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Abstract—The sound of a working vehicle provides an impor-
tant clue to the vehicle type. In this paper, we introduce the
“eigenfaces method,” originally used in human face recognition,
to model the sound frequency distribution features. We show that
it can be a simple and reliable acoustic identification method if
the training samples can be properly chosen and categorized.
We treat the frequency spectrum in a 200 ms time interval (a
“frame”) as a vector in a high-dimensional frequency feature
space. In this space, we study the vector distribution for each kind
of vehicle sound produced under similar working conditions. A
collection of typical sound samples is used as the training data set.
The mean vector and the most important principal component
eigenvectors of the covariance matrix of the zero-mean-adjusted
samples together characterize its sound signature. When a new
zero-mean-adjusted sample is projected into the principal compo-
nent eigenvector directions, a small residual vector indicates that
the unknown vehicle sound can be well characterized in terms of
the training data set.

Index Terms—Acoustic identification, frequency analysis, pat-
tern recognition, principal components, sound signature, vehicle
sounds.

I. INTRODUCTION

A LMOST every moving vehicle makes some kind of
noise; the noise can come from the vibrations of the

running engine, bumping and friction of the vehicle tires with
the ground, wind effects, etc. Vehicles of the same kind and
working in similar conditions (“class”) will generate similar
noises, or have some kind of noise signature. This noise pattern
gives a clue for military reconnaissance or a surveillance
mission robot to detect a vehicle and recognize its class. Our
research goal is to characterize noise patterns and use them to
recognize whether a new detected sound is from a vehicle of
known type, and if so to classify its type.

When travelling at different speeds, under different road
conditions, or with different acceleration, a vehicle emits
different noise patterns. These noises can be sampled or
digitized and grouped in a series of time slices (frames); then
if the spectrum changes with time, it can be described in
the frequency domain as the change of frequency spectrum
distribution over frames.
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If we consider a frame’s noise frequency spectrum, with
components, as an-dimensional vector, then each frame can
be considered as a point in this-dimensional frequency spec-
trum space. Noises from the same kind of vehicle and recorded
under similar conditions will not be randomly distributed; if
the classes are properly defined, samples from the same class
should span a convex subregion, and a new sample can be
classified according to its location in the frequency spectrum
feature space.

To find the features in high dimensional space, we adopt
and adapt the eigenfaces method used in the vision com-
munity to recognize human faces. This method is known as
the Karhunen–Loeve expansion in pattern recognition, and
as factor or principal-component analysis in the statistical
literature.

II. SIGNAL PROCESSING

Vehicle noise is a kind of stochastic signal. A stochastic
signal is defined as a stationary signal if its stochastic features
are time-invariant, otherwise it is called a nonstationary signal.
A vehicle that is making some noise of interest may be
idling, or moving toward or away from an observing point
(where the recording microphone is set); meanwhile it may be
accelerating or decelerating etc. Over an extended observing
time, the signal will generally not be stationary. But usually
the recording microphone is fixed, and the vehicle’s running
conditions usually do not change very often if it is not moving;
if it is moving, then a fairly short sound duration can be
recorded. So a vehicle sound signal can be reasonably treated
as stationary, or as segments of stationary signal.

Besides the engine’s running conditions, another important
effect that has to be considered, to treat the moving vehi-
cle noise as a piecewise stationary signal, is the acoustic
Doppler effect. The maximum Doppler effect occurs when
the recording microphone is set in the vehicle path. Let
be the Doppler frequency shift, be the original frequency,

be vehicle travelling speed, and be sound propagation
speed; then we have . If the vehicle is
travelling at 50 km/h ( 30 mi/h) and the speed of sound
is 343.4 m/s, the maximum Doppler effect will cause about

4.2% change at the frequency component. As the vehicle
noise generally has a frequency spectrum with large low
frequency components, and the recording microphone usually
is set off road, the resulting Doppler shift, less than 5%, is not
very conspicuous compared with the unpredictable changes in
recording conditions. Experience shows that taking the sound
as a stationary signal is reasonable.
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Fig. 1. Blocking sound wave samples into frames.

Assuming each sample duration is short enough that the
signal is stationary, then signal processing can be relatively
simple. Below is a brief description of the process.

A. Frequency Analysis and Spectra Normalization

The recorded sound wave is digitized at a sampling rate
of 22.025 kHz.1 First, the data are normalized to zero-mean
amplitude.2 Then, the data are blocked into frames of 4096
samples, each frame sequentially with
an overlap of 512 samples between adjacent frames, see Fig. 1.
As the engine noise can be considered as a stationary process
in more than one frame (4096 sample points or 0.186 s) time
interval, this 12.5% overlap is enough to smooth the result.

For each complete set of samples
in frame , a preprocessing smoothing filter, the Hamming
window, is used to depress the Gibbs’ effect in subsequent
Fourier analysis

(1)

(2)

Next, a standard FFT algorithm is applied to each prepro-
cessed frame. The result is a set of 4096 FFT coefficients. As
the FFT phase information is not very important in sound pat-
tern recognition, we take the spectra
for subsequent analysis, i.e., we consider only the power
spectrum

(3)

where is a vector with 2048 power spectrum components
equally spaced in frequency from 5.4 Hz to 11.0125 kHz.
With most vehicles, about 80% of the power spectrum is

1We used an ordinary tape cassette recorder to record sounds, and a
SoundBlaster card to sample the recording. The frequency response band is
quite limited, but comparable to general human hearing sensitivities. 22.025
kHz is a standard SoundBlaster setting.

2The digitizing resolution is 8-bit. This processing removes the dc digital
bias of the sound blaster card, which reports all signals in the range 0–255.

concentrated in frequencies lower than 2000 Hz, and 90% in
frequencies lower than 4000 Hz. Thus to reduce computation
time and memory requirement, we can take only the first
1200 components. That is, is a vector with the first 1200
components of , which are the frequencies from 5.4 Hz to
6453 Hz at an increment step of 5.4 Hz.

As the sound recording conditions are very hard to control
in the field, the spectrum vectors need to be normalized before
any further processing. Normalizing each frame to unit power

is adequate, although other schemes, e.g., normalizing it to
some low stable frequency spectral component, are sometimes
recommended.

B. Spectrum Variation Adjustment

1) Spectrum Sensitivity Variation over Frequency:If we
study the sound spectrum distribution, we can easily find
that the sound spectra are generally not evenly distributed;
instead, their large components heavily reside at lower end of
the frequency band, and bigger variations usually accompany
bigger spectrum components. Thus, we need some kind of
adjustment in modeling the variation of spectrum.

2) Detection and Source Noise:As the frame time is short
(0.186 s) at the detector end, any impulsive shaking or rubbing
on the microphone causes huge variations in the frame’s
spectrum. At the source end, when a vehicle is moving it may
experience bumps that also causes big changes in the frame’s
spectrum. These problems occur very often, but are not easy
to pick out automatically.

Fig. 2 illustrates the means and standard deviations of the
frequency spectrum distribution of two noise samples recorded
under almost the same working conditions: the microphone
was at the same location, and the car was moving at about
30 mi/h over more-or-less the same path. It can be seen that
the spectrum distributions can be quite different.

3) Spectrum Adjustment:These observations suggest that
to make the analysis robust we should avoid letting small parts
of spectrum variations dominate the analysis result; instead we
should consider the spectrum distribution as a whole. A simple
form of transformation can achieve the following effect:

(4)

(5)

The constant factors and are determined by trial-
and-error experiments. For the currently available data,

and give good feature abstraction, i.e., a
small variation in the eigenvalues of the training set covariance
matrix (described later).

III. V EHICLE NOISE PATTERN RECOGNITION

The scheme adopted here for recognition is based on an
information theory approach, seeking to encode the most
relevant information in a group of training samples which best
distinguish them from one another. The approach transforms
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Fig. 2. Spectra may vary considerably even under similar working conditions.

the noise frequency distribution variations into a small set of
structures, i.e., the principal components of the initial training
set of sampled noise signals.

Recognition is performed by projecting a new sample (with
its mean adjusted) into the subspace spanned by the principal
component structures, then by classifying the new sample as
a member of the known class if its position is near the locus
of that training sample set.

A. Training Processing for Pattern Feature Abstraction

Suppose we have the training set of adjusted spectrum
samples of the same class, i.e., from the same
kind of vehicle, recorded under similar conditions. The average
adjusted sound spectrum distribution of this set is defined by

Each sample differs from the average by a variance vector
. This vector variance is then subject to principal

component analysis, which seeks a set of orthonormal
vectors and their associated eigenvalues which best
describe the distribution of the data. The vectors and
scalars are the eigenvectors and eigenvalues, respectively,
of the covariance matrix

The covariance matrix of the training set with samples can
maximally have (in the case that , otherwise
1200) nontrivial eigenvalues. We take the eigenvectors

, which correspond to the largest eigenval-
ues . (It is convenient if these are appropriately
arranged such that ).

The average adjusted sound spectrumand the key eigen-
vectors of the covariance matrix together
represent the main features of this vehicle sound signature.

is chosen heuristically through experiments, such that the

Fig. 3. Typical eigenvalue distribution.

Fig. 4. Typical residual distribution.

first largest eigenvalues are conspicuously greater than the
rest of the others. Fig. 3 is a typical example of an eigenvalue
distribution.
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Fig. 5. Classification of a heavy truck and a motor cycles from sedan car class.

B. Classification by Using Abstracted Features

Once and are created, a new sample
can be classified by calculating how far away the new ad-
justed spectrum vectors are from the and

spanned subregion.
First, is mean-adjusted and projected

onto the orthonormal eigenvector directions

(6)

Then the mean and projected components are subtracted
from the adjusted spectrum . The remainder is

(7)

The closer the adjusted spectrum vector is to the
feature spanned subregion, the smaller the residual components
will be. So the magnitude of can be interpreted as a
measurement of likelihood that belongs to the class. Some
threshold can be set so that if

then we classify as a member of the training set class,
otherwise we conclude it not belongs to the class.

is chosen by the following procedures. From the training
set of adjusted spectrum vector samples, randomly choose

. These samples are not used in the training
process. Instead their distances from the training set spanned
subregion are measured by the residual component calculation
as shown above. From their magnitude distributioncan be
decided statistically.

In Fig. 4 the first residual magnitude-points are from
the same class of cars (index 15 to 28 are from ),
the rest are from an another class a building air conditioner.

C. Implementation

Usually for a car passing by, there can be more than 4 or 5 s
sustained signal available. We use a frame of about 0.2 s for
each spectrum analysis, so there can be at least several dozen

samples available for classification. Thus a statistical method
can be used to improve the system dependability.

1) Training Example Selection:An artifact of the training
scheme is that to guarantee that the training group will span
a convex region in feature space, we need, at the beginning
of the training process, to presentonly examples that are
solidly members (“core members”) of the class being built. The
core learning examples are those recorded under thetypical
conditions. For example, we choose sedan type cars passing
the same section of road at about the same speed on sunny
days (dry road surface) etc.

When new data are added to the training set, it is very
important that only two sets with similar spectrum shape are
merged. Otherwise the new data might smear out the features
of both original data and the new data itself.

2) Building Hierarchical Feature Pattern:To relax record-
ing condition constraints or to extend a known class’s applica-
tion range, we would hope that several groups of classes could
be further generalized to form a broader class. It is indeed
possible to build a hierarchical classification system structure,
but only with lots of trial-and-error experiments.

For example, for sound signature extraction, the change of
working and recording conditions may have greater effects
than car type change. Thus it is possible that some sound
signatures of different cars (travelling within certain ranges
of speeds under the same road conditions) can be merged
together to form a new broader class with new parameters

and ; but, the sound signatures of the
same kind of car can not be merged due to the variations of
the weather condition (wet/dry road, wind effects, etc.). The
main criterion is the Euclidean distance between the means
of the adjusted spectra: only two groups with small Euclidean
distance between them should be merged.

Once this hierarchical structure is built, classification can
be more reliable, as a new sample can be checked against
different ranges of classes.

D. Examples of Discriminating Cars from Other Vehicles

In one session of our experiments, the microphone is set
to a fixed place to record all the passing vehicles’ noise. Of
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all the recorded traffic noise data, those of sedan cars passing
by at speed range 30–50 km/h (about 20–30 mi/h) happened
most often. So we choose these most typical examples to
build this sound signature class. By carefully following the
scheme described in the above section, we construct a model
characterized by a mean spectrum vector and the six largest
eigenvectors.

With this model built, we test several other types of typical
vehicles. Fig. 5 shows the results of a truck and a motor
cycle noise. In the figure, the plus sign “” indicates residuals
from vectors in the car noise training set, the cross sign “”
indicates the residuals from vectors randomly selected from
the sample class, and the small circle sign “” indicate those
from other classes—noise of a heavy truck and a motor cycle
respectively.

From the figure, it is clear that this method successfully
captures the features of this sound class signature. And it is
not surprised to notice that the motor cycle noise is much more
easily distinguished, as it is also more significantly different
in our hearing experience.

IV. RESULTS AND FUTURE RESEARCH

Under stable recording conditions, i.e., with the microphone
fixed in the same place to record all samples, sound signatures
of the same class can be extracted fairly reliably if we
carefully follow the class feature building scheme discussed
in Section III-C. The above examples show a quite significant
residual difference for the typical sound samples that do not
belong to the known class, thus indicating this method’s
discrimination abilities.

With more data, we would expect the distribution difference
between the training set and the test set would diminish, and
thus the feature extraction to be more accurate. With more
data, in Figs. 4 and 5, the “” and “ ” would have the same
residual distribution, and it would be smaller in magnitude thus
implying stronger discrimination abilities. With more data we
could also have a finer discrimination between sound classes,
so more reliably identify sounds.

The more difficult future work is to generalize our results,
as to date they are more sensitive to recording conditions
than we think is fundamentally necessary. We are now work-
ing toward standardizing the recording conditions and trying
better equipment such as digital microphones and recorders
with higher performance. These should permit us to build a
comprehensive sound signature library, and thus overcome or
bypass the recording condition sensitivity problem.

The strength of using adjusted frequency spectrum principal
component analysis is that a sound feature is not characterized
by just a few specific frequency components; rather the whole
spectrum is considered. The key requirement is to build
up a properly structured, correctly classified, well-featured

sound library. As this would probably be too tedious do
manually for a general vehicle identification system, computer-
aided supervised learning as well as feasible approaches for
unsupervised learning algorithms are both necessary subjects
for future research.
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