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Abstract

Over the years imaging laser radar systems have been developed for both military
and civilian applications. Among the applications we note collection of 3D data
for terrain modelling and object recognition. One part of the object recognition
process is to estimate the size and orientation of the object.
This thesis concerns a vehicle size and orientation estimation process based on
scanning laser radar data. Methods for estimation of length and width of vehicles
are proposed. The work is based on the assumption that from a top view most
vehicles’ edges are approximately of rectangular shape. Thus, we have a rectangle
…tting problem.
The …rst step in the process is sorting of data into di¤erent lists containing ob-
ject data and data from the ground closest to the object. Then a rectangle with
minimal area is estimated based on object data only. We propose an algorithm for
estimation of the minimum rectangle area containing the convex hull of the object
data. From the rectangle estimate, estimates of the length and width of the object
can be retrieved.
The …rst rectangle estimate is then improved using least squares methods based
on both object and ground data. Both linear and nonlinear least squares methods
are described. These improved estimates of the length and width are less biased
compared to the initial estimates.
Three algorithms are evaluated; a minimum rectangle estimator proposed by the
author, the mixed LS-TLS algorithm and a quasi-Newton algorithm. The algo-
rithms are applied to both simulated and real laser radar data.
The thesis ends with a discussion of the assumptions that this work is based on
and some suggestions of future work.
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Notation

Symbols

A Matrix
I Identity matrix
b Vector
µ Parameter vector
µ0 True parameters (a vector)
µ̂ Estimated parameters (a vector)
f (µ) Criterion function to be minimized (by nonlinear LS methods)
J (µ) Jacobian of f (µ) (a matrix)
H (µ) Hessian of f (µ) (a matrix)
M Length of the parameter vector µ
N Number of samples
Pi A data point (or vertex), Pi = (xi; yi); i = 1; : : : ;N
ex Noise in xi; i = 1; : : : ; N
ey Noise in yi; i = 1; : : : ; N
¾2ex Variance of ex
ni Normal vector of the line (or edge) between points Pi and Pi+1
Ái Angle corresponding to the normal vector ni
P i Vertex point belonging to the minimal rectangle, i = 1; 2; 3; 4
R
d Euclidian d-dimensional space
foo.m Matlab commands are written in typewriter style
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x Notation

Operators and Functions

AT Matrix transpose
A¡1 Matrix inversion
j¢j Euclidian norm (of a vector), e.g., jbj =

p
b21 + : : :+ b

2
N

k¢kF Frobenius norm (of a matrix), e.g., kAkF =
qPI

i=1

PJ
j=1 jaij j

2

E (x) Expectation value of x = (x1; : : : ; xN)
rf (µ) Gradient of f (µ), i.e., rf (µ) = @

@µf (µ)

r2f (µ) Second gradient of f (µ), i.e., r2f (µ) = @2

@µ2
f (µ)

O (¢) Computational complexity of an algorithm, e.g., an algorithm
with a running time linearly proportional to the number of
samples is denoted O(N)

R (¢) Range operator
sign (¢) Sign operator
log2 (¢) Logarithm with base 2

Abbreviations

2D Two dimensional
3D Three dimensional
DTM Digital terrain model
EKF Extended Kalman …lter
IR Infra red
KF Kalman …lter
LS Least squares (in general)
ML Maximum likelihood
MSE Mean square error
OLS Ordinary least squares
PCA Principal component analysis
PDF Power density function
QSD Qualitative slope descriptor
SCKF Smoothly constrained Kalman …lter
SVD Singular value decomposition
TLS Total least squares



1
Introduction

1.1 Laser radar systems

Laser radar systems have been investigated over several decades primarily for mil-
itary applications, see for instance [14]. Laser radars are, just as conventional
radars1 , mainly used for remote sensing. As in microwave radar technology, the
range to object and background is often obtained by measuring the time of ‡ight
for a modulated laser beam from the transmitter to the object and back to the
receiver. Some unique features in laser radar systems are high angular, range and
velocity resolution. The high range resolution makes 3D imaging possible and due
to the short wavelength, in general 0.5-10 ¹m, detailed range images of objects and
background can be obtained. The high resolution also makes laser radars useful for
velocimetry, range …nding, obstacle avoidance, remote analysis of vibrations and
wind sensing. Laser radar is sometimes called ladar2 or lidar3 .
The laser radar system used, TopEye4 , is carried by a helicopter. It contains

a vertical scanning direct detection laser radar operating at a wavelength of 1.06
¹m. The pulse repetition frequency is 7 kHz and the emitted energy about 0.1
mJ per pulse. The accuracy is approximately 0.1 m in all directions of the 3D
space. The laser beam is swept from side to side and when the helicopter ‡ies this
results in a zigzag-shaped scanning pattern, see Figure 1.1. An example of data
from the system is shown in Figure 1.2. Each sample data point contains x, y and

1 radar: radio detection and ranging
2 ladar: laser detection and ranging
3 lidar: light detection and ranging
4TopEye is a civilian system developed for terrain pro…ling. It is a product of TopEye AB,

Sweden, see URL: http://www.topeye.com.

1



2 Chapter 1. Introduction

z coordinates where z is the altitude. Thus, the set of image points corresponds to
a 3D mapping of the terrain. For an introduction to airborne scanning laser radar,
we refer to [1], [23] and [25]. The TopEye system is further described in [13].

Figure 1.1: The scanning pattern of the TopEye laser radar system.

Figure 1.2: Example of the data from the TopEye laser radar system.
The arrow marks a vehicle placed in an opening of a forest.
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1.2 The object classi…cation process

An object classi…cation (or recognition) process can usually be divided into a detec-
tion phase, where data are analyzed to …nd if something interesting is present, and
a classi…cation phase, where the objects are roughly grouped (personal car, truck,
tank etc.). The classi…cation can be followed by an identi…cation step, where the
objects are separated within their group (Volvo, Saab etc.). Wellfare et al. [26]
have developed a set of detection and vehicle identi…cation algorithms based on
data from (scanning) laser radar systems.
Another classi…cation process for objects, especially vehicles, using imaging

laser radar has been proposed in [16]. The process starts with search and detection
of vehicles and ends with the result of the matching of the object with reference
objects stored in a library database. This process can be divided into six steps:

1. Identi…cation of regions of interest.

2. Segmentation of those regions.

3. Edge estimation of detected objects.

4. Construction of qualitative object descriptions.

5. Matching of the unknown object with reference objects (stored in a database).

6. Determination of a possibility value for a correct match.

In the …rst two steps the object detection is performed and the following steps
perform the object classi…cation. Some of these steps are fairly straight-forward
while others are more complicated. However, a main goal in this work has been
to design and implement a technique that can be run in real time or close to real
time.
The …rst step is to …nd the regions of interest. This is performed, using dif-

ferentiation in z direction, in the same order as the laser radar system generates
the image elements, i.e., by following the zigzag pattern of the laser scanner. This
means that detection is performed during sampling. Di¤erentiation gives a simple
but fast method to handle large data sets. Regions of man-made objects are, in
principle, identi…ed by …nding pairs of derivatives that correspond to reasonable
lengths and heights of interesting objects. In the second step, regions of reasonable
length and width are grouped to form sets of segments for further investigation.
The segmentation process is described further in [2] and [3].
The result of the detection is a list of segments, each represented by the (x; y; z)

coordinates of the data points. Those segments are considered to be likely objects.
A result of a segmentation is shown in Figure 1.3. In detail, the result of the
segmentation process is a list containing detected points on the object and on
the ground surrounding the object. Due to data uncertainties these points will
not correspond to the actual positions of the edge of the object, see Figure 1.4.
To overcome this the edges can be estimated with straight lines, which can be
considered a lowpass …ltering.
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Our assumption is that most vehicles seen from above look like rectangles. The
rectangle that approximate the object should …t the edge points as close as possible.
In this case errors will occur both in x and y directions. Therefore, an estimation
method that can handle errors in both coordinates will be used to …t a rectangle
as close as possible to the edge data, by minimizing the residual. The rectangle
estimate gives an approximation of the length, width and orientation of the object.
The resulting minimized residual is a measure of how good the rectangle …ts. This
”quality measure” is needed in the next step of the object classi…cation process. It
must be possible to handle all kinds of rotations of the object independently of the
scan pattern, as their directions are arbitrary relative to each other.
When features of the object are estimated, among them the length and width,

it is possible to estimate its class (e.g., personal car, truck or tank) in a matching
process. The construction of qualitative object descriptions, the matching process
and the determination of the possibility value are described in [16].

Figure 1.3: Example of the object detection process. The grey- and
black-marked points are the remaining data points after the region of in-
terest search. The grey points remain after the segmentation step. The
true objects (vehicles) are encircled. The covered area is approximately
160£ 30 m.

1.3 Problem description

During the object detection all three dimensions in data is concerned. In the edge
estimation process the problem is reduced to R2, as the z values will not be used.
The z values are ignored as they have approximately the same value (otherwise
they would not be grouped into the same segment). In the middle of the scan the
data points are about equally distributed between consecutive points within a scan
line but also between scan lines. Close to the turning points of the scan the image
point are not equally distributed, due to the zigzag pattern. All in all, output data
of the laser radar system are distributed in an uneven, non-grid format. Data can
be considered under-sampled, i.e., there are gaps between the samples. This means
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Figure 1.4: Example of a measurement of an object (a terrain vehicle).
Stars (¤) represent data points on the object and pentagrams (?) data
points on the ground nearest the object.

that the object’s edge is placed between two samples and that the exact position of
the object’s edge is not known. Further, there is a very small data set describing the
object, sometimes only 3-6 data points describe one edge on the object. According
to the manufacturer, there are uncertainties in the positioning in both coordinates
(x and y) of the same size. From this we assume that the position error in each
data point has a Gaussian power density function (PDF) with equal variance in x
and y, respectively, and zero mean.
We will study methods for …tting a rectangle to the data set of the object. The

”best …t” is de…ned as a …t with minimal residual. The methods must take care of
the fact that there are errors in both coordinates. Further, the methods must be
rotation invariant, as we do not know how the object is placed relative to the scan
direction.
This study is based on some assumptions. First, we assume that the data

collection and the object detection have been successful, i.e., that no outliers are
present. Second, we assume that the complete object is visible, i.e., parts of the
object is not hidden under trees, camou‡age etc. and that the object is not located
close to another object, resulting in merging of the two objects in data.

1.4 Outline and contributions

In this thesis we propose a method for estimation of size and orientation of an
object. This method is proposed as step 3 in the classi…cation process described
on page 3. The size and orientation estimation can be divided into several steps:
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Given: A list of object points and ground points closest to the object, ordered
in scan lines.

1. Sort all data points, both from the object and from the ground, in an
order following the object edge clockwise or counter-clockwise.

2. Estimate the smallest rectangle that includes all data points from the
object.

3. Associate each data point to one side of the rectangle (from step 2).

4. Improve the rectangle estimate using least squares methods based on
both object and ground data.

5. Calculate the residual of the …nal rectangle estimate and the estimated
length and width, respectively.

Returned: Estimates of length, width and orientation of the object. The residual
of the rectangle estimate is also returned.

The outline of the thesis is as follows; in Chapter 2 we review some work
on geometric …tting, both some general methods and some methods applied to
data from scanning laser radar systems. The following chapters go through the
estimation method sequentially. Chapter 3 describes the sorting process. Chapter
4 describes a method for calculation of the minimum rectangle that includes all
data points on the object and ends with some tests (simulations) of the method. In
Chapter 5 we improve the rectangle estimate by including both object and ground
data. First we propose a method of association of the data points to the di¤erent
sides of the rectangle. Then some linear and nonlinear least squares (LS) methods
are described and tested. In Chapter 6 we perform tests using the best linear and
nonlinear LS methods on both simulated realistic data and on data from the laser
radar system. We end the thesis in Chapter 7 with conclusions and a discussion of
the assumptions in this work and some suggestions of further work.

The proposed solution is based on the assumption that a rectangle, with min-
imum area, that contains all object points gives a good …rst estimate of size and
orientation. Further, we believe that the estimates can be improved by including
information of the statistics of the data set.

The main contributions of the thesis can be summarized as follows:

² A method for data sorting that requires O(N) time (Chapter 3).

² A method for minimum rectangle estimation that requires O(N) time (Chap-
ter 4).

² A method for data association (Chapter 5).

² A method for object edge estimation based on both object data and data
from the ground closest to the object (Chapter 5).



2
Geometric …tting

2.1 Introduction

In this chapter some work on geometric …tting is reviewed. First, we describe
what is generally meant by geometric …tting and then some of the references on
a very common …tting problem, …tting of ellipses, are described. Then follow two
proposed ways of handling the rectangle …tting problem. Finally, some approaches
for …tting of buildings and vehicles from scanning laser radar data are described.

For a geometric shape, e.g., an ellipse or a rectangle, the minimization criterion
in geometric …tting is to minimize the squared sum of orthogonal distance between
the data points and the shape. Let µ = (µ1; :::; µM)

T be a vector of unknown
parameters and consider the (linear or nonlinear) system of N equations fi (µ) =
0; i = 1; :::; N . If N > M , then we want to minimize

min
µ2RM

f (µ) = min
µ2RM

NX

i=1

fi (µ) = min
µ2RM

NX

i=1

r2i (µ) ;

where ri is the orthogonal distance between data point i and the geometric shape.
An advantage with the orthogonal distance is that it is invariant under transfor-
mations in Euclidean space. Geometric …tting is also called orthogonal distance
regressions, orthogonal regressions, data …tting and errors-in-variables regression
in the literature.

7
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2.2 Fitting of ellipses

In [27], Zhang gives an overview of several parameter estimation techniques that
can be used for conic …tting. Conic …tting is a general term that contains …tting of
several expressions, e.g., circles and ellipses. A general conic can be described by
the equation

Q(x; y) = ax2 + 2bxy + cy2 + 2dx+ 2ey + f = 0;

where µ = (a; b; c; d; e; f) are the parameters that are to be estimated. The tech-
niques suitable for geometric …tting in [27] are:

1. Gradient weighted least-squares …tting. Both Zhang [27] and Van Hu¤el
and Vandewalle [12] have shown that the ordinary least squares method does
not return consistent estimates for the geometric …tting problem. This can
be overcome by gradient weighting of the covariance matrix. The minimiza-
tion expression usually gets very complicated and non-linear and iterative
optimization algorithms must be used, e.g., Gauss-Newton.

2. Bias-corrected renormalization …tting. This method uses weighted
least-squares minimization. The weights are positive and can be chosen to
the inverse proportion of the variance. This method is optimal only in the
sense of unbiasness. Further, the method is based on statistical analysis of
the data points and is therefore only useful if the data set is large.

3. Kalman …ltering techniques. In this approach the Kalman …lter (KF) is
applied to a spatial sequence instead of the usual temporal sequence. Fur-
thermore, the observation function fi (µ) is nonlinear:

fi (xi; yi; µ) =
¡
x2i ¡ y

2
i

¢
a+ 2xiyib+ 2xid+ 2yie+ f + y

2
i :

If this expression is expanded in a Taylor series and second order and higher
terms are ignored, the extended Kalman …lter (EKF) can be applied. For non-
linear problems the EKF will yield di¤erent results depending on the order of
processing the measurements and can be trapped in a local minimum. This is
because KF and EKF are designed to handle one measurement at a time and
if all data are available at the same time Zhang recommends bias-corrected
renormalization.

In [6], Gander et al. describe several algorithms for geometric …tting of circles
and ellipses. The curves are represented in parametric form:

Q(x; y) =
¡
x y

¢µ a b

b c

¶µ
x

y

¶
+ 2

¡
d e

¢µ x

y

¶
+ f = 0;

which is well suited for minimizing the sum of the squares of the distance. In
the minimization of the geometric distance a nonlinear LS problem needs to be
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solved. This is solved iteratively by a sequence of linear least squares problems.
The authors perform a comparison of some nonlinear LS algorithms, among them
Newton, Gauss-Newton, Gauss-Newton with Levenberg-Marquardt modi…cation
(these methods will be described in Section 5.4), with respect to stability and
e¢ciency. Simulations show that it is crucial to obtain good starting values of
the parameters for the iteration process. If the problem is well posed and the
accuracy of the result should be high, the Newton method is the most e¢cient.
Calculation of the geometric distance is relatively expensive, concerning the number
of computations, and convergence is not guaranteed. A pragmatic way to limit the
cost, suggested in [6], is to perform a …xed number of iterations.

2.3 Fitting of rectangles

There is a vast di¤erence between …tting of rectangles and …tting of ellipses. In
…tting of ellipses the function fi (µ) describes the whole shape in one, continuous
function. For rectangles each side of the rectangle can be described by one, con-
tinuous function, but the shape of the rectangle consists of four such functions
and there are constraints between the functions. Altogether, the function fi (µ)
describing the shape of a rectangle is a discontinuous, constrained function. Two
methods for geometric …tting of rectangles are described below. The …rst is a lin-
ear, constrained function description and the second is a nonlinear, constrained
function description.

In [7], Gander and von Matt describe a linear, constrained least squares tech-
nique for geometric …tting of straight lines, rectangles and some other common
shapes. In R2 a straight line can be uniquely represented by the equation

c+ n1x+ n2y = 0; n21 + n
2
2 = 1; (2.1)

where the (unit) normal vector (n1;n2) is orthogonal to the line and c is the perpen-
dicular distance from the line to the origin. The constraint n21+n

2
2 = 1 guarantees

uniqueness. A point Pi = (xi; yi) is on the line if it satis…es (2:1). If Pi is not on
the line we compute

c+ n1xi + n2yi = ri;

where ri is the orthogonal distance between the line and Pi. Using the fact that
jrj and jrj2 will have the same minimum, the geometric …tting problem can now be
formulated as

min
c;n1;n2

jrj2 = min
c;n1;n2

NX

i=1

r2i
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subject to
0
BBB@

1 x1 y1
1 x2 y2
...

...
...

1 xN yN

1
CCCA

0
@

c

n1
n2

1
A =

0
BBB@

r1
r2
...
rN

1
CCCA and n21 + n

2
2 = 1:

Using the description of straight lines according to (2:1) the equations for the four
sides of a rectangle can be achieved. Two parallel sides of the rectangle will have
identical normal vector (n1;n2) but di¤erent c parameters. The other two sides
will be perpendicular to those sides and have the normal vector (¡n2;n1). Thus,
the four sides of a rectangle will have the equations

Side 1 : c1 + n1x+ n2y = 0 (2.2a)

Side 2 : c2 ¡ n2x+ n1y = 0 (2.2b)

Side 3 : c3 + n1x+ n2y = 0 (2.2c)

Side 4 : c4 ¡ n2x+ n1y = 0 (2.2d)

and : n21 + n
2
2 = 1: (2.2e)

This model will be called Rectangle model 1. We will come back to this model and
an algorithm for solving the problem in Chapter 5.

De Geeter et al. [8] present another method for estimation of a rectangle’s edge.
They parameterize the model of the rectangle as

Side 1 : ¡ (x1 ¡ xc) sin®1 + (y1 ¡ yc) cos®1 ¡ d1 = 0 (2.3a)

Side 2 : ¡ (x2 ¡ xc) sin®2 + (y2 ¡ yc) cos®2 ¡ d2 = 0 (2.3b)

Side 3 : ¡ (x3 ¡ xc) sin®3 + (y3 ¡ yc) cos®3 ¡ d3 = 0 (2.3c)

Side 4 : ¡ (x4 ¡ xc) sin®4 + (y4 ¡ yc) cos®4 ¡ d4 = 0; (2.3d)

where (xc; yc) is a reference point close to the edge, ®1 is the angle of side 1 with the
x-axis and d1 is the signed distance from side 1 to the point (xc; yc), see Figure 2.1.
The parameters are µ = (®1;®2;®3;®4; l;w) and the following constraints between
the parameters are used:

Constraint 1 : ®1 ¡ ®2 =
¼

2
(2.3e)

Constraint 2 : ®2 ¡ ®3 =
¼

2
(2.3f)

Constraint 3 : ®3 ¡ ®4 =
¼

2
(2.3g)

Constraint 4 : jd13j = l (2.3h)

Constraint 5 : jd24j = w; (2.3i)

where l and w is the length and width, respectively, of the rectangle. d13 is obtained
by substituting a point on side 1 in the equation for side 3 and d24 is obtained



2.4 Fitting of buildings and vehicles 11

analogously. Constraints 1-3 are linear, and represent a clockwise listing of the
lines while constraints 4-5 are nonlinear. This model will be called Rectangle model
2.

α3

α2

α1
α4

Figure 2.1: Rectangle parametrization according to De Geeter et al.
[8].

Rectangle model 2 is used to estimate the position and orientation of a rect-
angular plate. The method used and proposed in [8], is a smoothly constrained
Kalman …lter (SCKF), which uses a smooth application of nonlinear constraints.
In the rectangle estimation it is known on which side the measurement is taken
and thus, there is no data association problem to solve. Measurements on the sides
are added in consecutive iterations; in iteration 1 data from side 1 are added, in
iteration 2 data from side 2 are added etc. The constraints are added when there
are enough data from a side present so that the constraints are applicable.

2.4 Fitting of buildings and vehicles

When generating digital terrain models (DTM) based on laser radar data, one
of the problems is separation of the object from the background. In building
reconstruction top view data of the buildings are available. The …rst step in the
building reconstruction process is to separate the building from the surrounding
ground. When the DTM is generated for an urban area this step can be worked-
around using ground plan data, i.e., a detailed 2D map of the area. This approach
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is used by Haala and Brenner [11]. When the ground plan is matched with laser
radar data, the edge of the building is given.
Maas and Vosselman [19] suggest two methods of building reconstruction from

laser radar data that does not need ground plan information. The …rst approach is
based on the analysis of invariant moments of the data points of the building, closed
solutions for the parameters of standard gable roof house types are derived from 0th,
1st and 2nd order moments. Using the moments, seven house model parameters
are calculated. Assuming a rectangular ground shape of a building, its ground
dimensions (length and width) can be obtained directly from the formulation of
2nd order rotation invariant moments. After the determination of these house
parameters, a goodness of …t is determined by projecting the house model into the
segmented data set and computing height residual for every point. This allows for
rejection of the computed house model in case of bad …t and for elimination of
outliers in the data points.
The second approach is a data driven technique based on the intersection of pla-

nar faces in triangulated points. First the data points of the roof are clustered into
di¤erent areas using (Delaunay) triangulation, see e.g. [20]. From the triangulation
the laser points that belong to the edge of the roof are extracted. The roof edge is
assumed to be equal to the edge of the building. The triangulation will give a very
irregular description of the roof edge. Since the building (in 3D) can be described
in polyhedral models, the roof edge can be described as connected straight lines.
The straight lines are estimated such that the least square sum of the distances
of the points to the edges is minimized, i.e., a geometric …t is performed. In the
straight line estimation the lines are enforced to be either parallel or perpendicular
to the main building orientation. As only roof data, and no ground data, is used in
the straight line estimation the result is an underestimation of the size of the roof.
This is compensated by constraining the estimation such that most data points
(80%) are placed on the roof-side of the straight line.
Both methods were quite successful in tests. The second method had some

problems to determine the outline of the building, especially when trees are located
close to the building. On the other hand, using the second method more complex
buildings can be determined.

In the reconstruction of vehicles the task is a bit more complicated than in
building reconstruction. First, we cannot assume that there is a detailed ground
plan of the area where the vehicle is placed. Second, the amount of measurements
on the object is smaller, as vehicles normally are smaller than buildings. In [26] the
object edge estimation is made using a modi…ed Hough transform, see e.g. [10].
According to Zhang [27], the Hough transform is applicable when the amount of
data is much larger than the number of parameters. In our case the amount of data
is limited, and less than in [26], and the Hough transform will not be applicable.
Two di¤erent approaches for object edge estimation from raw laser data have

been tested at FOA, both methods are working on object data only. In the …rst
method, developed by Jungert, an object is described using a formal structure,
see [15] and [16]. The formal structure that describes an atomic element of the
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object is called a qualitative slope descriptor (QSD). Each QSD describes the ori-
entation of a straight line, called line segment, between two points of the object.
Complete objects are described in terms of sets of sequences of QSDs and their
inter-relationships. The general representation of a QSD is de…ned as

(sign (¢x) ; sign (¢y) ; hqualitative slope indicatori) ;

where ¢x and ¢y are used to determine the slope coe¢cient of the line segment.
The third parameter is the qualitative slope indicator which is equivalent to an
angle interval. In the QSD processing of an object, all data points of the object’s
edge are connected with straight lines. For each line the QSD is applied and if
two line segments belong to the same angle interval they are replaced by one line
segment (and one QSD). The structure of the QSD allows determination of several
local parameters, e.g., whether convexities or concavities exist and whether the
angles between QSDs are acute or obtuse. Using a relative large angle interval, the
irregularities in data of a vehicle’s edge can be overcome. For a vehicle the …nal
description usually is quite similar to a rectangle, see example in Figure 2.2a.
From the idea of QSD, Svensson suggests another approach [24]. For all data

points on the object the major and minor axes of data are calculated using principal
component analysis (PCA), see e.g. [10]. Then a rectangle is …tted such that all
data points on the object are included and the sides of the rectangle are parallel
to the major and minor axes, respectively. An example of the method is shown in
Figure 2.2b.

Figure 2.2: Edge estimation methods developed earlier at FOA.
a: QSD with angle intervals of ¼=8, b: rectangle placement using PCA.
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3
Sorting data

The …rst step in the size and orientation estimation process is sorting of data. Data
will be sorted so that object data and ground data follow the edge of the object
clockwise or counter clockwise. In this chapter an algorithm for sorting of laser
radar data is proposed.

3.1 Method

Typical results of the segmentation step are shown in Figure 3.1. The zigzag
pattern shows the scan pattern of the laser system and the arrow shows the ‡ight
direction of the helicopter. The rectangle (dashed) represents the true border of
the object and the circles represent measurements saved in the segmentation. The
time indices, ti; i = 1; 2; :::; N , represent the registration order of the samples.
Each time index corresponds to a spatial coordinate (xi; yi). As can be seen in
the …gure, the measurements of the objects di¤er depending on the position of the
object relative to the ‡ight (and scan) direction. In each scan line not only the
measurements on the object, but also the previous and following ground points are
saved. We can also note that in each scan line the true object edge is somewhere
between the …rst (or last) ground point and the …rst (or last) object point. The
…rst and last object points in each scan line have special importance and will be
called outer object points.
The edge estimation process assumes that data are ordered in such a way that

the edge of the object can be followed clockwise or counter clockwise. Sorting
data to that format is rather straightforward as the scan pattern is known. The
sorting process will result in three lists for each object, see Figure 3.2; one with

15
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Figure 3.1: Example of data from the segmentation step (arbitrary
data). The zigzag pattern shows the scan pattern of the laser and the
arrow shows the ‡ight direction of the helicopter. The dashed rectan-
gle represents the true border of the object and the circles represent
measurements saved in the segmentation process.

ground points, one with outer object points and one with inner object points.
The ground points will be saved as gi = (xi; yi;pairouter) ; i = 1; 2; :::; Nground,
where pairouter refers to the nearest (previous or following) outer object point in
the same scan line. The outer object points will be saved in the same manner;
oi =

¡
xj ; yj ;pairground

¢
; j = 1; 2; :::; Nouter, where pairground refers to the nearest

(previous or following) ground point in the same scan line. For example, in Figure
3.2a ground point g1 will refer to outer object point o1, and vice versa, but outer
object point o2 will not refer to any ground point (pairground = nil). The inner
object points will be saved in the same order as in the original data, (xk; yk) ;
k = 1; 2; :::; Ninner; N = Nground +Nouter +Ninner. Data will be ordered clockwise
or counter clockwise depending on the order of data in the …rst scan line. If the …rst
scan line on the object goes from right to left (see Figure 3.1) ground points will
be ordered clockwise and outer object points counter clockwise. If the …rst scan
line on the object goes from left to right ground points will be ordered counter
clockwise and outer object points clockwise. Results of sorting data in Figure 3.1
are shown in Figure 3.2.
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Figure 3.2: Result of sorting of data in Figure 3.1a and b, respectively.
White points: ground data, grey: outer object data and black: inner
object data.

3.2 Algorithm

The sorting process can be described in an algorithm that reads the input …le line
by line, where each line contains information of one sample, ti:

Algorithm 1 (Data sorting)

Step 1: Calculate the number of scan lines, S; by traversing data once.
Step 2: S = 1 :

Add …rst ground point, with pairouter = 1, in a ground point list G.
Store the …rst outer object point, with pairground = 1, in an outer object
list O.
Add the following outer object points, with pairground = nil, last in O.
Add the last outer object point, with pairground = 2, last in O.
Store the last ground point, with pairouter = 2, in another ground point list G

0.
Step 3: For s = 2; :::; S ¡ 1

If s is even
Add …rst ground point, with pairouter = 3; 7; 11 etc., last in G

0.
Add …rst outer object point, with pairground = 3; 7; 11 etc., last in O.
Store inner object points in time order in an inner point list I.
Store last outer object point, with pairground = 4; 8; 12 etc., in another
outer object list O0.
Add last ground point, with pairouter = 4; 8; 12 etc., last in G.

else
Add …rst ground point, with pairouter = 5; 9; 13 etc., last in G.
Add …rst outer object point, with pairground = 5; 9; 13 etc., last in O

0.
Add inner object points in time order last in I.
Add last outer object point, with pairground = 6; 10; 14 etc., in O.
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Add last ground point, with pairouter = 6; 10; 14 etc., last in G
0.

Step 4: s = S:
If s is even

Add …rst ground point, with pairouter = Nouter ¡ 1, last in G
0.

Add …rst outer object point, with pairground = Nouter ¡ 1, last in O:
Add the following outer object points, with pairground = nil, last in O.
Add last outer object point, with pairground = Nouter, last in O.
Add last ground point, with pairouter = Nouter, last in G.

else
Add …rst ground point, with pairouter = Nouter ¡ 1, last in G.
Add …rst outer object point, with pairground = Nouter ¡ 1, last in O

0.
Add the following outer object points, with pairground = nil, last in O

0.
Add last outer object point, with pairground = Nouter, last in O

0.
Add last ground point, with pairouter = Nouter, last in G

0.
Step 5: Append O0 last in O in reverse order.
Step 6: Append G0 last in G in reverse order.

3.3 Execution time

When there is no knowledge of the structure of data in the input …le available the
fastest sorting algorithms require O(N log2N) time, where log2 is the logarithm
function with base 2, see for example [21]. In this case data can be considered as
partly sorted, as we have knowledge of the data structure, and the algorithm will
require less time. In the algorithm above, step 1 requires O(N) time as input data
is only scanned once. In steps 2-4 input data is only scanned once and therefore,
they require O(N) time. The simple operations in steps 5-6 will also require O(N)
time. Altogether, the sorting algorithm for this data format requires O(N) time.



4
Calculation of the smallest

rectangle

4.1 Introduction

When data have been sorted, the next step is to estimate the edge of the object. It
is important to be careful in this step, otherwise unnecessary errors are transferred,
and maybe even ampli…ed, to the matching process. Due to the data format and
the uncertainties, the object’s edge will not look like a rectangle, see Figure 4.1.
Therefore, we need to estimate the edge using the knowledge of the data format
and the sampling procedure.
In this step we will …t a rectangle as good as possible to object data by minimiz-

ing the rectangle’s area. We assumed in the beginning of this thesis that the ”true”
object edge lies between the measurements of the object and the measurements of
the ground. If we assume that data is error free and calculate the rectangle with
smallest possible area that includes all object data, we will get an estimate of the
minimum area of the object. Our hypothesis is that the minimum rectangle area
that includes all object points is a good, …rst estimate of the size and orientation
of the object.
A straight line is completely described by the coordinates of a point on the

line and a slope. For four lines we need the coordinates of a point and a slope for
each line. In a rectangle the slopes of the lines (or sides) are linked - two lines
are parallel and two are perpendicular to the other. Consequently, a rectangle can
be completely described by four points and an orientation (slope) parameter. The
question is how those four points and the orientation shall be selected to …nd the
rectangle with the smallest area possible.

19
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We will propose a method that …nds the rectangle with smallest area that
contains all object points. Let us place a rectangle of arbitrary size placed in an
arbitrary orientation so that all object points are on the interior of the rectangle.
When we minimize the rectangle’s area (with that speci…c orientation) the area is
minimal when all sides hit one of the vertices in the convex hull. If we perform this
minimization in all possible orientations, we will …nd the rectangle with minimal
area.

Figure 4.1: Example of (real) object data. Each star (¤) represents a
data point on the object.

4.2 Calculation of the convex hull

4.2.1 Theory

To formalize the reasoning in the previous section, we need some de…nitions. In
[20], page 18, the following is de…ned:

De…nition 1 (Rd)
Let Rd denote the d-dimensional Euclidean space, i.e., the space of the d-tuples

(x1; : : : ; xd) of real numbers xi = 1; : : : ; d with metric
³Pd

i=1 x
2
i

´1=2
.

De…nition 2 (Convex set)
A domain D in Rd is convex if, for any two points q1 and q2 in D, the segment
q1q2 is entirely contained in D.

De…nition 3 (Convex hull)
The convex hull of a set of points S in Rd is the boundary of the smallest convex
domain in Rd containing S.
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De…nition 4 (Simple polygon, R2)
A polygon is simple if there is no pair of nonconsecutive edges sharing a point. A
simple polygon partitions the plane into two disjoint regions, the interior (bounded)
and the exterior (unbounded) that are separated by the polygon.

Two steps are required to …nd the convex hull; identify the extreme points
and order these points so that they form a convex polygon. A basic convex hull
algorithm is Graham’s scan [20]. In the algorithm, …rst an internal point is found
and data are transformed so that the internal point is at the origin. The N points
are then sorted by polar angle and if two points have the same polar angle the
squared distances to the origin are compared. In the next step the list is traversed
(or scanned) and all internal points are eliminated. The points that remain in the
list are the convex hull vertices in the required order. During the sorting a simple
but important ”trick” is used. The sorting is performed by pair-wise comparisons
and it is only needed to determine which of the angles is greater, the numerical
value is not required. Given two points P1 and P2 in the plane, P2 forms a strictly
smaller polar angle with the real axis than P1 if and only if the triangle (O;P1; P2)
has strictly positive signed area1 , see Figure 4.2.

Figure 4.2: Comparing polar angles by means of the signed area of
triangle (O; P1; P2), copy of Figure 3.5 in [20].

The convex hull of N points in the plane can be found, using Graham’s scan,
in O(N log2N) time using only arithmetic operations and comparisons. The time
limiting operation in the algorithm is the sorting, which requires O(N log2N) time.
The other operations, …nding the internal point, transforming data and scanning

1The sign of the area is evaluated by a 3 £ 3 determinant in the points’ coordinates. The
determinant of (O;P1; P2) is

det

0
@

0 0 1
x1 y1 1
x2 y2 1

1
A = x1y2 ¡ x2y1: The area of the triangle (O;P1; P2) is positive if the deter-

minant is positive.
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the sorted list, require O(N) time. It can be shown that Graham’s scan is optimal,
but it has some limitations:

1. It will always use O(N log2N) time, regardless of the data, because its …rst
step is to sort the input.

2. Is cannot be generalized to higher dimensions, it is only applicable in R2.

3. It is an o¤-line algorithm since all points must be available before the pro-
cessing begins.

4. It does not support a parallel environment as it cannot be split into smaller
subproblems.

A special case of the convex hull problem is to …nd the convex hull for a simple
polygon. For a simple polygon data can be considered sorted and the convex hull
can be constructed in linear time:

Theorem 1 (Convex hull of a simple polygon)
The convex hull of an N-vertex simple polygon can be constructed in optimal O(N)
time and O(N) space.

For a proof see [20], Theorem 4.12.

4.2.2 Application of the theory

In our application, data that can belong to the convex hull originates from the …rst
and last object points in each scan line, the outer object points, and therefore, it is
su¢cient to calculate the convex hull using those data only. In the sorting process
(Chapter 3) outer object points were sorted to follow the object clockwise or counter
clockwise, i.e., into a simple polygon (compare with De…nition 4). Compared to
Graham’s scan, the sorting is already performed and the remaining step in the
convex hull calculation is to eliminate internal points. The internal points can
be eliminated in O(N) expected time, which is in agreement with Theorem 1. A
method like Graham’s scan is su¢cient as we are working in R2 and in o¤-line
mode (all data are available from the segmentation step). The convex hull for data
depicted in Figure 4.1 is shown in Figure 4.3.
In [21], Sedgewick notes that a fundamental property of the convex hull is that

any line outside the hull, when it is moved in any direction towards the hull, hits
one of its vertex points. Figure 4.4 shows all measurements of the object from
Figure 4.1 and a rectangle of arbitrary size placed in an arbitrary orientation. In
Figure 4.5 it is shown that when we minimize the rectangle’s area (in that speci…c
orientation) the area is minimized when all sides hit one of the vertices in the convex
hull. Compare the marked points in the …gure with the convex hull in Figure 4.3.
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Figure 4.3: The convex hull for data depicted in Figure 4.1. Points
belonging to the convex hull are marked by circles.

4.3 Description of the rectangle’s area

For each edge of the convex hull a normal vector can be calculated using basic
linear algebra. The normal vector, ni, to the edge between the vertices Pi and
Pi+1, Pi = (xi; yi)

T
; i = 1; 2; :::; N , is

ni =
1q

(xi+1 ¡ xi)
2 + (yi+1 ¡ yi)

2

µ
¡ (yi+1 ¡ yi)
xi+1 ¡ xi

¶
=

µ
n1
n2

¶

i

:

This de…nition of the normal vector means that if data are listed counter clockwise
all normal vectors will be directed into the convex hull and if data are listed clock-
wise all normal vectors will be directed out from the convex hull. The direction in
itself does not matter, what is important is that all normal vectors around the con-
vex hull uses the same de…nition. The normal vectors corresponding to the convex
hull depicted in Figure 4.3 are shown in Figure 4.6. Let us now draw a straight
line that touches a vertex point but not the interior of the convex hull. Consider
a vertex of the convex hull, see Figure 4.7, we can see that a line that is not going
through the interior of the convex hull has a normal vector that points into the
convex hull and whose value is limited by the normal vectors of the closest edges.
When the line’s normal vector has a direction that is not bounded by the normal
vectors of the closest edges the line passes the interior of the convex hull and thus,
it is invalid. This means that for each vertex Pi there is a normal vector interval,
with a minimum vector ni;min and a maximum vector ni;max, see Figure 4.7, that
a line’s normal vector must belong to, i.e., ni;min · nline · ni;max. Each edge
normal ni can also be represented as an angle Ái and the line’s normal vector can
be represented as an angle Áline. Thus, for each vertex Pi there is an angle interval,
with a minimum angle Ái;min = Ái¡1 and a maximum angle Ái;max = Ái (if data
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Figure 4.4: Object data and a rectangle in arbitrary orientation.

a
b

c d

Figure 4.5: Shrinking the rectangle in Figure 4.4, side by side, until
it hits the convex hull. The points that are hit by the rectangle’s sides
are marked by circles.
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are listed counter clockwise), that Áline must belong to; Ái;min · Áline · Ái;max. As
can been seen in Figure 4.6, the angle intervals form a non-overlapping inclusive
decomposition of the interval [0; 2¼].

Figure 4.6: Convex hull with vertices, edges and normal vectors.

Figure 4.7: A straight line going through vertex Pi. The valid interval
for the line’s normal vector is ni¡1 · nline · ni.
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Assume that there exist four vertices P 1; P 2; P 3 and P 4, and a normal vector
n =

¡
n1; n2

¢T
for which a rectangle that includes the convex hull can be

de…ned. The sides of the rectangle can be described by

Side 1 : P 1n+ c1 = (x1; y1)

µ
n1
n2

¶
+ c1 = 0 (4.1a)

Side 2 : P 2en+ c2 = (x2; y2)
µ
¡n2
n1

¶
+ c2 = 0 (4.1b)

Side 3 : P 3n+ c3 = (x3; y3)

µ
n1
n2

¶
+ c3 = 0 (4.1c)

Side 4 : P 4en+ c4 = (x4; y4)
µ
¡n2
n1

¶
+ c4 = 0; (4.1d)

where c1; c2; c3; and c4 are the perpendicular distances between the line and the

origin, en = Rn and R =

µ
0 ¡1
1 0

¶
is the rotation matrix (rotation ¼

2
radians

counter clockwise), see Figure 4.8. The normal vector corresponds to an orientation
of the rectangle.

Figure 4.8: A rectangle with four points and a normal vector n (and
en). The lengths c1; c2; c3 and c4 are marked.
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The rectangle’s area can be calculated from

A = (c1 ¡ c3) (c2 ¡ c4) :

Inserting the expressions of c1; c2; c3; and c4 from (4:1a)-(4:1d) gives

A =
¡¡
P 3 ¡ P 1

¢
n
¢T ¡

P 4 ¡ P 2
¢
Rn

= nT
¡
P 3 ¡ P 1

¢T ¡
P 4 ¡ P 2

¢
Rn: (4.2)

The normal vector can be considered as a function of Á, i.e., n = n (Á). The normal
vector n, and Á, do only belong to the interior of the convex hull for a certain angle
interval [Ámin; Ámax]. Within this angle interval (4:2) can be interpreted as the area
of a rectangle that includes the convex hull:

A (Á) = n (Á)T
¡
P 3 ¡ P 1

¢T ¡
P 4 ¡ P 2

¢
Rn (Á) ; Ámin · Á · Ámax: (4.3)

4.4 Finding feasible vertices

One problem is how to select the four feasible vertices P 1; P 2; P 3 and P 4. A
complete search, which for example can be implemented by a hypothesis tree, will
contain (N ¡ 1)4 possible combinations of data points. This will in many cases be
too many alternatives to be able to handle in real time or in near real time (for
N = 11 there will be about 10.000 possible combinations).
Instead we propose a method that uses the allowed angle intervals to …nd the

feasible vertices. For each of P 1; P 2; P 3 and P 4 there is an angle interval that has
to be ful…lled if the vertex shall be part of the rectangle, where

Side 1 : P 1 has an angle interval
¡
Á1;min; Á1;max

¢

Side 2 : P 2 has an angle interval
¡
Á2;min; Á2;max

¢

Side 3 : P 3 has an angle interval
¡
Á3;min; Á3;max

¢

Side 4 : P 4 has an angle interval
¡
Á4;min; Á4;max

¢
:

To represent the four sides of the rectangle the sides shall be placed with an angular
di¤erence of ¼

2
. This can be interpreted as that the angle intervals of the vertices

must be compatible, i.e.,
¡
Á1;min; Á1;max

¢
;
¡
Á2;min; Á2;max

¢
¡ ¼

2
,
¡
Á3;min; Á3;max

¢
¡¼

and
¡
Á4;min; Á4;max

¢
¡ 3¼

2
shall have a non-empty intersection. That intersection

forms a smaller angle interval (Ámin; Ámax) ; which is the valid angle interval for the
four vertices when describing the area as in (4:3).
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4.5 Minimizing the area

Our goal is to …nd a rectangle with minimum area that contains the convex hull.
Let us now study how to minimize the area, starting with (4:3):

min
Ámin·Á·Ámax

A (Á) = min
Ámin·Á·Ámax

n (Á)
T ¡
P 3 ¡ P 1

¢T ¡
P 4 ¡ P 2

¢
Rn (Á) : (4.4)

Setting ¹Q =
¡
P 3 ¡ P 1

¢T ¡
P 4 ¡ P 2

¢
R gives

A (Á) = n (Á)T ¹Qn (Á) : (4.5)

By construction the columns of ¹Q are linearly dependent, i.e., rank
¡
¹Q
¢
= 1. This

gives that one of the eigenvalues of ¹Q is zero, i.e., ¸min = 0, which is the lower limit
of A (Á) ;

0 · n (Á)T ¹Qn (Á) · ¸max:

This means that ¹Q is a positive, semide…nite, symmetric matrix that can be written

Q = qqT ;

where q =
£
q1 q2

¤T
is a real-valued vector (see for example [17]). Inserting this

expression of Q into (4:5) gives

A (Á) =
¡
qTn (Á)

¢2
;

or

A (Á) = (q1 cos (Á) + q2 sin (Á))
2
;

as n (Á) is a normalized vector that can be written n (Á) =
£
cos (Á) sin (Á)

¤T
:

Finally, the minimization criteria (4:4) can be written

min
Ámin·Á·Ámax

A (Á) = min
Ámin·Á·Ámax

(q1 cos (Á) + q2 sin (Á))
2
: (4.6)

A (Á) is a continuous function, see example in Figure 4.9. We also know that
A (Á) = 0 is not a valid solution to (4:6). Further, A (Á) 6= 0 is a monotonic
function. Consequently, (4:6) will have its minimum either for Á = Ámin or for
Á = Ámax. The searched normal vector n; i.e., the one representing the minimum
area, corresponds to the Á value that solves (4:6).

4.5.1 Algorithm

The algorithm for …nding the feasible vertices and the normal vector that minimizes
the rectangle’s area can be motivated as follows. Consider the angle intervals of
the convex hull in Figure 4.6 on a line axis, see Figure 4.10. A rectangle, with four
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are marked. The values correspond to the estimate of the smallest
rectangle of data depicted in Figure 4.1.

perpendicular sides, can be viewed as there need to be ¼
2
radians between the angle

intervals
¡
Ái;min; Ái;max

¢
of interest. Thus, one can place four pointers, ½1; ½2; ½3

and ½4, on the axis with a separation of
¼
2
. The angle intervals that they point into

represent a combination of four vertices. Then calculate the smallest increment ¢
(for all the pointers) that is needed for one of the pointers to point into a new angel
interval. Then move all the pointers the smallest step, ¢, to get a new combination
of vertices. Remember that the angle intervals form a non-overlapping inclusive
decomposition of the interval [0; 2¼]. Further, the algorithm is working cyclic so
that 0 radians equals 2¼ radians. When the pointers have been moved a quarter
of a circle, ¼

2
radians, all possible combinations of vertices have been found.

0 π/2 2π3π/2π

φ1φ11 φ12φ10
φ9φ8φ3

φ7φ6
φ5φ4φ2

φ

ρ4 ρ3 ρ2 ρ1

Figure 4.10: The angle intervals of Figure 4.6 depicted on a line axis.
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Algorithm 2 (Minimum rectangle estimator)

Step 1: For each Pi calculate ni and
¡
Ái;min; Ái;max

¢
; i = 1; 2; :::; N .

Step 2: Set Ástart = max (Ái) ; i = 1; 2; :::; N; ½1 = Ástart; ½2 = ½1 ¡
¼
2
;

½3 = ½1 ¡ ¼ and ½4 = ½1 ¡
3¼
2
.

Step 3: While ½2 < Ástart:
Select the vertices P 1; P 2; P 3 and P 4 corresponding to ½1; ½2; ½3 and ½4,
respectively.
Calculate (Ámin; Ámax) using

Ámin = max
¡
Á1;min; Á2;min ¡

¼
2
; Á3;min ¡ ¼; Á4;min ¡

3¼
2

¢
and

Ámax = min
¡
Á1;max; Á2;max ¡

¼
2
; Á3;max ¡ ¼; Á4;max ¡

3¼
2

¢
.

Calculate A (Ámin) and A (Ámax) using (4:3).
Select the smallest area of A (Ámin) and A (Ámax).
Save P1; P 2; P 3; P 4; Á and A (Á) corresponding to the smallest area in a list.
Find the smallest step ¢, for ½1; ½2; ½3 and ½4, to the next angle interval Ái.
Increment ½1; ½2; ½3 and ½4 by ¢.

Step 4: Find the set of vertices and normal vector in the list that is subject to
the smallest area. This is the searched set of vertices and normal vector.

Step 5: Retrieve the length and width estimates from
length = max (c1 ¡ c3; c2 ¡ c4) and width = min (c1 ¡ c3; c2 ¡ c4),
where c1; c2; c3 and c4 are calculated by (4:1a)-(4:1d).

Results of the three best rectangle estimates of data depicted in Figure 4.1 are
shown in Figure 4.11. In the example there were 47 data points on the object,
of whom 23 were outer object points and the convex hull contained 12 points. 10
point combinations were quali…ed, but only the three best (i.e., with smallest area)
are shown.

a b c

Figure 4.11: The three smallest rectangle estimates for data depicted
in Figure 4.1. The data points of the convex hull are marked with stars,
points marked with circles represent P 1; P 2; P 3 and P 4. (a: smallest
area, b: second smallest area, c: third smallest area).
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4.5.2 Execution time

Steps 1, 2, 4 and 5 in the algorithm are simple operations that can be performed
in linear time. The loop in step 3 might be more time consuming, but it traverses
data only once and can also be performed in linear time. Totally, the execution
time of the algorithm is linear, i.e., O(N).

4.6 Performance

The performance of this rectangle estimation method will be investigated in some
Monte Carlo simulations. The performance will be evaluated in terms of correctness
in length and width estimates.
We start with an exact (error free) description of the rectangle, the test rect-

angles are viewed in Figure 4.12. Random errors, normal distributed with zero
mean and variance ¾2v are added to the coordinates x and y; respectively. The
noise is generated separately for each side and for each side separately in the x
and y coordinates. The noise can therefore be considered independently and iden-
tically distributed with ¾2ex = ¾2ey = ¾2v. Then length and width parameters are
estimated using the minimum rectangle method on the perturbed data set. The
simulations are repeated for increasing noise variance ¾2v. The statistical properties
of the length and width estimates are studied by the mean square error (MSE),
de…ned as (see [12], page 244)

MSE
³
µ̂
´
= E

½³
µ̂ ¡ µ0

´T ³
µ̂¡ µ0

´¾
(4.7)

and estimated by

MSE
³
µ̂
´
=
1

J

JX

j=1

³
µ̂j ¡ µ0

´2
:

The MSE is averaged over 100 sets (i.e., J = 100). Each side of the rectangle is
represented by 1000 data points. The test was performed in Matlab on a Windows
NT computer (single processor).
The simulations show that the estimates of length and width have equal behav-

ior concerning MSE. Results of length and width estimates for rectangle4 in Figure
4.12 are shown in Figure 4.13.
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4.7 Conclusions

We have proposed a method for …tting a rectangle as good as possible to object
data, assuming that data is error free. As only object data, and no ground data,
are used we get an estimate of the minimum area of the object. The method …nds
a set of four vertices and a normal vector, i.e., an orientation, that minimizes the
area of a rectangle that contains the convex hull of the object’s data points. From
the area estimate it is possible to receive estimates of the length and width of the
object. Simulations showed that the mean square errors of the length and width
estimates, respectively, were similar. The minimum rectangle estimation process
consists of calculation of the convex hull and a rectangle minimization. Each step
can be performed in linear time and thus, the total execution time requires O(N) :
It can be noted that also a …fth point is given in the minimum rectangle esti-

mation. As the minimum is found for either Á = Ámin or for Á = Ámax, one side of
the rectangle will be parallel with an edge of the convex hull. For that edge only
one of the vertices is P 1; P 2; P 3 or P 4, while the other vertex is the extra …fth
point.
The present algorithm does not check if two di¤erent sets of P 1; P 2; P 3,P 4 and

Á represent the same area. For example, the rectangles in Figure 4.11a and b
have almost identical area (di¤ers in the 14th decimal). The rectangle in Figure
4.11a has orientation Á = Á5;max and the rectangle in Figure 4.11b has orientation
Á = Á6;min. The angle intervals form a non-overlapping inclusive decomposition of
the interval [0; 2¼], which gives that Á5;max = Á6;min. This kind of duplicates can
be avoided by adding an extra check in step 3 of Algorithm 2, before the set of
points and orientation is saved in the list. This may, however, extend the execution
time.
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5
Improving the rectangle estimate

5.1 Introduction

In the previous chapter we proposed a method for …tting a rectangle as good as
possible to object data. The best …t was de…ned as the minimum area containing
the convex hull of the outer object points and moreover, this de…nition includes the
assumption that data is error free. In the calculation only some of the available data
points were used; the objects points belonging to the convex hull. The available
ground points were not used at all. An estimate based on object points only will
always under-estimate the rectangle. This can be seen in Figure 5.1, the area
estimate is a bit too small when ground data also is taken into account.
We will now improve the area estimate using least squares methods based on

all outer object and ground points. The least squares methods are designed to
minimize the orthogonal distance between a geometric shape, in this case a rectan-
gle, and the data set. By including the ground points in the minimization we will
receive a less biased estimate of the rectangle. There are both linear and nonlinear
least squares methods, with the di¤erence whether the equations for a rectangle
describes a linear or a nonlinear relation between the parameters. It turns out
that a rectangle can be described either by linear equations with a constraint or by
nonlinear equations. Furthermore, both methods model each side of the rectangle
as a submodel. This means that before we use those methods we need to associate
each data point to one of the rectangle’s sides.
In this chapter we start by describing the proposed data association method.

Then some linear and nonlinear least squares methods are described and the rect-
angle estimation problem is modelled both linearly and nonlinearly. The chapter

35
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…nishes with some simulations to evaluate the selected least squares methods.

Figure 5.1: The smallest rectangle containing the convex hull, compare
with Figure 4.11a. The stars (¤) represent object data points and the
pentagrams (?) ground data points.

5.2 Data association

In the data association we will associate the outer object points and the ground
points to one side of the rectangle, as we know that the true object edge is between
the outer object points and the ground points. Inner object points will be ignored.
If we consider the outer object data we see that there are two kinds: points paired
with ground points and points that are not paired with ground points, see Chapter
3 for a description of the data sorting. The data association will di¤er depending
on the type of outer object data. For pairs of outer object and ground points we
know that the true object edge lies somewhere between those points. This can be
interpreted as that the true edge point lies somewhere on a straight line between
the outer object point and the ground point. This line will intersect with one of
the rectangle’s sides, which is the side that the point pair will be associated with.
For single outer object points, that are not paired with ground points, we

will associate the points with the side to which they have the smallest orthogonal
distance. Those points lie on a certain distance from the sides described by (4:1a)-
(4:1d). For a data point Pi = (xi; yi) the perpendicular distance to each side can
be calculated from

Side 1 : Pin¡ c1 = r1 (5.1a)

Side 2 : Pien¡ c2 = r2 (5.1b)

Side 3 : Pin¡ c3 = r3 (5.1c)

Side 4 : Pien¡ c4 = r4; (5.1d)
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where n; c1; c2; c3 and c4 represent the minimum rectangle from (4:6) and en = Rn
is the rotated normal vector in (4:1a)-(4:1d). Each point is associated to the side
to which it has the shortest orthogonal distance jrj j ; j = 1; 2; 3; 4. Results of data
association for data in Figure 4.11a is shown in Figure 5.2.

Side 1

Side 2

Side 3

Side 4

Figure 5.2: Data association based on the rectangle in Figure 4.11a.
Outer object and ground points are viewed. Points associated with
side 1 are marked with circles, side 2 with …lled squares, side 3 with
diamonds and side 4 with …lled triangles.

5.3 Some linear least squares methods

We will now describe some linear least squares methods; the ordinary least squares
(OLS), the total least squares (TLS) and the mixed LS-TLS. Note that in this
thesis the traditional/ordinary least squares methods will be called OLS instead of
LS, the term LS is used for least squares methods in general. The properties of
OLS, TLS and mixed LS-TLS in the presence of errors in both coordinates will be
studied.
The general formulation of the problem is to solve the overdetermined system

of linear equations

Aµ t b; (5.2)

where A has dimensions (N £M), b (N £ 1) and µ (M £ 1), N ¸ M + 1. The
estimate of µ, µ̂, is computed di¤erently in the di¤erent methods. The di¤erence
lies in assumptions of noise contents in (parts of) A and/or b. If A contains errors
the matrix will be modelled as an error free part and as a part that contain errors,
i.e., A = A0 + eA, where A0 is the true but unobservable variable and eA is the
error. If b contains errors this will be modelled as b = b0 + eb, where b0 is the true
but unobservable variable and eb is the error.
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Consider the case of straight line estimation, see Figure 5.3. If we compare
OLS, which assumes that A is error free, and TLS, which assumes that A and
b contain the same amount of noise, we see that the methods minimize di¤erent
distances. In OLS the distance between the points and the line are minimized only
in b = y while in TLS (and also in mixed LS-TLS) the orthogonal distance between
the points and the line is minimized.

Figure 5.3: The distances that are minimized in the OLS method
(dashed) and in the TLS and mixed LS-TLS methods (solid), respec-
tively.

5.3.1 Ordinary least squares

In the ordinary least squares (OLS) model, only b is subject to error and the
problem is modelled as

b0 + eb = Aµ: (5.3)

In [12], Section 2.3, the following de…nition of the ordinary least squares problem
is given:

De…nition 5 (Ordinary least squares problem)
Given an overdetermined set of N linear equations Aµ t b in M unknown µ, the
ordinary least squares (OLS) problem seeks to

min
b̂2RN

¯̄
¯b¡ b̂

¯̄
¯

subject to b̂ 2 R (A) :
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Once a minimizing b̂ is found, then any µ satisfying

Aµ = b̂

is called an OLS solution and eb = b¡ b̂ the corresponding OLS correction.

When A has full column rank there exists a unique OLS solution that solves
the normal equation

ATAbµOLS = AT b:

In the OLS model only b is subject to error, i.e., eA = 0. In the case of geometric
…tting, however, there will be error also in A (eA 6= 0). It is shown in [12], Theorem
8.4, and in [27] that the OLS parameter estimate is not consistent when applied to
geometric …tting, i.e., when the amount of data N increases bµOLS will not approach
the true value µ0.

5.3.2 Total least squares

In the total least squares (TLS) model both A and b are observed with errors, i.e.,
A = A0 + eA and b = b0 + eb, where A0 and b0 are the true but unobservable
variables and eA and eb; respectively, is noise. The problem is now modelled as

b0 + eb = (A0 + eA) µ: (5.4)

In [12], Section 2.3, the following de…nition of the total least squares problem is
given:

De…nition 6 (Total least squares problem)
Given an overdetermined set of N linear equations Aµ t b in M unknown µ, the
total least squares (TLS) problem seeks to

min
[ bA;b̂]2RN£(M+1)

°°°[A; b]¡
h
bA; b̂
i°°°
F

subject to b̂ 2 R
³
bA
´
:

Once a minimizing
h
bA; b̂
i
is found, then any µ satisfying

bAµ = b̂

is called a TLS solution and [eA; eb] = [A; b] ¡
h
bA; b̂
i
the corresponding TLS cor-

rection.

In this formulation all columns in [A; b] contain errors. If some of the columns
in A are known to be error free the LS and TLS methods can be mixed, see next
subsection.



40 Chapter 5. Improving the rectangle estimate

5.3.3 Mixed LS-TLS

In the mixed LS-TLS model some columns of A are subject to errors, while some
are known exactly. A is described as A = [A1;A2], where A1 is error free and
A2 = A2;0 + eA2 . The problem is modelled as

b0 + eb = A1µ1 + (A2;0 + eA2) µ2: (5.5)

In [12], Section 3.5, the following de…nition of the mixed LS-TLS problem is given:

De…nition 7 (Mixed LS-TLS problem)
Given a set of N linear equations in M unknown µ:

Aµ t b; A 2 RN£M ; b 2 RN£1; µ 2 RM£1

Partition

A = [A1;A2] ; A1 2 R
N£M1 ; A2 2 R

N£M2

µ = [µ1; µ2]
T
; µ1 2 R

M1£1; µ2 2 R
M2£1

and assume that the columns of A1 are known exactly and M = M1 +M2. Then,
the mixed LS-TLS problem seeks to

min
[ bA2;b̂]2RN£(M2+1)

°°°[A2; b]¡
h
bA2; b̂

i°°°
F

subject to R
³
b̂
´
µ R

³
bA
´
= R

³h
A1; bA2

i´
:

Once a minimizing
h
bA2; b̂

i
is found, then any µ = [µ1; µ2]

T satisfying

bAµ = A1µ1 + bA2µ2 = b̂;

is called a mixed LS-TLS solution and [eA2 ; eb] = [A2; b]¡
h
bA2; b̂

i
is the correspond-

ing mixed LS-TLS correction.

When the solution is not unique, the minimum norm solution can be singled
out, see [12], Chapter 3. This is a general form of the linear least squares problem.
If all columns in A are known exactly, i.e., A = A1, the mixed LS-TLS problem
reduces to OLS. If no columns in A are known exactly, i.e., A = A2, it reduces to
TLS. A mixed LS-TLS algorithm is described in [12], Section 3.6, and [7]:
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Algorithm 3 (Mixed LS-TLS for d = 1)

Given:
An N £M data matrix A with M1 exactly known linearly independent col-
umns and 0 < M1 <M ,
an N £ 1 observation vector b,
an M-dimensional vector t indicating whether the i:th column of A is known
exactly (ti = 0) or not (ti = 1) ; i = 1; :::;M .

Step 1: Column permutations in A
If 0 < M1 < M , permute the columns A of such that

AP = [A1;A2], M =M1 +M2,
where P is an M £M permutation matrix and A1 contains the M1 exactly
known columns in A.

Step 2: QR factorization of [A1;A2; b]
If M1 > 0 then compute the QR factorization:

[A1;A2; b] = Q

·
R11 R12
0 R22

¸
,

where Q is orthogonal and R11 (M1 £M1) is upper triangular,
R12 :M1 £ (M2 + 1), R22 : (N ¡M1)£ (M2 + 1) :

If M1 =M then calculate the OLS solution µ̂

solve R11µ̂ = R12 by back-substitution.
else

R22 Ã [A1;A2; b]
end

Step 3: Singular value decomposition (SVD) of R22
UTR22V = diag(¾1; : : : ; ¾s); s = min (N ¡M1;M2 + 1),
with U , V = [v1; : : : ; vM2+1] orthonormal, ¾i¡1 ¸ ¾i for i = 2; ::; s and
¾j = 0 for j > s.

Step 4: Rank determination
If not user-determined, compute the numerical rank r (·M2) of [A2; b] :

¾1 ¸ ::: ¸ ¾r > Rº ¸ ¾r+1 ¸ ¾M2+1,
with Rº an appropriate rank determinator.

Step 5: Solution space V2
If M1 > 0 then

V22 Ã [vr+1; ¢ ¢ ¢ ; vM2+1]
solve R11V12 = ¡R12V22 by back-substitution

V2 Ã

·
V12
V22

¸
; V12 :M1 £ 1; V22 :M2 + 1£ 1.

else
V2 Ã [vr+1; ¢ ¢ ¢ ; vM2+1]

end

Step 6: TLS solution µ̂
Compute with Householder transformations the orthogonal matrix Q such

that V2Q =

·
Y Z

0 ¡

¸
,
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Y :M £M2 ¡ r, Z :M £ 1, ¡ : 1£ 1
If ¡ = 0 then

fTLS solution is nongenericg
lower the rank r with the multiplicity of ¾r
go back to step 5.

else

solve by forward elimination: µ̂¡ = ¡Z:
end

Step 7: Inverse row permutation in µ̂

If 0 < M1 < M , undo the permutations P : µ̂ Ã P µ̂.

5.3.4 Selected method

In the estimation of a rectangle only some columns in A are subject to errors, see
Rectangle model 1 on page 10. Thus, the only suitable linear LS method is the
mixed LS-TLS method. In this method it cannot be guaranteed that a unique
solution always is calculated, but then the minimum norm can be singled out.
It can be shown that in the mixed LS-TLS method the parameter estimates

are consistent if both eA2 and eb are known, or if the relation between eA2 and eb
is known [4], [12]. Further, if A2;0, eA2 and eb are jointly normal distributed the
parameter estimates are maximum likelihood (ML) estimates [4].

5.4 Some nonlinear least squares methods

This description of nonlinear least squares methods follows Dennis and Schnabel
[5], Chapter 9-10. The nonlinear least squares problem is

min
µ2RM

f (µ) =
1

2

NX

i=1

r2i (µ) =
1

2
RT (µ)R (µ) ;

where N > M; the residual function R : RM ! R
N is nonlinear in µ and ri(µ)

denotes the i:th component function of R (µ). In geometric …tting ri(µ) represents
the orthogonal distance between the data point (xi; yi) and the rectangle. The
criterion function f (µ) is minimized iteratively and this can be performed using
di¤erent methods. When deriving the nonlinear least squares methods below, we
will need the derivatives of R (µ) and f (µ). We start with deriving them before we
describe the speci…c methods. The …rst derivative matrix of R (µ) is the Jacobian
matrix J (µ) 2 RN£M , where

J (µ)ij =
@ri

@µj
:

The …rst derivative (or gradient) of f (µ) is

rf (µ) =
NX

i=1

ri(µ) ¢ rri (µ) = J
T (µ)R (µ)
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and the second derivative (or Hessian) is

r2f (µ) =
NX

i=1

¡
rri (µ) ¢ rr

T
i (µ) + ri(µ) ¢ r

2ri (µ)
¢
= JT (µ) J (µ) + S (µ) ;

where

S (µ) =
NX

i=1

ri(µ) ¢ r
2ri (µ) :

This can be summarized in the iterative Newton method

µt+1 = µt ¡¢µ

= µt ¡
¡
r2f (µ)

¢¡1
rf (µ)

= µt ¡
¡
JT (µt)J (µt) + S (µt)

¢¡1
JT (µt)R (µt) ;

t = 1; 2; : : :

The problem is that S (µ) usually is unavailable, inconvenient to obtain or too ex-
pensive to approximate by …nite di¤erences. We will therefore study three approx-
imations of the Newton method: the Gauss-Newton method, the Gauss-Newton
method with regularization and the quasi-Newton method.

5.4.1 Gauss-Newton

In the Gauss-Newton method it is assumed that JT (µt)J (µt) À S (µt) or that
r2f (µ) ¼ JT (µ)J (µ). Let us assume that J (µt) have full column rank, we then
have the iterative Gauss-Newton method

µt+1 = µt ¡
¡
JT (µt)J (µt)

¢¡1
JT (µt)R (µt) :

The Gauss-Newton method have some advantages and disadvantages:

Advantages

1. Locally quadratically convergent on zero-residual problems.

2. Quickly locally linearly convergent on problems that are not too nonlin-
ear and have reasonably small residuals.

3. Solves linear least-squares problems in one iteration.

Disadvantages

1. Slowly locally linearly convergent on problems that are su¢ciently non-
linear or have reasonably large residuals.

2. Not locally convergent on problems that are very nonlinear or have very
large residuals.

3. Not well de…ned if J (µt) does not have full column rank.

4. Not necessarily globally convergent.
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5.4.2 Regularized Gauss-Newton

The step size ¢µ is well-de…ned and in the descent direction if J (µt) has full
column rank and if JT (µt)J (µt) is non-singular and positive de…nite. This may
not always be the case during an iteration process. To overcome this problem
some kind of regularization technique can be used. A common improvement of the
Gauss-Newton algorithm is to choose µt+1 by a trust region approach (also called
Levenberg-Marquardt regularization)

µt+1 = µt ¡
¡
JT (µt)J (µt) + ¹tI

¢¡1
JT (µt)R (µt) ;

where ¹t = 0 if ±t ¸
¯̄
¯
¡
JT (µt)J (µt)

¢¡1
JT (µt)R (µt)

¯̄
¯ and ¹t > 0 otherwise. In

this method S (µ) is approximated by ¹tI. Di¤erent strategies of selecting values
on ¹t and ±t is described in [5]. The regularized Gauss-Newton method may be
slowly locally convergent on large residual or very nonlinear problems.

5.4.3 Quasi-Newton

The quasi-Newton method is more complex than the Gauss-Newton method, but
can on the other hand handle problems that contain more nonlinearities and larger
residuals. The di¤erence lies in that S (µ) is approximated with a more complex
function than in the Gauss-Newton methods. In one implementation of the quasi-
Newton method r2f (µ) is approximated by

Ht+1 = Ht +
yty

T
t

yTt st
¡
Htsts

T
t Ht

sTt Htst
;

where yt = rf (µt+1)¡rf (µt) ;

st = xt+1 ¡ xt;

xt+1 = xt ¡H
¡1
t rf (µt) :

This is the positive de…nite secant method (also called BFGS after its discoverer
Broyden, Fletcher, Goldfarb and Shanno), but it will be called the quasi-Newton
method in this thesis. According to the authors [5], the positive de…nite secant
method is only a little slower than Newton’s method and it can be superior to
the Gauss-Newton method on medium- and large-residual problems. It may be
quickly locally convergent on examples for which the Gauss-Newton method do
not converge at all. This method have proven strong convergence results when it
is applied to a strictly convex function, see Theorem 9.5.1 in [5].

5.4.4 Initial values of the parameters

As noted in [6], the initial value of µ is crucial for convergence to the true values (and
not to a local minimum) and that when possible, linear least squares techniques
can be used for retrieving initial values of the parameters.
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Ljung [18] notes that it is worth some e¤ort on producing good initial values
of µ. Both the Gauss-Newton and the quasi-Newton methods have good local
convergence rates, but not necessarily fast convergence far from the minimum.
Good initial values, i.e., that are reasonable close to the true values, usually pays
o¤ in fewer iterations and shorter total computing time. Ljung suggests that for
physically parametrized models physical insight shall be used to provide reasonable
initial values.

5.4.5 Selected methods

We have shortly described three di¤erent methods for iterative minimization of a
nonlinear least squares problem; the Gauss-Newton method, the regularized Gauss-
Newton method and the quasi-Newton method. The simulations in [6] showed that
if the initial values of the parameters are reasonable, all three methods converge
when …tting a circle or an ellipse.
The equation of a rectangle, however, contains discontinuities and more non-

linear elements compared to the equation of a conic. It is hard to say whether
the rectangle estimation problem will be too nonlinear or if the residuals are too
large for the Gauss-Newton and regularized Gauss-Newton methods. If the Gauss-
Newton method shall be applicable JT (µ)J (µ) must be non-singular. When we
have evaluated the equation of the rectangle we will check whether JT (µ)J (µ) is
non-singular or singular. If it is possible to calculate H (µ) analytically it is also
interesting to test the (complete) Newton method.
None of the methods can guarantee global convergence. The convergence and

speed of convergence depend on the nonlinearities in f (µ), the size of the residuals
and how close the initial parameters are to the minimizing parameters. There-
fore, we will perform tests on all four methods, i.e., the Gauss-Newton method,
the regularized Gauss-Newton method, the quasi-Newton method and the Newton
method.

5.5 Rectangle …tting using least squares methods

5.5.1 Constrained linear least squares

In Section 2.3 Rectangle model 1 was described, see page 10:

side 1 : c1 + n1x+ n2y = 0

side 2 : c2 ¡ n2x+ n1y = 0

side 3 : c3 + n1x+ n2y = 0

side 4 : c4 ¡ n2x+ n1y = 0

and : n21 + n
2
2 = 1;

where the normal vector (n1;n2) is orthogonal to side 1 and side 3 of the rectangle,
the normal vector (¡n2;n1) is orthogonal to side 2 and side 4 of the rectangle and
ci is the perpendicular distance between side i and the origin, i = 1; 2; 3; 4.
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Divide the data set (xi; yi) ; i = 1; :::; N , between the four sides of the rectangle
so that (x1;s; y1;s) ; s = 1; :::; N1; belongs to side 1, (x2;t; y2;t) ; t = 1; :::; N2; belongs
to side 2, (x3;u; y3;u) ; u = 1; :::; N3; belongs to side 3 and (x4;v; y4;v) ; v = 1; :::; N4;
belongs to side 4, respectively. In this case the data set consists of the outer object
and ground points and the division into the di¤erent sides of the rectangle will be
made using the data association approach described in Section 5.2. We now have
the following constrained least squares problem:

min
µ2RM

jrj2 = min
µ2RM

NX

i=1

r2i

subject to

0
BBBBBBBBBBBBBBBBBBBBBB@

1 0 0 0 x1;1 y1;1
...
...
...
...

...
...

1 0 0 0 x1;N1 y1;N1

0 1 0 0 y2;1 ¡x2;1
...
...
...
...

...
...

0 1 0 0 y2;N2 ¡x2;N2

0 0 1 0 x3;1 y3;1
...
...
...
...

...
...

0 0 1 0 x3;N3 y3;N3

0 0 0 1 y4;1 ¡x4;1
...
...
...
...

...
...

0 0 0 1 y4;N4 ¡x4;N4

1
CCCCCCCCCCCCCCCCCCCCCCA

0
BBBBBB@

c1
c2
c3
c4
n1
n2

1
CCCCCCA

=

0
BBB@

r1
r2
...

rN1+N2+N3+N4

1
CCCA

and n21 + n
2
2 = 1;

N1 +N2 +N3 +N4 = N;

where µ =
£
c1 c2 c3 c4 n1 n2

¤T
. The suitable algorithm for this problem

is the mixed LS-TLS algorithm, see Section 5.3.3, where A1 consists of the four …rst
columns of the large matrix, A2 consists of the …fth column of the large matrix and

b consists of the sixth column of the large matrix, µ1 =
£
c1 c2 c3 c4

¤T
and

µ2 =
£
n1 n2

¤T
. An explanation of how the constraint n21 + n

2
2 = 1 is included

in the minimization is given in Appendix A.

5.5.2 Nonlinear least squares

Let us study Rectangle model 2, see page 10. The four angles ®1; ®2; ®3 and ®4
can be replaced with one angle ® and (xc; yc) can be replaced with a point (x0; y0),
which is the center of gravity of the rectangle. Then the equations of the rectangle
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becomes

side 1 : rs = ¡(xs ¡ x0) sin®+ (ys ¡ y0) cos®¡
W

2
(5.6a)

side 2 : rt = ¡(xt ¡ x0) cos®¡ (yt ¡ y0) sin®¡
L

2
(5.6b)

side 3 : ru = (xu ¡ x0) sin®¡ (yu ¡ y0) cos®¡
W

2
(5.6c)

side 4 : rv = (xv ¡ x0) cos®+ (yv ¡ y0) sin®¡
L

2
; (5.6d)

where ® is the angle between the x0- and x-axis, (x0; y0) is the center of gravity
the rectangle, and the length and width of the rectangle is L and W , respectively,
see Figure 5.4. This parametrization is called Rectangle model 3.

α

Figure 5.4: Overview of the nonlinear LS minimization problem.

The data set (xi; yi) ; i = 1; :::;N , is divided between the four sides of the
rectangle so that (xs; ys) ; s = 1; :::; N1; belongs to side 1, (xt; yt) ; t = 1; :::; N2;
belongs to side 2, (xu; yu) ; u = 1; :::; N3; belongs to side 3 and (xv; yv) ; v = 1; :::; N4;
belongs to side 4, respectively, N1+N2+N3+N4 = N . rs represents the orthogonal
distance between a data point and side 1 of the rectangle, rt the orthogonal distance
between a data point and side 2, ru the orthogonal distance between a data point
and side 3 and rv the orthogonal distance between a data point and side 4. In this
case the data set consists of the outer object and ground points and the division
into the di¤erent sides of the rectangle is made using the data association approach
described in Section 5.2.
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For a counter clockwise listing of the sides the residual for each side are expressed
as in (5:6a)-(5:6d). For a clockwise listing of the sides the residual of side 2 is
expressed as (5:6d) and the residual of side 4 is expressed as (5:6b). If equations
(5:6a)-(5:6d) are used anyway for describing a rectangle where the sides are listed
clockwise, the result will be that either L or W will have a negative value. Thus, if
we study the absolute values of the estimates of L and W the last two constraints
in Rectangle model 2, (2:3h)-(2:3i), are also included in this formulation.

Expressions of f (µ) ;rf (µ) and J (µ)

As each side of the rectangle is described in a separate submodel, each side will
have a separate minimization function. Hence, the criterion function f(µ) will be

min
µ2RM

f(µ) = min
µ2RM

"
1

2

N1X

s=1

r2s(µ) +
1

2

N2X

t=1

r2t (µ) +
1

2

N3X

u=1

r2u(µ) +
1

2

N4X

v=1

r2v(µ)

#
; (5.7)

where µ = (x0; y0; L;W;®)
T and the expressions of rs, rt, ru and rm are given in

(5:6a)-(5:6d). The expressions of rf (µ), JT (µ)J (µ) and H (µ) are calculated in
Appendix B. The calculations show that JT (µ) J (µ) is singular only when the data
set is error free and that H (µ) can be calculated analytically without too much
e¤ort. Thus, both the Gauss-Newton method and the Newton method are worth
to be tested on the rectangle estimation problem.

Initial values

The initial values of µ are retrieved from the minimum rectangle estimation, see
Section 4.5, where xstart0 = ystart0 = 0, Lstart andW start is the estimated length and
width, respectively, and ®start equals the Á that corresponds to the minimal area.

Returned estimates

The returned estimates will be µ̂ =
³
x̂0; ŷ0; L̂; Ŵ ; ®̂

´T
if data are listed counter

clockwise. When the sides are listed clockwise either L̂ or Ŵ will be negative. To
be able to handle both clockwise and counter clockwise listing of the sides the …nal

estimate of the parameters is returned as µ̂ =
³
x̂0; ŷ0;

¯̄
¯L̂
¯̄
¯ ;
¯̄
¯Ŵ
¯̄
¯ ; ®̂

´T
.
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5.6 The size and orientation estimation algorithm

The complete rectangle estimation process, i.e., the size and orientation estimation
process, can be described as an algorithm:

Algorithm 4 (Rectangle estimation process)
Given: Data of an object (delivered by the previously performed segmentation
process).
Step 1: Sort data using Algorithm 1.
Step 2: Estimate the minimum rectangle using Algorithm 2 and outer object data.
Step 3: Associate all outer object and ground data to one of the sides of the rect-
angle using the method described in Section 5.2.
Step 4: Improve the rectangle estimate using an LS algorithm.

So far, we cannot say whether the appropriate LS algorithm is the linear, con-
strained LS-TLS algorithm or one of the nonlinear LS algorithms. If the appropri-
ate algorithm is one of the Newton methods (with or without approximations), the
size and orientation estimates calculated in step 3 will be used as initial parameter
values.

5.7 Performance

We will now investigate the performance of these LS rectangle estimation methods
in some Monte Carlo simulations. The data association is performed using the
method described in Section 5.2 and the initial values of the nonlinear LS methods
are the estimates of the minimum rectangle estimator. We will in principle perform
Algorithm 4, but on outer object data only (i.e., pairground = nil). The tests are
performed on the same data set as in Section 4.6. Each side of the rectangle
is represented by 1000 data points, i.e., N1 = N2 = N3 = N4 = 1000. The
performance is studied with respect to correctness in length and width estimates,
use of CPU time and number of iterations (for the nonlinear LS methods).
The used LS-TLS algorithm is from [7] (clsq.m). That algorithm di¤ers from

Algorithm 3 in this thesis in that the normalization in step 6 is not performed,
because the result of step 5, V2, ful…ls

V2 =

·
V12
V22

¸
=
£
c1 c2 c3 c4 n1 n2

¤T
:

The nonlinear algorithms used are the Matlab functions for the Gauss-Newton
method (lsqnonlin.m with J (µ) given), regularized Gauss-Newton method
(lsqnonlin.m with the Levenberg-Marquardt method selected and J (µ) given),
quasi-Newton (fminunc.m with Hessian update method equal to BFGS, line search
procedure equal to cubic polynomial and rf (µ) given) and Newton (fminunc.m
with line search procedure equal to cubic polynomial and rf (µ) and H (µ) given).
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For all methods the termination tolerance on the function value and the termination
tolerance on µ were set to 10¡4.
The linear and nonlinear LS methods will be compared in their computational

e¢ciency. The goal is to study if there is a trend that one of the methods in
general is faster then the others, i.e., a comparison of relative CPU usage will be
performed. The absolute values of CPU time usage depend on the computer and is
not interesting. The computational e¢ciency will be studied by logging the CPU
time used by Matlab to perform the calculations (command cputime.m). For the
linear LS method the CPU time for the call to clsq.m will be logged and for the
nonlinear LS methods the CPU time for the call to lsqnonlin.m and fminunc.m,
respectively, will be logged.

5.7.1 Results

During the tests the Gauss-Newton algorithm often warned that JT (µ)J (µ) was
near singular and that the result may be inaccurate. The results of MSE of length
and width estimates con…rms the problem with the Hessian approximation of the
Gauss-Newton method, see Figure 5.5. The rectangle estimation problem is either
too nonlinear or the residuals too large (or both) for this method. The Gauss-
Newton method is classi…ed as not applicable to this problem.
During the tests of the regularized Gauss-Newton method the algorithm warned

a few times that JT (µ) J (µ) was near singular, but the estimates of length and
width are, in MSE sense, almost as good as for the remaining methods, see Figure
5.5.
The best estimates, in MSE sense, of length and width are given by the LS-

TLS, quasi-Newton and Newton algorithms. Those three methods perform about
equal. The MSE for the estimates of length and width are smaller, about 104 times
smaller, than those of the minimum rectangle estimator, see Section 4.6. Results
of length and width estimates for these three algorithms are also shown in Figure
5.5.
For the nonlinear LS methods it is also interesting to study how many iterations,

on the average, each method needs to …nd a minimum, see Figure 5.6. The mean
number of iterations decreases with the knowledge of the Hessian. The regularized
Gauss-Newton method, that have the simplest approximation of the Hessian, needs
about 20-60 iterations to reach the minimum. The quasi-Newton method, that have
a more complex approximation of the Hessian, needs about 13-20 iterations to reach
the minimum. Finally, the Newton method, that uses the analytical expression of
the Hessian, needs 6-5 iterations to reach the minimum.
A drawback of the Newton method is that there are many calculations involved

to calculate the Hessian. In Figure 5.7 the mean of CPU usage for the LS-TLS,
regularized Gauss-Newton, quasi-Newton and Newton algorithms are shown. The
cost of the calculation of the Hessian is remarkable, as the quasi-Newton and New-
ton methods needs about the same amount of CPU time to reach the minimum.
The fastest algorithm is the LS-TLS algorithm, which uses about 10 times less
CPU time than the best nonlinear LS algorithm!
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Figure 5.5: MSE of length (upper) and width (lower) as a function
of error variance ¾2v for rectangle4 in Figure 4.12. Lower solid: LS-
TLS, dashed: Newton, dotted: quasi-Newton, dash-dotted: regularized
Gauss-Newton, upper solid: Gauss-Newton. The lines of LS-TLS, New-
ton and quasi-Newton are very close to each other.

5.8 Conclusions

In this chapter we proposed a method for association of outer object and ground
data to the di¤erent sides of the rectangle. Further, we proposed two ways of
improving the rectangle estimate; a linear, constrained LS method (mixed LS-TLS)
and a nonlinear LS method (quasi-Newton).
Several LS methods were tested in simulations. The fastest method was the

linear, constrained LS method which needed 10 times less CPU usage than any of
the nonlinear LS methods. Of the nonlinear LS methods, the quasi-Newton and
Newton methods performed about equal in sense of CPU usage. All three methods,
i.e. the mixed LS-TLS, the quasi-Newton and Newton methods, returned estimates
that, concerning MSE, were about 104 times smaller than those of the minimum
rectangle estimator.
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Figure 5.6: Mean number of iterations of the nonlinear LS meth-
ods as a function of error variance ¾2v for rectangle4 in Figure 4.12.
Dashed: Newton, dotted: quasi-Newton, dash-dotted: regularized
Gauss-Newton.
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Figure 5.7: Mean CPU usage as a function of error variance ¾2v for
rectangle4 in Figure 4.12. Solid: LS-TLS, dashed: Newton, dotted:
quasi-Newton, dash-dotted: regularized Gauss-Newton.



6
Final tests

In the previous chapters only parts of the rectangle estimation process (Algorithm
4) have been evaluated. It is now time to test the complete rectangle estimation
process. We will do tests both on simulated, realistic data and on real data collected
with the laser radar system.

6.1 Tests on simulated, realistic data

The performance of the rectangle estimation process will be investigated in some
Monte Carlo simulations. We will perform Algorithm 4 but in step 4 both the
LS-TLS algorithm and the quasi-Newton algorithm will be tested. The Newton
algorithm will not be studied further, as it is similar to the quasi-Newton algo-
rithm in terms of CPU time usage. The performance of the algorithms (minimum
rectangle, LS-TLS and quasi-Newton) will, again, be tested in terms of correctness
in length and width estimates and CPU usage. We will also check whether the LS
methods return less biased estimates than the minimum rectangle estimator. The
tests are performed in the same manner as the earlier tests, see Section 4.6 and
Section 5.7, but on a more realistic data set, see Figure 6.1. The outer objects
points are placed with equal distance (0:4) around the object, which means that
there are more data on the longer sides than what there are on the shorter sides of
the rectangle. The ground points are placed with equal distance (0:4), both relative
to the outer object points and to the other ground points, along the longer sides
of the object.
We start with an exact (error free) description of the rectangle. Random errors,

normally distributed with zero mean and variance ¾2v are added to the coordinates x

53
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and y, respectively. The noise is generated separately for the x and y coordinates.
The noise can therefore be considered independently and identically distributed
with ¾2ex = ¾

2
ey = ¾

2
v. The lengths and widths are estimated using the minimum

rectangle, mixed LS-TLS and quasi-Newton algorithms on the perturbed data set.
The simulations are repeated for increasing noise variance ¾2v. The properties of
the length and width estimates are studied in MSE, see (4:7), and in squared bias
sense. The squared bias is de…ned as (see [12], page 244)

squared bias
³
µ̂
´
=
³
E
³
µ̂
´
¡ µ0

´T ³
E
³
µ̂
´
¡ µ0

´

and estimated by

squared bias
³
µ̂
´
=

8
<
:

0
@ 1
J

JX

j=1

µ̂j

1
A¡ µ0

9
=
;

2

:

The MSE and squared bias are averaged over 100 sets (i.e., J = 100).
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Figure 6.1: The second set of simulated rectangle data, without noise.
Stars (¤) represent outer object points and pentagrams (?) ground data
points.
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6.1.1 Results

For this type of data the improvement in MSE for using a LS method instead of
the minimum rectangle estimator is about 10 ¡ 100 times. The improvement is
smaller than in the previous test, see Section 5.7, as the number of samples is
smaller (N = 70 instead of N = 4000). The di¤erent LS methods are, however,
comparable even in this simulation. In the beginning of Chapter 5 we claimed that
the bias in the estimates would decrease if we used LS methods. The simulations
show that the bias decreases when the LS methods are used after of the minimum
rectangle estimator. Both LS methods performs similar also in squared bias sense.
The MSE and squared bias of the estimates of length and width for rectangle4 in
Figure 6.1 are shown in Figure 6.2 and Figure 6.3, respectively. If we study the
mean CPU usage of the LS-TLS and quasi-Newton algorithms, see Figure 6.4, we
see that the di¤erence between the methods have increased to about 100 times!
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Figure 6.2: MSE (upper) and squared bias (lower) of length as a func-
tion of error variance ¾2v for rectangle4 in Figure 6.1. Solid: minimum
rectangle estimator; dashed: mixed LS-TLS; dotted: quasi-Newton.
The LS-TLS and quasi-Newton curves are overlapping.
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Figure 6.3: MSE (upper) and squared bias (lower) of width as a func-
tion of error variance ¾2v for rectangle4 in Figure 6.1. Solid: minimum
rectangle estimator; dashed: mixed LS-TLS; dotted: quasi-Newton.
The LS-TLS and quasi-Newton curves are overlapping.
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Figure 6.4: Mean CPU usage as a function of error variance ¾2v for rect-
angle4 in Figure 6.1. Dashed: mixed LS-TLS; dotted: quasi-Newton.
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6.2 Tests on real data

We also tested the rectangle estimation process (Algorithm 4) on some vehicles
measured by the laser radar system. In this case we do not know the true length
and width exactly and therefore, we show the estimated rectangles overloaded on
the data sets. However, to have some sense of the true lengths and widths of the
vehicles we also measured them using a measuring-tape.
In Figure 6.5 and Figure 6.6 two di¤erent measurements on a military terrain

vehicle are shown, hereafter called terrain vehicle 1 and 2, respectively, and in Fig-
ure 6.7 a measurement of a truck is shown. These examples show three di¤erent
scan directions. For terrain vehicle 1 the scan direction was parallel to the shorter
sides and consequently, all ground measurements are placed along the longer sides.
For terrain vehicle 2 the scan direction was diagonal to the shorter sides and the
ground measurements are placed along both the longer and shorter sides. For the
truck the scan direction was parallel to the longer sides and all ground measure-
ments are placed along the shorter sides.

6.2.1 Results

For terrain vehicle 1, see Figure 6.5, there were totally 67 data points on the
object and the ground; 20 on the ground, 24 inner object and 23 outer object
points. Of the outer object points, 12 belonged to the convex hull. The minimum
rectangle estimation was performed on 10 di¤erent combinations of vertices and
normal vectors. The quasi-Newton algorithm terminated after 18 iterations.
For terrain vehicle 2, see Figure 6.6, there were totally 59 data points on the

object and the ground; 12 on the ground, 32 inner object and 15 outer object
points. Of the outer object points, 10 belonged to the convex hull. The minimum
rectangle estimation was performed on 9 di¤erent combinations of vertices and
normal vectors. The quasi-Newton algorithm terminated after 13 iterations.
For the truck, see Figure 6.7, there were totally 85 data points on the object

and the ground; 8 on the ground, 38 inner object and 39 outer object points. Of
the outer objects point, 11 belonged to the convex hull. The minimum rectan-
gle estimation was performed on 10 di¤erent combinations of vertices and normal
vectors. The quasi-Newton algorithm terminated after 22 iterations.
The estimated lengths and widths of the vehicles are found in Table 6.1 and

Table 6.2, respectively. The residuals of the LS methods are listed in Table 6.3 and
in Table 6.4 the CPU times used by the LS algorithms are listed. The measurement
of CPU time used are performed as described in Section 5.7 and the CPU values
are averaged over 100 tests.
Let us …rst study the rectangles estimated by the LS methods. For all vehicles

there are either ground points placed on the inside of the rectangle and/or outer
object points placed on the outside of the rectangle. This is in order, as both
coordinates of the data set are contaminated with errors.
If we compare the length and width estimates for terrain vehicle 1 and 2, we

can see that the estimates for terrain vehicle 1 are closer to the true values than
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Min. rectangle LS-TLS Quasi-Newton True value
Terrain vehicle 1 3:40 3:44 3:44 3:45
Terrain vehicle 2 3:82 4:00 4:00 3:45

Truck 7:52 7:57 7:57 7:50

Table 6.1: The length estimates of the vehicles. True value is a tape-
measure of the vehicle. All values in meters.

Min. rectangle LS-TLS Quasi-Newton True value
Terrain vehicle 1 1:77 1:94 1:94 1:85
Terrain vehicle 2 1:92 1:92 1:92 1:85

Truck 2:15 2:04 2:04 2:09

Table 6.2: The width estimates of the vehicles. True value is a tape-
measure of the vehicle. All values in meters.

the estimates for terrain vehicle 2. This is probably due to that for terrain vehicle
1 there are 43 ground and outer object points available while there are only 27
ground and outer object points available for terrain vehicle 2.

In the target classi…cation process, Section 1.2, we proposed that the residual
can be used as a ”quality measure” of how well data …t the rectangle. The usage
of the residual as a quality measure is probably useful when …tting the data set to
di¤erent kinds of shapes, e.g., rectangles, ellipses etc. There is also a connection
between the length and width estimates and the residual, although, it also includes
the data point values. For example, the length and width estimates of Rectangle
model 1 (see page 2.2e) are:
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LS-TLS Quasi-Newton
Terrain vehicle 1 1:25 1:25
Terrain vehicle 2 :32 :32

Truck :48 :48

Table 6.3: The residuals of the estimates for the LS algorithms. All
values in m2.

LS-TLS Quasi-Newton
Terrain vehicle 1 0:0009 0:1220
Terrain vehicle 2 0:00022 0:1073

Truck 0:0003 0:1369

Table 6.4: Mean of CPU time used, averaged over 100 tests, for the
LS algorithms. All values in seconds.

and

Ŵ = ĉ2 ¡ ĉ4 =
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Thus, the residual cannot be used directly as a measurement of how well the es-
timates corresponds to the true (unknown) values. This can be seen clearly if we
compare the residuals for terrain vehicle 1 and 2. The estimate of terrain vehicle 2
returns a smaller residual than the estimate of terrain vehicle 1, but the estimates
of length and width are worse, compared to the true values. The correctness in the
length and width estimates seems to be more dependent on the scan direction and
the number of data points (N).
For this small set of examples the CPU time usage is some ten times smaller for

the mixed LS-TLS algorithm than for the quasi-Newton algorithm. The di¤erence
between the algorithms seems to be larger for smaller data sets than for the larger
data set used in Section 5.7.
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a b

c d

Figure 6.5: The rectangle estimation process for terrain vehicle 1.
a: all data points on the object (¤) and ground (?), b: the minimum
rectangle estimate, c: data association (same notation as in Figure 5.2),
d: LS rectangle estimates. The LS-TLS and quasi-Newton curves are
overlapping. Solid: minimum rectangle estimator; dashed: mixed LS-
TLS; dotted: quasi-Newton.
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a b

c d

Figure 6.6: The rectangle estimation process for terrain vehicle 2.
a: all data points on the object (¤) and ground (?), b: the minimum
rectangle estimate, c: data association (same notation as in Figure 5.2),
d: LS rectangle estimates. The LS-TLS and quasi-Newton curves are
overlapping. Solid: minimum rectangle estimator; dashed: mixed LS-
TLS; dotted: quasi-Newton.
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a b

c d

Figure 6.7: The rectangle estimation process for the truck. a: all data
points on the object (¤) and ground (?), b: the minimum rectangle
estimate, c: data association (same notation as in Figure 5.2), d: LS
rectangle estimates. The LS-TLS and quasi-Newton curves are over-
lapping. Solid: minimum rectangle estimator; dashed: mixed LS-TLS;
dotted: quasi-Newton.
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6.3 Conclusions

In this chapter we tested the complete rectangle estimation process on both simu-
lated, realistic data and on real laser radar data.
The tests on simulated data showed that the MSE and squared bias of the length

and width estimates decreased when LS methods (LS-TLS or quasi-Newton) were
used. For this type of data the improvement in MSE and squared bias for using a
LS method after the minimum rectangle estimator was about 10¡1000 times. The
improvement was less than in the previous test, see Section 5.7, as the number of
samples, N , was smaller. The di¤erence in mean CPU usage of the LS-TLS and
quasi-Newton algorithms increased when the data set was smaller. The di¤erence
between the methods was about 100 times, compared to 10 times in the earlier
simulations in Section 5.7.
The tests on real data showed that the number of samples, N , and the scan

direction is vital for retrieving length and width estimates that are close to the
true values. In the target classi…cation process, see page 3, we suggested that the
residual could be used as a ”quality measure” of how well data …t the rectangle.
The usage of the residual as a quality measure is probably useful when …tting the
data set to di¤erent kinds of shapes, e.g., rectangles, ellipses etc. There is also a
connection between the length and width estimates and the residual, but it also
includes the data point values. Thus, the residual cannot be used directly as a
measurement of how well the estimates corresponds to the true (unknown) values.
For this small set of examples the CPU time usage was some ten times smaller for
the mixed LS-TLS algorithm than for the quasi-Newton algorithm.
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7
Discussion

7.1 Conclusions

We have proposed a method for estimation of the size and orientation of an object.
The estimation process can be divided into several steps:

Given: A list of object points and ground points closest to the object, ordered
in scan lines.

1. Sort all data points, both from the object and from the ground, in an
order following the object edge clockwise or counter-clockwise.

2. Estimate the smallest rectangle that includes all data points from the
object.

3. Associate each data point to one side of the rectangle (from step 2).

4. Improve the rectangle estimate using least squares methods based on
both object and ground data.

5. Calculate the residual of the …nal rectangle estimate and the estimated
length and width, respectively.

Returned: Estimates of length, width and orientation of the object. The residual
of the rectangle estimate is also returned.

65
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The data sorting algorithm proposed requires O(N) time, as knowledge of the
data structure is available. We have proposed a method for …tting a rectangle as
good as possible to object data, by minimizing the rectangle area that contains the
convex hull. The method assumes that data are error free. As only object data, and
no ground data, are used we get an estimate of the minimum area of the object.
Thus, the length and width estimates of the vehicle will be biased. The method
…nds a set of four vertex points and a normal vector, i.e., an orientation, that
minimizes the area of a rectangle. From the area estimate it is possible to receive
estimates of the length and width of the object. The minimum rectangle estimation
process consists of calculation of the convex hull and a rectangle minimization.
Each step can be performed in linear time and thus, the total execution time
requires O(N) :
A method for association of outer object and ground data to the di¤erent sides

of the rectangle have been proposed. Further, we proposed two ways of improving
the rectangle estimate; a linear, constrained LS method (mixed LS-TLS, TLS: total
least squares) and a nonlinear LS method (quasi-Newton). The fastest method,
concerning CPU time usage, is the linear, constrained LS method which needs 10
times less CPU usage than any of the nonlinear LS methods.
The thesis ends with tests of the complete rectangle estimation process on both

simulated, realistic, data and on real laser radar data. The tests on simulated
data showed that the mean square error and squared bias of the length and width
estimates decrease when LS methods (LS-TLS or quasi-Newton) are used. For this
type of data the improvement in mean square error and squared bias when using
a LS method after the minimum rectangle estimator was about 10-1000 times.
The di¤erence in mean CPU usage of the LS-TLS and quasi-Newton algorithms
increased when the data set is smaller and is about 100 times.
The tests on real data showed that the number of samples, N , and the scan

direction is vital for retrieving length and width estimates that are close to the
true values. The usage of the residual as a quality measure is probably useful when
…tting the data set to di¤erent kinds of shapes, e.g., rectangles, ellipses etc. There
is also a connection between the length and width estimates and the residual, but
it also includes the data point values. Thus, the residual cannot be used directly
as a measurement of how well the estimates corresponds to the true (unknown)
values.

7.2 Future work

This study is based on a number of assumptions. First, we assumed that the data
collection and the segmentation process have been successful, i.e., that no outliers
are present and that the complete object is visible. Second, we assumed that all
vehicles in top view look like rectangles. Third, we have only used position data,
i.e., x and y values.
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7.2.1 Robustness to outliers

In many cases it is probably not possible to assume that all outliers are removed
in the object detection process and then the rectangle estimation process must be
able to handle them. In [20], Section 4.2.1, a method of removing outliers in the
convex hull calculation is described. The method weights the vertices such that
points that are too far away from the center of gravity of the data set are less
trusted to be part of the convex hull.
Another way to handle outliers is to use another minimizing criterion than the

squared residual during the improvement of the rectangle estimate. In [27], Zhang
describes two interesting methods for conic …tting in the presence of outliers, M-
estimators and least median of squares. In the M-estimator method the e¤ect of
outliers are reduced by replacing the squared residuals r2i by another function of
the residuals:

min
µ2RM

NX

i=1

½ (ri) ;

where ½ is a symmetric, positive-de…nite function with a unique minimum at zero
and is chosen to increase less than square (e.g., ½ (ri) = ri). Several functions for ½
are described in [27]. If we can make a good estimate of the standard deviation of
the errors of good data, then data whose error is larger than a certain number of
standard deviations can be considered as outliers. In the least median of squares
(LMedS) method the parameters are estimated by minimization of the median of
the squared residuals, i.e.,

min
µ2RM

median
i

r2i :

This estimator approach the smallest value for the median of squared residuals
computed for the entire data set. According to [27], this method is very robust to
false matches as well as outliers.

7.2.2 Other shapes than rectangles

In the 2D domain it is interesting to handle data sets including concavities. Then
more general model (or models) must be applied. An idea of how to indicate where
there are concavities in the data set is to perform the minimum rectangle estimation
as described in Chapter 4. If ground data points are (signi…cantly) placed in the
interior of the convex hull there is probably a concavity in the object’s shape. This
improved shape estimator must be able to handle more complex shapes then a
rectangle.
It is also interesting to extend the geometric …tting to 3D. Then the rectangle

cannot be replaced by a cubic but with a more complex shape. Rectangle model 3
can probably be extended to shapes with concavities and/or to 3D. However, the
problem will be a nonlinear LS problem, which has shown to need more CPU time
than linear LS problems to reach a solution.
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7.2.3 Including more information in the classi…cation pro-
cess

The laser radar system can also measure the intensity in the returned pulse. The
intensity has shown to be dependent on the material in the object’s surface [22].
This can be used in a data fusion process to improve the vehicle classi…cation by
adding information of what kind of material that is measured. Moreover, the laser
radar system used in this thesis uses an older sensor technique. Never sensors with
higher accuracy and resolution have been developed [23].
During the object detection process many imaging laser radar systems are sup-

ported by imaging systems working in infrared (IR) wavelengths. The detection
can also be done by the IR system alone, i.e., the IR sensor is a cueing sensor. The
IR signature of an object is also valuable to fuse with the laser radar information
in a vehicle classi…cation process.
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Inclusion of the constraint in the

linear least squares problem

In the linear constrained LS minimization problem, see Section 5.5.1, we have

min
µ2RM

jrj2 = min
µ2RM

NX

i=1

r2i
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2
2 = 1;

where µ =
£
c1 c2 c3 c4 n1 n2

¤T
and N1 +N2 +N3 +N4 = N .
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The basic steps of Algorithm 3 will be explained in an example. The example
will show how the constraint n21+n

2
2 = 1 is included in the minimization. Consider

the equation system

Aµ = 0;

which is estimated by

Aµ̂ = r;

using the minimization

min
µ2RM

jrj2 = min
µ2RM

NX

i=1

r2i

subject to

n21 + n
2
2 = 1:

Let us study the expression of the residual jrj2. In Algorithm 3, step 2, a QR
factorization of A is performed such that A = QR, where QTQ = I and R is
upper triangular. The 2-norm is invariant under orthogonal transformation (see
[9], Section 2.5.2) and we have

jrj2 = jAµj2 = jQRµj2 = jRµj2 ;

where
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Thus, the minimization problem can be expressed as

min
µ2RM

(r11c1 + r12c2 + r13c3 + r14c4 + r15n1 + r16n2)
2 +

(r22c2 + r23c3 + r24c4 + r25n1 + r26n2)
2 +

(r33c3 + r34c4 + r35n1 + r36n2)
2 +

(r44c4 + r45n1 + r46n2)
2
+

(r55n1 + r56n2)
2 +

(r66n2)
2
= 0

subject to

n21 + n
2
2 = 1:
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The ”real” minimization problem is a minimization over the unit circle:

min
n1;n2

¯̄
¯̄
µ
r55 r56
0 r66

¶µ
n1
n2

¶¯̄
¯̄
2

subject to

n21 + n
2
2 = 1:

This problem is solved using SVD (step 3 in Algorithm 3). The values of¡
c1 c2 c3 c4

¢T
are given by back-substitution (step 5 in Algorithm 3).
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B
Calculation of rf (µ), JT (µ) J (µ)

and H (µ)

As described in (5:7), page 48, when the sides of the rectangle are listed counter
clockwise the criterion function is

f(µ) =
1

2

N1X

s=1

r2s(µ) +
1

2

N2X

t=1

r2t (µ) +
1

2

N3X

u=1

r2u(µ) +
1

2

N4X

v=1

r2v(µ);

where

µ = (x0; y0; L;W;®)
T
;

rs(µ) = ¡(xs ¡ x0) sin®+ (ys ¡ y0) cos®¡
W

2
;

rt(µ) = ¡(xt ¡ x0) cos®¡ (yt ¡ y0) sin®¡
L

2
;

ru(µ) = (xu ¡ x0) sin®¡ (yu ¡ y0) cos®¡
W

2
;

rv(µ) = (xv ¡ x0) cos®+ (yv ¡ y0) sin®¡
L

2
;

N = N1 +N2 +N3 +N4:
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B.1 The gradient rf(µ)

The expression of rf(µ) is

rf (µ) =
h
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B.2 The Jacobian J(µ) and JT (µ)J(µ)

To …nd the expression of the Jacobian; J (µ) ; J (µ)ij =
@ri
@µj
; we must …rst identify

R (µ):
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:

Let us now return to the Jacobian:
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where

Rs (µ) = rs; s = 1; :::; N1

Rt (µ) = rt; t = 1; :::; N2
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Rv (µ) = rv; v = 1; :::;N4:
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This gives the following expression of JT (µ)J (µ) :
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If N1 = N2 = N3 = N4 we have
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0 2N1 0 0 j2;5

0 0 1
2
N1 0 j3;5

0 0 0 1
2
N1 j4;5

j1;5 j2;5 j3;5 j4;5 j5;5

1
CCCCA
;

where

j1;5 = sin®

N1X

s=1

@

@®
rs (µ)¡ sin®

N1X

u=1

@

@®
ru (µ)

+ cos®
N1X

t=1

@

@®
rt (µ)¡ cos®

N1X

v=1

@

@®
rv (µ) ;

j2;5 = ¡ cos®
N1X

s=1

@

@®
rs (µ) + cos®

N1X

u=1

@

@®
ru (µ)

+ sin®

N1X

t=1

@

@®
rt (µ)¡ sin®

N1X

t=1

@

@®
rv (µ) ;

j3;5 = ¡
1

2

N1X

t=1

@

@®
rt (µ)¡

1

2

N1X

t=1

@

@®
rv (µ)

j4;5 = ¡
1

2

N1X

s=1

@

@®
rs (µ)¡

1

2

N1X

u=1

@

@®
ru (µ) ;

j5;5 =

N1X

s=1

µ
@

@®
rs (µ)

¶2
+

N1X

t=1

µ
@

@®
rt (µ)

¶2

+
N1X

u=1

µ
@

@®
ru (µ)

¶2
+

N1X

t=1

µ
@

@®
rv (µ)

¶2
:

In this case JT (µ)J (µ) will be singular if

j1;5 = j2;5 = j3;5 = j4;5 = j5;5 = 0;

which will occur for an error free data set.
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B.3 The Hessian H (µ)

The Hessian is a symmetric matrix de…ned as

H (µ) = r2f (µ) =
@2

@µ2
f (µ) :

In this case the expression of the Hessian is

H (µ) =

0
BBBBBBB@

@2

@x20
f (µ) @

@x0
@
@y0
f (µ) @

@x0
@
@Lf (µ)

@
@x0

@
@W f (µ)

@
@x0

@
@®f (µ)

@
@x0

@
@y0
f (µ) @2

@y20
f (µ) @

@y0
@
@Lf (µ)

@
@y0

@
@W f (µ)

@
@y0

@
@®f (µ)

@
@x0

@
@Lf (µ)

@
@y0

@
@Lf (µ)

@2

@L2 f (µ)
@
@L

@
@W f (µ)

@
@L

@
@®f (µ)

@
@x0

@
@W f (µ)

@
@y0

@
@W f (µ)

@
@L

@
@W f (µ)

@2

@W2 f (µ)
@
@W

@
@®f (µ)

@
@x0

@
@®f (µ)

@
@y0

@
@®f (µ)

@
@L

@
@®f (µ)

@
@W

@
@®f (µ)

@2

@®2 f (µ)

1
CCCCCCCA

where

@2

@x20
f (µ) = N1 sin

2 ®+N2 cos
2 ®+N3 sin

2 ®+N4 cos
2 ®;

@

@x0

@

@y0
f (µ) = ¡N1 sin® cos®+N2 sin® cos®

¡N3 sin® cos®+N4 sin® cos®;

@2

@y20
f (µ) = N1 cos

2 ®+N2 sin
2 ®+N3 cos

2 ®+N4 sin
2 ®;

@

@x0

@

@L
f (µ) = ¡

1

2
N2 cos®+

1

2
N4 cos®;

@

@y0

@

@L
f (µ) = ¡

1

2
N2 sin®+

1

2
N4 sin®;

@2

@L2
f (µ) =

1

4
N2 +

1

4
N4;

@

@x0

@

@W
f (µ) = ¡

1

2
N1 sin®+

1

2
N3 sin®;

@

@y0

@

@W
f (µ) =

1

2
N1 cos®¡

1

2
N3 cos®;

@

@L

@

@W
f (µ) = 0;

@2

@W 2
f (µ) =

1

4
N1 +

1

4
N3;
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@

@x0

@

@®
f (µ) = cos®

N1X

s=1

rs(µ)¡ sin®
N2X

t=1

rt(µ)

¡ cos®
N3X

u=1

ru(µ) + sin®
N4X

v=1

rv(µ)

+ sin®
N1X

s=1

±

±®
rs(µ) + cos®

N2X

t=1

±

±®
rt(µ)

¡ sin®
N3X

u=1

±

±®
ru(µ)¡ cos®

N4X

v=1

±

±®
rv(µ);

@

@y0

@

@®
f (µ) = sin®

N1X

s=1

rs(µ) + cos®
N2X

t=1

rt(µ)

¡ sin®
N3X

u=1

ru(µ)¡ cos®
N4X

v=1

rv(µ)

¡ cos®
N1X

s=1

±

±®
rs(µ) + sin®

N2X

t=1

±

±®
rt(µ)

+cos®

N3X

u=1

±

±®
ru(µ)¡ sin®

N4X

v=1

±

±®
rv(µ);

@

@L

@

@®
f (µ) = ¡

1

2

N2X

t=1

±

±®
rt(µ)¡

1

2

N4X

v=1

±

±®
rv(µ);

@

@W

@

@®
f (µ) = ¡

1

2

N1X

s=1

±

±®
rs(µ)¡

1

2

N3X

u=1

±

±®
ru(µ);

@2

@®2
f (µ) =

N1X

s=1

·
@2

@®2
rs(µ) ¢ rs(µ)

¸
+

N1X

s=1

·
±

±®
rs(µ) ¢

±

±®
rs(µ)

¸
+

+
N2X

t=1

·
@2

@®2
rt(µ) ¢ rt(µ)

¸
+

N2X

t=1

·
±

±®
rt(µ) ¢

±

±®
rt(µ)

¸

+
N3X

u=1

·
@2

@®2
ru(µ) ¢ ru(µ)

¸
+

N3X

u=1

·
±

±®
ru(µ) ¢

±

±®
ru(µ)

¸

+
N4X

v=1

·
@2

@®2
rv(µ) ¢ rv(µ)

¸
+

N4X

v=1

·
±

±®
rv(µ) ¢

±

±®
rv(µ)

¸
;
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and

@2

@®2
rs(µ) = + (xs ¡ x0) sin®¡ (ys ¡ y0) cos®;

@2

@®2
rt(µ) = +(xt ¡ x0) cos®+ (yt ¡ y0) sin®;

@2

@®2
ru(µ) = ¡(xu ¡ x0) sin®+ (yu ¡ y0) cos®;

@2

@®2
rv(µ) = ¡(xv ¡ x0) cos®¡ (yv ¡ y0) sin®:
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