of (10) is that Qay.t; Qx; Q�/ cannot remain zero for an extended period

of time unless both the lateral-velocity error and the friction-parameter error are also zero. This

implication hints at the invariance-like origins of the stability proof; the results applied from [31]

are based on Matrosov’s theorem, a counterpart to the Krasovskii-LaSalle invariance principle

that is applicable to nonautonomous systems. Note that, unlike some nonlinear persistency of

excitation conditions, the condition in (10) does not depend on knowledge about the trajectories

of the observer error. This property allows the condition to be evaluated based on the physical

behavior of the car in different situations.

Under conditions given in [25], the excitation condition can also be used directly in the

Lyapunov function, by letting

V D � Qv2
y C

Kvy

K�

Q�2 � �

Z
1

t

et�� Qa2
y.�; Qx; Q�/ d�;

where � is a small positive number. In this case, PV is negative definite in a region around the

origin, yielding local exponential stability.

Physical Interpretation

The excitation condition (10) has a clear physical interpretation. This condition is

satisfied when there is sufficient variation in the lateral movement so that the road surface
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conditions influence the behavior of the car; it is not satisfied when there is no variation in

the lateral movement. We can therefore estimate the lateral velocity and the friction parameter

simultaneously during dynamic maneuvers, but we cannot expect to do so during steady-state

maneuvers. This conclusion has intuitive appeal. It is clear, for example, that we cannot determine

the road surface conditions from the lateral acceleration when the car is driven straight for an

indefinitely long time. An analogy to this situation is a person trying to determine how slippery

the pavement is without moving around, and without the aid of visual information. A secondary

result regarding the observer is that when the car is driven straight for an indefinitely long time,

the velocity errors Qvx and Qvy still converge to zero, even though the friction-parameter error Q�

does not [25].

When to Estimate Friction

In normal driving situations, the tire slips are well within the linear region, and the road

surface conditions have little impact on the behavior of the car [15]. Moreover, the excitation

condition shows that variation in the lateral movement of the car is needed to estimate the

friction parameter. These observations suggest that it is often undesirable to estimate the friction

parameter, and we therefore estimate it only when necessary and possible.

When the friction parameter is not estimated, we choose to let it be exponentially attracted

to a default value �� corresponding to a high-friction surface. There are two reasons for choosing

�� high, rather than low. The first reason is that driving on high-friction surfaces such as asphalt

and concrete is more common than driving on low-friction surfaces such as ice and snow. The

second reason is that using a friction parameter that is too low results in vehicle sideslip estimates
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that are too high, often by a large amount.

To determine when to estimate friction, we use a linear reference model for the yaw rate

to determine when the car becomes over- or understeered. We also estimate Pvy , according to

(2), by ay � P Ovx, highpass-filtered with a 10-s time constant. A high estimate of Pvy indicates

a fast-changing sideslip angle, which in turn indicates a high level of excitation and that some

of the tires might be in the nonlinear region. When the Pvy estimate is high, and the reference

yaw rate is above a threshold value, we turn the friction estimation on. We also turn the friction

estimation on when the car is oversteered; and when the vehicle’s ESC system is active, but

not due to steady-state understeer. A small delay in turning the friction estimation off reduces

chattering in the friction-estimation condition.

It is worth examining whether friction estimation is sometimes necessary, but not possible

due to a lack of excitation. This situation can occur during long, steady-state maneuvers with

one or more of the tires in the nonlinear region. On high-friction surfaces, maneuvers of this type

are easily carried out. A standard identification maneuver consists of driving along a circle while

slowly increasing the speed until the circle can no longer be maintained. Toward the end of this

circle maneuver, it is common for the front tires to be well within the nonlinear region, leading to

severe steady-state understeer. Recall, however, that the friction parameter is attracted to a high

default value when friction estimation is turned off. For steady-state maneuvers on high-friction

surfaces, the default friction parameter is therefore approximately correct. On slippery surfaces

such as snow and ice, maintaining a steady-state maneuver for a long time with some of the

tires in the nonlinear region is more difficult. If such a situation occurs, however, it can lead to

estimation errors, typically in the direction of underestimated vehicle sideslip angle.
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The difficulty in handling low-excitation situations is not specific to the NVSO. Because

the problem is fundamentally a lack of information, all estimation strategies suffer in low-

excitation situations. It is always possible to perform open-loop integration of the kinematic

equations, but the accuracy is then entirely dependent on the sensor specifications.

Experimental results indicate that the friction-estimation condition has a large impact

on the performance of the observer, in particular on low-friction surfaces. If friction estimation

is turned on too late, the observer might fail to capture sudden changes in the vehicle sideslip

angle. If friction estimation is turned on without sufficient excitation, modeling errors and sensor

bias might cause the friction parameter to be estimated as too low, leading to large errors in

the estimated vehicle sideslip angle. The friction-estimation condition therefore requires careful

tuning, involving some tradeoffs in performance for different situations.

INCLINATION AND BANK ANGLES

The above discussion assumes that the road surface is horizontal. This assumption is

usually not accurate, however, and we now consider nonzero inclination and bank angles. To

define these angles, we say that the orientation of the road surface is obtained from the horizontal

position by an inclination-angle rotation ‚ around the vehicle’s y-axis and a subsequent bank-

angle rotation ˆ around the x-axis. The inclination and bank angles cause gravity components

to appear in (1), (2), which become [16]

Pvx D ax C P vy C g sin.‚/; (11)

Pvy D ay � P vx � g cos.‚/ sin.ˆ/: (12)
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In (11), (12), ax and ay denote the accelerations measured by the accelerometers, which equal

the total road-tire friction forces acting on the vehicle divided by the mass, as before. We assume

that the inclination and bank angles vary slowly enough compared to the dynamics of the system

to be modeled as constants.

We return to the observer without friction estimation as the basis for adding inclination-

and bank-angle estimation. The approximate effect of a nonzero inclination or bank angle is to

create an estimation bias, which is more pronounced for the lateral-velocity estimate. Inspired

by the theory of nonlinear unknown-input observers, one method for estimating the bank angle

is developed in [27]; however, the nature of the disturbance suggests that something similar to

standard integral action is appropriate. We present such a solution here, at first dealing with the

inclination and bank angles separately.

Inclination Angle

We define �i D sin.‚/, and introduce an estimate O�i of �i. Typical inclination angles

are small enough that ‚ � �i, and the estimate O�i is therefore considered an estimate of the

inclination angle. We use O�i to compensate for the disturbance, by letting

POvx D ax C P Ovy C g O�i CKvx
.t/.vx;ref � Ovx/; (13)

where O�i is given by

PO�i D K�i
Kvx

.t/.vx;ref � Ovx/; (14)

with K�i
a positive gain. The total gain in (14) is K�i

Kvx
.t/. The reason for including the time-

varying gain Kvx
.t/ in (14) is the same as in the longitudinal-velocity estimation (13), namely,

that we wish to rely less on the reference velocity vx;ref whenever it is of poor quality.
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To justify this approach, we use the theory of absolute stability [32, Ch. 7.1]. We split the

gain Kvx
.t/ into a constant part and a time-varying part by writing Kvx

.t/ D aC .Kvx
.t/� a/,

where 0 < a < Kvx;min, and Kvx;min is a lower bound on Kvx
.t/. Ignoring for the moment

the lateral-velocity error Qvy , and assuming that vx;ref represents the true longitudinal velocity,

we write the error dynamics of the longitudinal-velocity and inclination-angle estimates as the

interconnection of the linear time-invariant system

PQvx D �a Qvx C g Q�i C u;

PQ�i D �K�i
a Qvx CK�i

u

with the time-varying sector function u D �.Kvx
.t/� a/ Qvx. With K�i

chosen sufficiently small

compared to a, the transfer function from u to Qvx is strictly positive real. Using the circle criterion

[32, Th. 7.1], we can conclude that the origin of the error dynamics is globally exponentially

stable.

Bank Angle

We handle the bank angle in roughly the same way as the inclination angle. We define

�b D cos.‚/ sin.ˆ/, and introduce an estimate O�b of �b. Typical bank and inclination angles are

small enough that ˆ � �b, and O�b is therefore considered an estimate of the bank angle. Using

O�b for compensation in the observer without friction estimation, we obtain

POvy D ay � P Ovx � g O�b �Kvy
.ay � Oay.t; Ox//: (15)

Since no counterpart to vx;ref is available for the lateral velocity, we again use the lateral

acceleration as an indirect measurement of the lateral velocity, letting

PO�b D K�b
.ay � Oay.t; Ox//: (16)
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Ignoring the effect of the longitudinal-velocity error Qvx, we write the error dynamics of the lateral-

velocity and bank-angle estimates as the interconnection of the linear time-invariant system

PQvy D �Kvy
�min Qvy � g Q�b CKvy

u;

PQ�b D K�b
�min Qvy �K�b

u

with the time-varying sector nonlinearity u D �.�.t; Qx/� �min/ Qvy. With K�b
chosen sufficiently

small compared to Kvy
and �min, we conclude, as above, that the origin of the error dynamics

is globally exponentially stable.

Absolute stability provides two separate Lyapunov functions, V1 for the . Qvx, Q�i/ subsystem

and V2 for the . Qvy , Q�b/ subsystem. Following the proof of the circle criterion [32, Th. 7.1], an

excess term �.Kvx;min �a/ Qv2
x appears in the time derivative PV1. This term can be made arbitrarily

negative by increasing the difference between Kvx;min and a. We thus form a new Lyapunov-

function candidate as the weighted sum V1 C cV2, where c is a positive constant. By choosing

c sufficiently large and using the excess term to dominate the cross terms, global exponential

stability of the overall error dynamics, including the subsystem coupling that we have so far

ignored, is proven.

Exponential stability is a useful property because it implies a certain level of robustness

to perturbations [32, Ch. 9]. For example, an accelerometer bias added to (15), (16) can perturb

the solutions, typically producing a bias in the bank-angle estimate, but it does not cause the

estimates to drift off or become unstable.
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COMBINED APPROACH

The above discussion extends the initial observer design in two separate directions,

namely, by adding estimation of a friction parameter and by adding estimation of the inclination

and bank angles. Including these extensions simultaneously causes no problem in the longitudinal

direction, because the estimation of the longitudinal velocity and inclination angle does not

depend on the friction model. In the lateral direction, however, more careful consideration is

needed.

The lateral-velocity estimate changes depending on whether friction estimation is turned

on or off, as can be seen from (5) and (8). Because of this change, we also modify the bank-angle

estimate when friction estimation is turned on, by replacing (16) with

PO�b D �K�b
ƒ.t; Ox/�.t; Ox/.ay � Oay.t; Ox; O�//: (17)

With this modification the error dynamics for the lateral-velocity and bank-angle estimates can

still be written in the form required by the absolute-stability analysis.

In previous sections tunable gains are used to dominate cross terms that appear in the

Lyapunov analysis. When estimating friction, however, the stability margin depends on the

excitation condition placed on the error Qay.t; Qx; Q�/, specifically, T and " in (10), which cannot

be modified using tunable gains. We therefore cannot find a particular set of gains to guarantee

stability in combination with bank-angle estimation. From a practical point of view, it can be

difficult to distinguish the effect of low friction and a bank angle, as noted in [1]. This observation

suggests that, with the chosen sensor configuration, the estimation problem is poorly conditioned

in some situations, and the difficulty in analyzing the combined approach reflects this problem.
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The simplest strategy for avoiding interference between the friction estimation and the

bank-angle estimation would be to disable the bank-angle estimation whenever friction estimation

is turned on. This strategy, however, may cause problems when driving on slippery surfaces in

hilly terrains, where combinations of large vehicle sideslip angles and large bank angles may

occur. For this reason, we need to perform bank-angle estimation when estimating friction, but we

set the gain lower when one of three conditions holds. The first condition is jay � Oay.t; Ox; O�/j > c1

for some c1 > 0. The second condition is j R � OR .t; Ox; O�/j > c2 for some c2 > 0, where R is the

yaw acceleration found by numerical differentiation of the yaw rate, and OR .t; Ox; O�/ is calculated

using the friction model in the same way as Oay.t; Ox; O�/ with the forces scaled by O� . The third

condition is sign. P ref/ D sign. P / and .j P refj � j P j/ Ovx > c3 for some c3 > 0, where P ref is

the reference yaw rate used in the friction-estimation condition. From experimental data, these

conditions are found to reduce the negative interference of the bank-angle estimation on low-

friction surfaces. We emphasize, however, that the conditions are heuristic and that alternative

conditions may be equally good or better, in particular, when different types of vehicles are used.

The full observer that merges the friction-parameter estimation and the inclination- and

bank-angle estimation has two modes. In the first mode, with friction estimation turned off, the
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observer equations are

POvx D ax C P Ovy C g O�i CKvx
.t/.vx;ref � Ovx/; (18)

POvy D ay � P Ovx � g O�b �Kvy
.ay � Oay.t; Ox; O�//; (19)

PO� D Ke.�
� � O�/; (20)

PO�i D K�i
Kvx

.t/.vx;ref � Ovx/; (21)

PO�b D K�b
.t/.ay � Oay.t; Ox; O�//: (22)

We see from (20) that the friction-parameter estimate is exponentially attracted to the default

value ��. In the second mode, with friction estimation turned on, the observer equations are

POvx D ax C P Ovy C g O�i CKvx
.t/.vx;ref � Ovx/; (23)

POvy D ay � P Ovx � g O�b CKvy
ƒ.t; Ox/�.t; Ox/.ay � Oay.t; Ox; O�//; (24)

PO� D K�ƒ.t; Ox/ Oa�

y .t; Ox/.ay � Oay.t; Ox; O�//; (25)

PO�i D K�i
Kvx

.t/.vx;ref � Ovx/; (26)

PO�b D �K�b
.t/ƒ.t; Ox/�.t; Ox/.ay � Oay.t; Ox; O�//: (27)

In both modes, K�b
.t/ is reduced according to the practical conditions described above. Based

on experimental results, we set the gain K�i
, which is used for inclination-angle estimation, to

be lower for the second mode than for the first. The best choice of observer gains and other

tunable parameters, such as threshold values for logical conditions, are likely to vary depending

on the vehicle type and model.

29



REMARKS ABOUT ROAD-TIRE FRICTION

The above development assumes a strictly decreasing relationship between the lateral

acceleration and the lateral velocity. The curves in Figure 3 nevertheless flatten out for large

tire-slip angles, suggesting that, when the friction forces are simultaneously saturated for all four

tires, the strictly decreasing relationship might not hold for limited periods of time. Reflecting

this possibility, the stability results in [24] are stated as regional. We can prove stability of the

observer with friction estimation (8), (9) using the weaker condition of a nonstrictly decreasing

relationship, because �.t; Qx/ D 0 is acceptable in (7) for limited periods of time [25]. However,

the observer tends to act as an open-loop integrator when the friction forces become saturated for

all of the tires. If the situation persists for a long time, the achievable performance is therefore

dictated by the sensor specifications, and the estimates may start to drift off due to sensor bias. It

is difficult to overcome this deficiency because the vehicle model provides no useful information

for stabilizing the estimates when all of the friction forces are saturated. In some applications it

is desirable to detect large vehicle sideslip angles, in excess of 90ı, which means that the tire

forces may remain saturated for a considerable amount of time.

It is also common for the actual friction curves to decrease slightly, rather than to

flatten out, for large tire-slip angles. Even the weakened condition of a nonstrictly decreasing

relationship may therefore fail to hold in some extreme situations. Nonlinear friction models,

like the magic formula, typically model this decrease. Not modeling this decrease may lead to

limited modeling errors in some situations, but has a stabilizing effect on the observer dynamics

itself. More to the point, experimental results indicate that this discrepancy does not cause a

deterioration in the quality of the estimates.
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IMPLEMENTATION AND PRACTICAL MODIFICATIONS

For implementation in real-time hardware, the observer (18)–(27) is discretized using the

forward Euler method with a sample time of 10 ms. At each time step the reference velocity

vx;ref and the gain Kvx
.t/ are updated. The friction model used in Figure 3 is also used in the

implementation, with nominal friction coefficient ��

H D 1. The default friction parameter is set

to �� D 1.

The friction model needs information about the vertical contact forces between the tires

and the road, known as the wheel loads. These loads change during driving, depending mainly

on the acceleration of the vehicle. We therefore use the measured longitudinal and lateral

accelerations to calculate the wheel loads, similar to [7, Ch. 7.4].

The friction model specifies an algebraic relationship between the tire slips and the road-

tire friction forces. In reality, however, dynamic effects known as tire relaxation dynamics cause

a small phase lag in the buildup of forces. Although the tire relaxation dynamics are negligible

at high speeds, taking them into account can yield improvements at low speeds. We approximate

the effect of the tire relaxation dynamics using an approach similar to that in [29, Ch. 1] by

filtering the output of the friction model using the first-order transfer function 1=.T sC1/, where

T D Te C le= Ovx is a speed-dependent time constant, which is small for large velocities.

To calculate the steering angles for the front wheels, we use a lookup table based on a

steering transmission curve, with the measured steering wheel angle as the input. We do not use

the output of the lookup table directly, however, because the steering angles are also affected

by elasto-kinematic effects in the wheel suspension system [33]. A simplified way to account
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for these effects is the introduction of caster, which is the distance between the wheel contact

point and the point where the steering axis intersects the road [34]. The caster acts as a moment

arm causing the lateral road-tire friction forces to exert a torque on the steering axis. Positive

caster causes the steering wheel to naturally return to the neutral position when it is released,

thereby contributing to the stability of the steering system. To account for the effect of caster,

the output from the lookup table must be reduced in proportion to the lateral road-tire friction

forces. Following [29, Ch. 1], we calculate the steering angle for each of the front wheels using

the expression ıy D ıu �Fyf
e=cl , where ıy is the steering angle, ıu is the output of the lookup

table, Fyf
is the sum of the lateral road-tire friction forces for the front wheels, e is the caster

length, and cl is a steering stiffness constant. We calculate Fyf
directly from the output of the

friction model, which in turn depends on the steering angles, meaning that the expression for ıy

specifies a nonlinear algebraic equation. For practical purposes, this problem is solved by using

a delay of one time step for the value Fyf
used in the calculation of ıy , to avoid an algebraic

loop in the solution.

We restrict the estimated friction parameter O� to the interval Œ0:05; 1:1�, which spans

the range of road surfaces that one can expect to encounter. We thereby obtain a discrete-

time equivalent of a continuous-time parameter projection, which is theoretically justified in the

continuous-time analysis [30]. We also ensure that 1:2g O� � .a2
x C a2

y/
1=2, since 1:2 O�g is the

approximate maximum acceleration achievable from the friction model when multiplied by the

friction parameter. This maximum must never be smaller than the actual acceleration of the

vehicle.

32



EXPERIMENTAL TESTING

Using data from a rear-wheel-drive passenger car, we test the observer in various

situations, including dynamic and steady-state maneuvers on high- and low-friction surfaces,

with different tires and at different speeds. The measurements are taken from automotive-grade

sensors with no additional bias correction, and are filtered with a 15-Hz discrete lowpass filter

before entering the observer. The inertial sensors are different for the high-friction and low-

friction tests. For the high-friction tests, the yaw-rate sensor specifications indicate that bias and

drift together may add up to a maximum of 3:5ı=s, and the acceleration sensor specifications

indicate that bias and drift may add up to a maximum of 1:0 m=s2. For the low-friction tests,

the corresponding numbers are 3:5ı=s for the yaw-rate sensor and 0:6 m=s2 for the acceleration

sensors.

As a reference, we use an optical correlation sensor to obtain independent vehicle

velocities. The tuning of the observer and the parameterization of the friction model are the

same for all tests, even though the tires are different.

The required accuracy of the vehicle sideslip estimate depends on the application.

Typically, the error must be less than about 1ı if the estimate is to be used for feedback

control. When the main goal is to detect severe skidding, for example, to tighten seat belts

before an impending accident, the requirements are less stringent. It is then sufficient to estimate

large vehicle sideslip angles, approximately in the range 10–130ı. An error of 2–3ı degrees, or

approximately 10% for vehicle sideslip angles larger than 30ı, is then acceptable.
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Comparison with EKF

We compare the observer estimates to those of an EKF similar to the one presented

in [11]. The states in the EKF are the longitudinal and lateral velocities, the inclination and

bank angles, and the friction coefficient �H . The dynamic model used in the EKF is based on

(11), (12), where the yaw rate is considered a known, time-varying quantity. The derivatives of

the friction coefficient, inclination angle, and bank angle are modeled as filtered white noise.

The resulting dynamic model is linear time varying, which improves the accuracy of the EKF

prediction compared to using a nonlinear dynamic model. The measurement equations are given

by the force and moment balances through the nonlinear friction model for the longitudinal

acceleration ax , the lateral acceleration ay , and the yaw acceleration R , which is calculated by

numerically differentiating P . In addition, an externally calculated reference velocity is used as

a measurement. The EKF switches between slow and fast estimation of the friction coefficient,

depending on the situation. The switching rule is the same as for the nonlinear observer, and

the same friction model is used in both designs. As with the NVSO, the continuous-time model

is discretized using the forward Euler method with a sample time of 10 ms. For efficient and

stable numerical implementation, the Bierman algorithm [35] is used in the measurement update

process. The execution time of the NVSO is approximately one-third of that of the EKF. In the

NVSO, the friction model dominates other computations.

Dynamic Maneuvers on High-Friction Surfaces

We begin with two examples of dynamic, high-excitation maneuvers on dry asphalt. The

first maneuver consists of a series of steps in the steering wheel angle, carried out at a constant,
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high speed of 200 km/h. The lateral acceleration alternates between approximately ˙0:4g. Figure

4 shows the results for the vehicle sideslip angle, friction parameter, and bank angle. The bank

angle is estimated at approximately 2:2ı, whereas the actual bank angle is approximately 1:5ı,

the difference being attributable to sensor bias. The resulting estimate of the vehicle sideslip

angle is accurate to within approximately 0:3ı. The friction estimation is activated briefly at

each step, but is otherwise inactive.

The second example is an ISO-standard double lane-change maneuver, carried out at

approximately 120 km/h, on a surface with a slight bank angle of approximately 0:5ı. The

car reaches a lateral acceleration of �0:90g during the maneuver. Figure 5 shows the vehicle

sideslip angle and the friction parameter. During this maneuver, the tires are brought well into

the nonlinear region. Even though the lane change is carried out on a high-friction surface, the

friction parameter is estimated far below its default value �� D 1, suggesting that there are

significant inaccuracies in the friction model during this maneuver. A sideslip estimation error

of approximately 1:4ı is briefly reached.

In general, for dynamic maneuvers on high-friction surfaces, the high degree of excitation

means that inaccuracies in the friction model can to some extent be compensated by the friction

parameter, as happens in the lane-change example.

Steady-State Maneuvers on High-Friction Surfaces

We now consider two examples of a steady-state circle maneuver on dry asphalt. In the

first example, 18-inch summer tires are used; in the second example, 17-inch winter tires are

used. The tests are otherwise the same. The car is driven counterclockwise along a circle with
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a 40-m radius, while the longitudinal velocity is slowly increased until the circle can no longer

be maintained because of severe understeer. The maximum lateral accelerations reached toward

the end of the maneuvers are 0:84g and 0:93g, respectively. Figure 6 shows the vehicle sideslip

angle for both maneuvers. The estimated vehicle sideslip angle is more accurate in the upper plot

than in the lower one, where the sideslip estimation error reaches approximately 1:4ı toward the

end. This result indicates that the friction model more accurately matches the tires used for the

first example than for the second. Because of the low level of excitation, the friction parameter

cannot be used to compensate for errors in the friction model.

The EKF performs poorly for the circle maneuvers, mainly because it brings the estimated

friction coefficient slightly below the initial value early in the maneuver, whereas the NVSO

estimates friction only at the very end. The difference in results therefore has more to do

with implementation details and tuning than with the fundamental properties of each method.

Nevertheless, the examples illustrate the sensitivity of friction-based estimation designs to errors

in the friction model for low-excitation maneuvers of this kind.

Low-Friction Surfaces

We now look at two examples from low-friction surfaces. In the first example, the car

is driven around a circle on a lake covered with ice and snow. Figure 7 shows the longitudinal

velocity, vehicle sideslip angle, and friction parameter. The car exhibits very large vehicle sideslip

angles at several points, and the sideslip estimation error remains smaller than 3ı for most of the

test. A notable exception is the period between 140 s and 160 s, when a large vehicle sideslip

angle is sustained for a long time. Reduced excitation results in inaccurate estimation of the
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vehicle sideslip angle in this situation.

The final example is carried out on snow-covered mountain roads. Figure 8 shows the

vehicle sideslip angle, inclination angle, and bank angle. In contrast to the lake example, large

inclination and bank angles occur in this example. We do not know the true values of the

inclination and bank angles, but the magnitudes of the estimates are plausible. The vehicle

sideslip angle reaches approximately �14ı, and the estimation error remains smaller than 1:5ı.

In this example, estimating the bank angle at the same time as the friction parameter is necessary

to avoid deterioration of the sideslip estimate.

CONCLUDING REMARKS

Based on extensive experimental tests we conclude that, overall, the NVSO performs

as well as the EKF, while achieving a significant reduction in execution time. The reduction is

likely to be even more significant on production hardware with a fixed-point microprocessor, since

the computations largely consist of floating-point operations. The NVSO is based on nonlinear

analysis, which contributes toward understanding the strengths and limitations of the observer,

the EKF, and alternative designs with similar sensor configurations. The number of observer

gains in the NVSO is smaller than the number of tunable elements in the EKF. Nevertheless,

because of the switching between different operating regimes and the various thresholds involved

in the switching logic, tuning the NVSO is nontrivial.

The observer estimates are typically of high quality. As illustrated by the examples,

however, the design is sensitive to errors in the friction model, in particular during steady-state

maneuvers, and the accuracy of the friction model depends to some extent on the tires. A full,
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systematic analysis of the response of the observer to various model uncertainties and sensor

inaccuracies is a formidable task that is yet to be carried out.

Furthermore, problems remain in some situations involving low-friction surfaces. These

problems can largely be attributed to the difficulty of distinguishing a nonzero bank angle from

low friction. The NVSO’s method of combining friction estimation and bank-angle estimation

is a weakness in the present design, and the ad hoc approach of selectively reducing the bank-

angle gain based on various criteria is likely to need revision and improvement before the NVSO

can reach production quality. The EKF is in general better at automatically distinguishing the

influences of low friction and a nonzero bank angle, giving it an advantage in some situations,

and suggesting that there is still room for improving the NVSO.

A central strategy in the NVSO design is to estimate the total force acting in the lateral

direction of the car by using a friction model, and to subtract this estimate from the total

force measured through the lateral acceleration. The resulting difference produces the quantity

Qay.t; Qx; Q�/ when divided by the mass. By using the yaw acceleration R it is possible to separate

between the lateral friction forces on the front and rear axles. We can then produce two quantities

similar to Qay.t; Qx; Q�/, one for the front axle and one for the rear axle. The NVSO design can

be carried out in the same way using these two quantities, resulting in two injection terms in

the derivatives of the lateral-velocity and bank-angle estimates. We can furthermore use separate

friction parameters for the front and rear axles. This strategy shows some promise with respect

to improving the separation between nonzero bank angles and low-friction surfaces. Since we

have not obtained a consistent improvement in quality, however, we have not used this type of

design for the experimental results presented in this article.
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A limitation imposed by the sensor configuration is that derivative information about the

inclination and bank angles is not available in the form of roll- and pitch-rate measurements.

The estimates of the inclination and bank angles are therefore produced by a form of integral

action, which, in the case of the bank-angle estimation, depends on the friction model. With this

solution, the inclination- and bank-angle estimates tend to capture low-frequency disturbances,

which also includes sensor bias. The estimates have a limited ability to respond to rapid changes,

which is is underscored by upper limits on the allowable gains K�i
and K�b

. Preliminary results

indicate that significant improvement can be obtained in this respect if derivative information is

made available by using a six-degree-of-freedom sensor cluster.

Fundamentally, the level of accuracy that can consistently be achieved with any estimation

strategy depends on the sensor configuration. As discussed at several points, the achievable

performance is dictated by the sensor specifications in situations where the vehicle model

provides no useful information. It is our opinion that, to achieve a consistent vehicle sideslip

error of less than 1ı, it is necessary to improve on the standard ESC-type sensor configuration

considered in this article.
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Figure 1. The relationship between the car, an observer, and a controller with control allocation.

The observer combines measurements from the car with a dynamic model, to provide estimates

of unmeasured states to the controller.
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Figure 2. Illustration of the vehicle velocity, yaw rate, vehicle sideslip angle, tire-slip angle,

and road-tire friction forces. The vehicle velocity vector v at the CG is decomposed into the

longitudinal velocity vx, which is positive in the forward direction, and the lateral velocity vy ,

which is positive in the leftward direction. The angle ˇ between the longitudinal x-axis and the

velocity vector v is the vehicle sideslip angle, which is defined as positive in the counterclockwise

direction. For the front left wheel, the velocity vector v1 at the wheel center is shown. The angle

˛1 between v1 and the longitudinal axis of the tire is the tire-slip angle, which is defined as

positive in the clockwise direction. The positive tire-slip angle shown in the figure generates

a positive lateral tire force Fy1. The longitudinal tire force Fx1 is generated by a nonzero

longitudinal tire slip. Together, Fx1 and Fy1 make up the tire force vector F1. Similar road-tire

friction forces are also generated for the other three tires.
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Figure 3. Nonlinear road-tire friction curves. The lateral tire force, which is normalized by

dividing it by the vertical contact force, is plotted against the lateral tire-slip angle for various

road surface conditions. Where the tire-slip angles are small, the forces increase linearly, and we

call this the linear region. For larger tire-slip angles, in the nonlinear region, the forces saturate.

The curves to the left are created with the longitudinal tire slip kept at zero. The curves to the

right are created with a large longitudinal tire slip.
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Figure 4. Experimental results for periodic steps in the steering angle at 200 km/h. The

uppermost plot shows the actual vehicle sideslip angle (blue) and the vehicle sideslip angles

estimated by the EKF (green) and the NVSO (red). The middle plot shows the friction coefficient

estimated by the EKF (green) and the friction parameter estimated by the NVSO (red). The lowest

plot shows the bank angles estimated by the EKF (green) and the NVSO (red).
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Figure 5. Experimental results for an ISO-standard double lane-change maneuver at 120 km/h.

The upper plot shows the actual vehicle sideslip angle (blue) and the vehicle sideslip angles

estimated by the EKF (green) and the NVSO (red). The lower plot shows the friction coefficient

estimated by the EKF (green) and the friction parameter estimated by the NVSO (red).
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Figure 6. Experimental results for circle maneuvers with a 40-m radius and different tires. Each

plot shows the actual vehicle sideslip angle (blue) and the vehicle sideslip angles estimated by

the EKF (green) and the NVSO (red). In the upper plot, 18-inch summer tires are used. In the

lower plot, 17-inch winter tires are used.
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Figure 7. Experimental results for driving on an ice- and snow-covered lake. The uppermost

plot shows the actual longitudinal velocity (blue) and the longitudinal velocities estimated by

the EKF (green) and the NVSO (red). The middle plot shows the actual vehicle sideslip angle

(blue) and the vehicle sideslip angles estimated by the EKF (green) and the NVSO (red). The

lowest plot shows the friction coefficient estimated by the EKF (green) and the friction parameter

estimated by the NVSO (red).
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Figure 8. Experimental results for driving on snow-covered mountain roads. The uppermost

plot shows the actual vehicle sideslip angle (blue) and the vehicle sideslip angles estimated by

the EKF (green) and the NVSO (red). The middle plot shows the inclination angles estimated

by the EKF (green) and the NVSO (red). The lowest plot shows the bank angles estimated by

the EKF (green) and the NVSO (red).
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