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Vehicle Surround Capture: Survey of Techniques and
a Novel Omni-Video-Based Approach for

Dynamic Panoramic Surround Maps
Tarak Gandhi and Mohan Manubhai Trivedi

Abstract—Awareness of what surrounds a vehicle directly af-
fects the safe driving and maneuvering of an automobile. This
paper focuses on the capture of vehicle surroundings using video
inputs. Surround information or maps can help in studies of driver
behavior as well as provide critical input in the development of
effective driver assistance systems. A survey of literature related
to surround analysis is presented, emphasizing detecting objects
such as vehicles, pedestrians, and other obstacles. Omni cameras,
which give a panoramic view of the surroundings, can be useful for
visualizing and analyzing the nearby surroundings of the vehicle.
The concept of Dynamic Panoramic Surround (DPS) map that
shows the nearby surroundings of the vehicle and detects the
objects of importance on the road is introduced. A novel ap-
proach for synthesizing the DPS using stereo and motion analysis
of video images from a pair of omni cameras on the vehicle
is developed. Successful generation of the DPS in experimental
runs on an instrumented vehicle test bed is demonstrated. These
experiments prove the basic feasibility and show promise of omni-
camera-based DPS capture algorithm to provide useful semantic
descriptors of the state of moving vehicles and obstacles in the
vicinity of a vehicle.

Index Terms—Active safety, collision avoidance, driver
information systems, image motion analysis, panoramic vision,
stereo vision.

I. INTRODUCTION AND MOTIVATION

SAFER automobile travel and smoother traffic conditions

are universally sought. The universality and gravity of road

hazards was recognized when the World Health Organization

issued a comprehensive report on Road Accident Prevention

[1]. According to the studies conducted by the U.S. National

Highway Traffic Safety Administration (NHTSA), traffic acci-

dents are the leading cause of death for age group 3–33 and

the eighth leading cause among all age groups. The NHTSA

report Traffic Safety Facts 2003 [2] states that there have been

38 252 fatal crashes with 42 643 fatalities due to accidents on

U.S. roads in 2003. As shown in Table I, 40.4% were due to

collision with other vehicles, 31.1% were due to collision with
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a fixed object, and 11.5% were due to collision with pedestrians.

In fact, for passenger cars, accounting for 44.7% of total fatali-

ties, around one third of fatal accidents are with other vehicles

in front, one sixth are with vehicles on sides, and one sixth

are with fixed objects. According to crash data from NHTSA,

approximately 88% of rear-end collisions are caused by driver

inattention and following too closely [3].

Safety systems for automobiles are typically classified in two

categories, namely 1) passive and 2) active. Over the past three

to four decades, passive safety approaches such as improved

design and structure of the vehicle and restraint systems in-

cluding safety belts and airbags [4] have indeed saved countless

lives and have minimized the extent of serious injuries. Active

systems are relatively new, and unlike passive systems, active

systems are employed to prevent a vehicle from an accident or

collision. Examples of these include antilock breaks, electronic

stability control, and improved visibility systems. The research

presented in this paper is about an active safety system for

accurate and robust characterization of various dynamic events

surrounding a vehicle that can be made available to the driver.

Intelligent driver support systems, which warn the driver

of a possible collision, would allow the driver to take timely

action to avoid or at least reduce the impact of collisions. In

fact, NHTSA countermeasure effectiveness modeling predicts

that “head-way detection systems can theoretically prevent

37% to 74% of all police reported rear-end crashes” [3]. In

recent years, considerable research has been performed for

developing such driver support systems to enhance safety by

reducing the accidents. These systems use a sensor suite, which

may contain the video cameras mounted in various positions,

thermal infrared imagers, active sensors such as RADAR,

LIDAR, LASER scanners, and ultrasonic sensors, and data

from vehicle dynamic sensors. Lane detection helps to deter-

mine the lateral position of the vehicle and warn the driver in

case of lane departure. This in turn helps to prevent scenarios

such as collision with other vehicles or fixed objects, or running

off the road. Detecting objects in front of the vehicle is useful

in preventing accidents due to sudden braking of the other

vehicle. Monitoring sides of the vehicle containing blind spots

is especially useful when the driver intends to change lanes.

Detecting nonmotorists such as pedestrians and bicyclists is

of particular interest for nonhighway driving since pedestrians

are harder to detect than vehicles and are more vulnerable. In

addition to visible sensors, thermal infrared sensors are being

explored for pedestrian detection.

1524-9050/$20.00 © 2006 IEEE
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TABLE I
(a) CRASHES BY FIRST HARMFUL EVENT, MANNER OF COLLISION, AND CRASH SEVERITY. (b) PASSENGER CARS

INVOLVED IN CRASHES BY MOST HARMFUL EVENT AND CRASH SEVERITY (BASED ON [2])

Thus, it can be seen that an effective driver assistance system

should have a perception of complete surroundings including

the events taking place in front, back, and sides of the car. A

dynamic surround map illustrated in Fig. 1 could be very useful

for visualizing and analyzing the situation. The surround map

would contain lanes, vehicles, pedestrians, and other objects

along with their attributes such as position, size, and velocity.

Surround map generation would also be useful for offline analy-

sis of interesting events, especially in driver behavioral studies

[5]. Based on driver behavioral studies and the expertise of spe-

cialists on cognitive science, psychology, and human–machine

interface, one would be able to develop and evaluate meth-

ods for conveying the information obtained from Dynamic

Panoramic Surround (DPS) to the driver in reliable and

nondistracting manner using modalities such as visual, haptic,

auditory, or their combination.

In the following, we present research dealing with the deriva-

tion of DPS maps. These maps would be useful not only for

systematic studies of driving behavior but also in the devel-

opment of a new generation of driver assistance systems. This

paper brings out the following contributions: (1) motivation and

justification for surround map in driver assistance systems and

driving behavioral studies; (2) presentation of a brief survey

of research relevant to surround detection; (3) introduction of

the DPS map concept and development of an integrated stereo-

and motion-based panoramic surround map using omni video

streams; and (4) experimental studies using LISA-Q [6], a novel

instrumented test bed in generating DPS maps.

II. SURVEY OF RELATED RESEARCH

Autonomous driving and mobile robotics were the main

drivers in the development of some of the early video-based ob-

stacle detection and navigation systems. A number of good sur-

vey papers present some of those earlier efforts. Bertozzi et al.

[7], [8], give a comprehensive survey of the use of computer vi-

sion in intelligent vehicles. Approaches for lane, pedestrian, and

obstacle detection are described and analyzed. Kastrinaki et al.

[9] present another survey of vision techniques used for traffic

analysis from stationary platforms as well as moving vehicles.

In addition, conferences such as the IEEE Intelligent Vehicles

Symposium [10], [11] and the IEEE Intelligent Transportation

Systems Conference [12] deal with the recent research in these

topics. In [13], a survey of lane detection techniques and their

characteristics is performed, and a novel method using steerable

filters [14] is proposed to detect lanes as well as the Botts’

dots markers especially found on California highways. In [15],

Fang et al. present a system for road sign recognition based

on the way humans perform recognition. The system consists

of sensory, perceptual, and conceptual layers analyzing infor-

mation at their respective levels and passing it to the next

higher level. This concept is also used in [16] to detect changes

in driving environment such as entering or exiting tunnel or

freeway, lane changes, and overpasses.

Recently, there has been a shift toward the development

of video-based systems for driver assistance rather than au-

tonomous driving. A number of research groups have consid-

ered lane detection and tracking as the main driver for their
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Fig. 1. Dynamic surround map for (a) freeway and (b) city streets. (x, y)
coordinates of other objects w.r.t. ego vehicle; V velocity w.r.t. road; LP lateral
position of ego vehicle w.r.t. center of the lane. The cross lines denote typical
boundaries between the front and the side surroundings.

vision-based systems. This is indeed a very important and chal-

lenging problem, especially when the constraints of robustness,

accuracy, and real-time operation are critical. In this paper,

our focus is mainly on detection, localization, and mapping of

objects (moving or stationary) in the immediate vicinity of a

moving vehicle with video sensors. Table II shows a number of

studies that consider related issues and are indeed quite relevant

to the topic considered in this paper. A key differentiator of the

research discussed in this paper is the desire to develop a DPS

map in a “holistic” manner rather than considering independent

sensors and modules for detecting objects in the front or side of

the vehicle.

A. Front-Object Detection

The objects of interest in front of the vehicle include other

vehicles, stationary obstacles, and pedestrians. For monocu-

lar cameras, motion is an important cue used for detection.

For motion-based detection, the ego motion of background

induced by camera motion is separated from the motion of

independently moving objects in [17]. This approach is used

in [18], which describes a system for video-based driver as-

sistance involving lane and obstacle detection. In addition,

three-dimensional (3-D) model-based detection [19], symmetry

features [20], and Gabor filter banks with genetic algorithm [21]

have also been used for vehicle detection.

Stereo cameras are particularly useful for separating front

objects from road features. If the road is assumed to be planar,

the disparities of road features can be determined using the

camera calibration and compensated by appropriate transforma-

tion of the images, and the regions with residual disparity are

processed to detect obstacles [22]–[24]. For dealing with non-

planar roads, Labayrade et al. [25] developed a novel concept

of the V-disparity image. Each row of the V-disparity image

contains a histogram of disparities on that row. Road and vehi-

cles form distinctive patterns such as curves and vertical lines,

which can be used to extract the vehicle positions. Rebut et al.

[42] generates 3-D edge maps using stereo matching of image

edges. They perform object detection by grouping and validat-

ing 3-D edges, and removing road edges using V-disparity.

Pedestrians are the most vulnerable objects on the road. For

the PROTECTOR system [26], [27], pedestrian detection is

performed with stereo images using hierarchical templates and

neural networks. In [28], 3-D stereo detection is followed by

support vector machine (SVM) classification to discriminate

pedestrians from nonpedestrians. Thermal infrared images are

particularly useful for pedestrian detection in cold and dark

conditions by searching for hotspots and validating them using

cues such as motion [29] or 3-D human models [30]. In [31],

SVM-based classification is used to validate the pedestrians.

There is a considerable interest in active vision systems in

which the camera parameters are controlled based on process-

ing of external stimuli. These systems attempt to solve the

problems due to large illumination changes and tradeoffs such

as resolution versus field-of-view (FOV). In [32], an active

vision system mounted on transit bus is used for real-time

monitoring of traffic parameters.

Sensor fusion has been used to combine relatively accurate

depth information from radar or laser scanner and the higher

angular resolution of video to get more reliable detection.

Kato et al. [33] use the depth output from a millimeter radar

and model the obstacle as a planar surface at the distance given

by the radar. Fang et al. [34] use coarse depth information of

multiple targets from radar or stereo to split the image into

layers corresponding to different depths to facilitate robust

detection of objects.

B. Blind Spot Monitoring and Omnidirectional Vision

In addition to objects in front, monitoring of the rear view

and side views including blind spots is also important. In [35],

a biologically inspired motion detection approach is used to

monitor the blind spots and warn the driver about overtaking

vehicles. Researchers at the University of Minnesota have been

working on lane keeping for the Minnesota Department of

Transportation (Mn/DOT) Bus Rapid Transit program to enable

buses to run safely in narrow bus-only shoulders and merge into

normal traffic when required. They have developed a concept of

“virtual mirror” [36], which uses lidar to detect objects around

the bus, register them to the geographic information given by

differential Global Positioning System (GPS), and display the
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TABLE II
RELATED RESEARCH ON OBJECT DETECTION
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objects and the environment to the driver. Stiller et al. [37]

combine the information from digital map, stereo cameras,

radar, and laser scanners for robust obstacle detection.

Omnidirectional cameras or omni cameras give a 360◦ view

of the surroundings and have recently gained popularity in

intelligent vehicle applications. In [38], vehicles on both sides

are captured using virtual views from a single omni camera

and detected based on wheel features. In [39], a monocular

omni camera is used to estimate and compensate vehicle ego

motion, and features having residual motion are grouped to

detect vehicles. In [40], the V-disparity approach developed by

Labayrade et al. [25] is applied to a pair of coaxially mounted

omni cameras for monitoring blind spots behind the vehicle

especially during reversing. However, a large part of the FOV is

occupied by the vehicle itself and is therefore unused. In [41],

an omni camera mounted in a car obtains a panoramic view

consisting of the surroundings as well as the driver’s face.

C. Role of Surround Generation

Many of the above systems deal with lanes, front objects,

or side objects in isolation. For driver assistance systems to

be effective, the full surround scenario should be considered

in an integrated manner. Omni cameras with their panoramic

view are naturally suited for complete surround monitoring of

vehicles. A virtual view looking toward any specified direction

can be electronically generated. However, due to large FOV of

the camera, the resolution of the virtual views becomes low.

Hence, the omni cameras are appropriate for detecting nearby

objects using a small number of sensors.

In this paper, we present an approach for generating a sur-

round map using a pair of omni cameras mounted on the sides

of the vehicle. Video images from both omni cameras are used

to detect objects in front of the vehicle using binocular stereo.

For each side of the vehicle, a monocular view is available

from the respective omni camera. “Motion stereo,” which uses

two consecutive frames from the moving vehicle, is applied to

detect objects on the sides. Note that although this particular

implementation uses omni cameras with hyperbolic mirrors, the

approach can be easily adapted to other types of optics, such as

fish-eye lenses with wide FOV.

In our previous work [39], motion analysis with a monocular

omni camera was used to generate a surround map. It was

observed that the monocular analysis gave good results on

the sides of the vehicle, where independent motion of other

vehicles gives large motion disparity. However, for front objects

at larger distances, binocular stereo-based methods are more

effective since the stereo disparity between laterally placed

cameras is usually greater than the motion disparity due to

the longitudinal motion of a single camera. Therefore, this

system combines the use of binocular stereo analysis using two

cameras for front view and motion analysis using individual

cameras for each side view.

III. VEHICLE SURROUND CAPTURE WITH OMNI VIDEO

The block diagram of the video analysis framework is shown

in Fig. 2. Video sequences are obtained from a pair of omni

cameras mounted on the two sides of the vehicle. Camera

Fig. 2. Block diagram of video analysis from vehicle-mounted omni cameras.

calibration is performed offline to determine the relationship

between the vehicle coordinates and pixel coordinates. Using

the calibration information, the images are transformed to ob-

tain virtual perspective views looking in front of the vehicle.

This transformation called rectification simplifies the binocular

stereo geometry, making it easier to match corresponding fea-

tures between the two images. Area-based correlation is then

used to perform stereo matching between features. The result

is a disparity map showing the displacement of features from

one image to another. Based on the disparity map, the features

are grouped into objects, and the distance to the objects is

computed.

Each omni camera also gives a monocular view of its side of

the road. To detect side objects, stereo processing is performed

between two consecutive frames from the “same” moving cam-

era, so that the camera is displaced between the frames. This

process is known as motion stereo. Rectification is performed

by projecting a part of the image on the vertical plane parallel

to the direction of motion. In this case, the disparity map has

components corresponding to the distance of the object as well

as the independent motion of the object. However, if the moving

object is rigid with the exposed surface almost vertical, its

disparity is approximately constant. On the other hand, the road

below the horizon has the disparity varying with image position.

This difference can be used to segment at least the part of the

object below the horizon from the road. The approximate object

position can be obtained by assuming that the bottom of the

object touches the road.

The object positions obtained from binocular stereo and

motion stereo are converted to the vehicle coordinates to insert

them into the surround map.

The following coordinate systems are used, as shown

in Fig. 3.

1) Vehicle Coordinate System: The origin is on the ground,

the Z-axis points toward the front of the vehicle, the Y -axis

points vertically downward, and the X-axis points toward right

side. The coordinates in the vehicle system are denoted by P0 =
(X0, Y0, Z0)

T .
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Fig. 3. Camera configuration for surround capture and the relevant coordinate
systems. Dashed lines denote the approximate boundaries of the front and the
side virtual views obtained from the omni cameras.

2) Coordinate System of Camera i: The origin of a camera

system is at its optical center, the Z-axis is aligned with

the optical axis, and the X-axis and Y -axis form the image

plane. The transformation between the vehicle and the camera

coordinate frame i = 1, . . . , 2 is represented as

P0 = RiPi +Di, Pi = RT
i (P0 −Di) (1)

where Pi and P0 are coordinates in camera and vehicle systems,

and Ri and Di are the rotation matrix and translation vectors of

camera i, respectively.

3) Omni Pixel Coordinates: Each point Pi in the camera

i’s coordinate system is projected onto the omni camera pixels

wi = (ui, vi)
T by a many-to-one mapping fi as

wi = fi(Pi), Pi(λ) = λgi(wi) + hi(wi) ≃ λgi(wi) (2)

where fi denotes a many-to-one transform from camera to

pixel, and gi and hi constitute the inverse transformation map-

ping every pixel wi back to a 3-D line parameterized by λ in

the camera coordinate system. For central panoramic cameras,

all projection lines pass through a single point on the Z-axis,

which can be taken as origin, i.e., hi = 0. Even if the camera

is not central, one can use the central approximation provided

the points observed from the camera are at a large distance

compared with the camera’s dimensions, which is the case in

this application.

The omni cameras used in this work are central panoramic

cameras, each consisting of a hyperbolic mirror and a camera

placed on its axis, with the center of projection of the camera

on one of the focal points of the hyperbola as shown in Fig. 4.

It can be shown [43] that a point Pi = (Xi, Yi, Zi)
T in the

camera coordinate system is mapped to pixel coordinates wi =
(ui, vi)

T according to





ui

vi

1



 = Ki





Xi

Yi

aiZi + bi
√

X2
i + Y 2

i + Z2
i



 (3)

where ai and bi depend on the omni mirror parameters, and Ki

is the 3 × 3 calibration matrix for camera i. To convert an omni

Fig. 4. Omni camera geometry. The ray from the object passing through the
first focus is reflected toward the second focus and forms an image in the
charge-coupled device (CCD) camera.

pixel (ui, vi) back to camera coordinates Pi (or pi with a scale

factor), the inverse transformation is given by

Pi =λpi = λ





u′i
v′i

ai − bi
√

u′2i + v′2i + 1









u′i
v′i
1



 =K−1
i





ui

vi

1



 (4)

where λ is the scale factor signifying that the omni pixel maps

to a 3-D line passing through camera origin.

Although this work uses hyperbolic omni cameras, other

types of optics such fish-eye lenses could also be used. In that

case, one only needs to change the functions f , g, and h in (2)

based on the geometry of the optical system.

IV. CAMERA CONFIGURATION AND CALIBRATION

Due to the comparatively lower resolution of omni cameras,

proper configuration is very important for obtaining good cov-

erage, sensitivity, and foreground–background discrimination.

Consider the simplified situation of a pair of stereo cameras

with focal length f and baseline B at height H above the road

as shown in Fig. 5(a). Let an object at distance D be modeled

using a rectangle perpendicular to the camera axes of width

w and height h. In such case, the whole rectangle will have

a constant disparity, i.e.,

d =
Bf

D
(5)

where f is the focal length. If h < H and if the object were

removed, the points at the top of the original object would be in

the same line of sight as the points on the road at distance Dbg

given by

Dbg = D
H

H − h
. (6)
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Fig. 5. (a) Geometry of object detection from a vehicle-mounted camera.
(b) Image from a top-mounted camera. The object size is large, but the
disparity difference dh − dbg between object and projected point on the road
is small. (c) Images from the side-mounted camera. The object size is small,
but the disparity difference dh − dbg between object and projected point on
the ground is large.

Hence, the disparity dbg of the road at that point would be

dbg = d
H − h

H
. (7)

The difference in disparities between the object top and ground

on the same line of sight would be

d− dbg = d
h

H
. (8)

Thus, a smaller camera height H gives a larger disparity differ-

ence making it easier to discriminate between objects and road.

The above analysis is helpful in determining the advantages

and limitations of different camera configurations. For example,

if a camera is mounted higher, such as on the top of the roof as

in [39], the resulting images contain the top and sides of other

vehicles that have a larger surface area as shown in Fig. 5(b).

However, the disparity difference between vehicle and road is

small, making it difficult to isolate the vehicles purely by stereo.

Furthermore, such a configuration is not suitable for standard

cars. A pair of coaxially mounted omni cameras was used by

Matuszyk et al. [40] to monitor blind spots behind the car

effectively. However, a large part of the FOV is occupied by

the car itself and is therefore unused.

Here, we use a pair of cameras near each side-view mirror

as shown in Fig. 3 (see also Fig. 7 for the actual car photos

and omni images). The view in front of the vehicle overlaps in

the two cameras and is used for binocular stereo. A monocular

view on each side is obtained from the corresponding camera

and is used for motion stereo. The disparity difference between

the vehicle and the ground is larger than that for a top-mounted

camera, making binocular stereo discrimination easier. As a

tradeoff, other vehicles have a smaller frontal area with the

window-mounted camera, reducing their image size as seen

in Fig. 5(c). This makes it somewhat more difficult to detect

vehicles that are farther away.

In addition, the views of the driver and passenger are also

obtained in this camera configuration and can be used to ana-

lyze the driver behavior. In [41], for example, the driver’s face is

detected in a similar setup by fitting an ellipse to edges using the

randomized Hough transform and tracked using a Kalman filter.

The face orientation is estimated using hidden Markov models

and used to generate the view that the driver observes. This

approach has been shown to be robust to illumination changes,

shadows, and other imaging problems.

To match points between multiple cameras and map them

to the 3-D space, it is necessary to calibrate the intrinsic and

extrinsic parameters of the cameras. The intrinsic parameters

relating the pixel and camera coordinates can be precomputed

before the cameras are installed using a setup in [39] or [40].

The intrinsic parameters are used to transform the pixel co-

ordinates wi to a ray in 3-D space through Pi. The extrinsic

parameters relate the vehicle coordinates to each of the camera

coordinates and need to be calibrated when the cameras are

mounted on the vehicle. In particular, the rotation matrices Ri

of the cameras are used to obtain rectified perspective views of

the overlapping FOVs of the omni cameras.

Calibration of extrinsic parameters is currently performed

by taking the vehicle into a scene with a number of parallel

lines in the directions of the vehicle axes. Sample points on

the lines are manually marked. Using (4), the pixel coordinates

w1, w2, . . . , wK of sample points on each line are transformed

to camera projective coordinates p1, p2, . . . , pK within a scale

factor, each corresponding to a ray from the camera origin in the

direction of the line of sight. The coordinates are normalized,

so that ‖pi‖ = 1 and therefore correspond to projections on

a virtual sphere centered at the camera origin. Singular value

decomposition (SVD) of the following matrix is used to fit a

line to all the points:

L = (p1 p2 · · · pK). (9)

The left singular vector corresponding to the smallest singu-

lar value of L gives the vector l corresponding to line equation

lT p = 0. The procedure is repeated for a number of lines in

the image.

Images of parallel lines intersect at the vanishing point

corresponding to the point at infinity in the direction of the line.

If a number of parallel lines have images represented by line

vectors l1, l2, . . . , lN , their vanishing point m of these lines can

be similarly obtained using SVD of

M = (l1 l2 · · · lN ). (10)

For lines along the length of the car (vehicle Z-axis), the

direction of the vanishing point is (0, 0, 1)T in the vehicle

coordinate system. In the camera coordinate system, this is

transformed to RT (0, 0, 1)T = r3, where r3 is the third column

of RT (or third row of R). Similarly, the vanishing point of

the lines across the length of the car along vehicle X-axis is
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(1, 0, 0)T in the vehicle coordinate system, transforming to r1
in the camera coordinate system. This way, the vanishing point

in each direction is equal to the respective row of the rotation

matrix R.

For the vertical Y -direction, one can use vertical objects such

as poles in the image and find their intersection. If such vertical

objects are not available, one can assume orthogonality and put

r2 = r3 × r1. Moreover, due to errors in the determination of

vanishing points, it may be possible that the rows r1, r2, r3 of

the matrix R may not be exactly orthonormal to each other.

In such case, one can take the SVD R = USV T and replace

R by UV T , which is orthonormal. In fact, using an argument

similar to [44, Th. 5.9], it can be shown that this matrix is an

orthonormal matrix closest to the original R.

However, calibration obtained using the above procedure

is sensitive to camera drift and vibrations, which should be

dynamically corrected. For this purpose, one can use the epipo-

lar geometry [44] of the scene. Point and line features can

be extracted from the omni images, and knowing the prior

calibration would help to narrow down the search region for

correspondences. The RANSAC algorithm [44] can then be

used to estimate the calibration parameters more accurately. It

may also be possible to use fixed fiducial marks on the car’s

body in the FOVs of the cameras to partly compensate the cam-

era rotations. Also, for initial calibration, the manual marking

of lines could be replaced by automatic line finding methods

such as Hough transform, which is applied in the projective

coordinate space.

V. STEREO- AND MOTION-BASED PANORAMIC

SURROUND GENERATION

The calibration obtained above is used to obtain a virtual

perspective view in front of the car from both the omni camera

images. If the cameras are at the same height and longitudinal

position, rectified images are obtained, in which the viewing

directions of both images are parallel, and the baseline is per-

pendicular to the viewing direction. Suppose a point (X,Y,Z)
forms images at (xl, yl) and (xr, yr) in the respective virtual

perspective planes of the two cameras with focal length f .

Then, these are related by

xl − xr = fB/Z, yl = yr. (11)

Stereo matching is simplified in this configuration where for

every feature at (xl, yl), one tries to find the corresponding

feature (xr, yr) that should lie along the same row. If the

difference between the camera heights and positions is small,

the vertical disparity yl − yr can be neglected for objects far

from the cameras.

The basic problem in stereo analysis is to find such corre-

spondences. Stereo methods are classified into sparse and dense

stereo. Considerable research has been done on stereo match-

ing, with [45] and [46] surveying the state of art. Implemen-

tations such as [47] are commercially available for computing

disparity maps between two stereo images. In case of sparse

stereo, the depths are obtained only at significant features such

as corners or edges. On the other hand, dense stereo attempts

to find depths at all pixels. However, due to aperture problem,

the depth computations in areas with low texture may not be

reliable. Such pixels should either be removed or the depths

interpolated using neighboring pixels. In [48], a hierarchical ap-

proach based on using multiple primitives such as edge pixels,

edge segments, and regions is used to produce depth maps at

different levels of detail. Results of stereo analysis at higher

levels are used to guide matching at lower levels to produce

reliable depth maps for wide variety of scenes.

In this work, area-based correlation is used for matching to

obtain dense depth map. The implementation in [47] was used,

which consists of the following steps.

1) Preprocessing: To effectively perform stereo matching,

bandpass filtering is applied to the images by convolving

with a Laplacian of Gaussian filter, i.e.,

G(x, y) =
∑

(δx,δy)∈Wl

F (x− δx, y − δy)M(δx, δy) (12)

where F is the original image, M is the filter mask with

region of support Wl, and G is the resulting image.

2) Area correlation: To find correspondences between the

image regions, rectangular patches from one image cen-

tered around (xl, y) are compared with neighboring

patches (xr, y) displaced in horizontal direction using

sum of absolute differences (SAD), i.e.,

S =
∑

(δx,δy)∈W

‖G(xl + δx, y + δy) −G(xr + δx, y + δy)‖

(13)

where disparity d = xl − xr ∈ {0, . . . , Dmax}, W is the

region of support of the patch window mask, and Dmax

is the maximum permissible disparity. The processing

is performed at two levels—coarse and fine—to fill the

areas with low texture and allow for a larger range of

disparities.

3) Peak extraction: For each patch centered at (xl, y) in

the first image, the corresponding patch (xr, y) in the

second image with minimum value of SAD is extracted.

The displacement between the patches xl − xr = d is the

disparity for that pixel. A disparity map is formed by

assigning a value proportional to d to each pixel (xl, y)
in the left image.

4) Post filtering: This step cleans up the noise in the disparity

image. An interest operator is used to reject uniform areas

where the SAD would not have a sharp extremum and

disparity computations would therefore be unreliable. A

left–right check is used to eliminate errors due to depth

discontinuities. Pixels with invalid disparity are given a

null value in the disparity map.

A temporal consistency check is then performed on the

disparity map by computing the per-pixel running variance

and removing pixels with variance larger than the threshold.

This process suppresses pixels with noisy disparities. However,

some pixels at the disparity edges may also get suppressed,
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Fig. 6. Flow charts for (a) front-object detection using binocular stereo and
(b) side-object detection using motion stereo.

although the pixels somewhat inside the object should pass the

test. For better discrimination, one may need to adaptively ad-

just the threshold according to the presence of disparity edges.

A. Front-Object Detection

The road is modeled as a planar surface. Therefore, the

disparity in rectified images is zero at the horizon and linearly

increases with y. The theoretical road disparity is computed

using the information from the calibration module. The pixels

having disparities smaller than or equal to this disparity plus

a small threshold are assumed to lie on the road and are

suppressed. Moreover, pixels on a vehicle object are likely to

have the same disparity. To facilitate detection, pixels with the

same disparity in each column are clustered in a similar manner

as in [25]. The steps in the above process shown in Fig. 6(a) are

as follows:

1) Form an image (score(x, y)) based on the difference

between the disparity d of the pixel and the corresponding

disparity dbg if it were on the road such that

score(x, y) =











0 if disp(x, y) ≤ dbg(y)
[disp(x, y) − dbg(y)] /T

if dbg(y) ≤ disp(x, y) ≤ dbg(y) + T
1 if disp(x, y) ≥ dbg(y) + T

(14)

2) Form a columnwise disparity histogram image

(hist(x, d)) such that

hist(x, d) =
∑

disp(x,y)=d

score(x, y). (15)

Each column of this image is a histogram of the dis-

parities in that column weighted by the score. Pixels in

an object at a particular distance would have nearly the

same disparity and therefore form a horizontal ridge in

the disparity histogram. Even if disparities of individual

object pixels are inaccurate, the histogram image clusters

the disparities and makes it easier to isolate the objects.

3) Smooth the histogram image using Gaussian filtering

and morphological closing. Threshold the image and find

connected components.

4) Form a front obstacle image (obst(x, d)) by replacing

pixels in each column of connected component in his-

togram image by the centroid. This averages the error in

the disparity and gives a subpixel disparity value that is

stored as the gray level in this image.

B. Side-Object Detection

Each omni camera obtains a monocular view on the re-

spective side of the car. The above stereo algorithm is ap-

plied to consecutive frames from the same camera, so that

the camera is displaced between the two frames creating a

stereo pair. This process is known as motion stereo. In the

absence of independent motion, the disparity of each feature

is directly proportional to the camera velocity and inversely

proportional to the distance to the object. However, in the case

of independently moving objects, the object motion adds to

the disparity; hence, depth estimates cannot be derived directly

from the disparity. However, if the moving object is rigid with

the exposed area almost vertical, its disparity is approximately

constant. On the other hand, for the road below the horizon,

the disparity is a function of the image position. This difference

can be used to segment the object from the road. Note that the

distant features above the horizon have zero disparity. Hence, if

the object has the same speed as the camera, one would not be

able to separate parts of it above the horizon. However, if they

have different speeds, one can separate the object even from the

distant background above the horizon.

Note that the disparity can be negative in case of overtaking

vehicles, whereas the stereo algorithm implementation [47]

searches only positive disparities. To overcome this, the right

image is displaced by a constant offset toward left, hence adding

a fixed value to the disparity, making it positive in most cases.

The object extraction procedure is a modification of that for

binocular stereo [Fig. 6(b)] as described as follows.

1) Displace the right image by a fixed offset toward left to

make disparities positive.

2) Use the implementation for binocular stereo [47] to form

disparity image.

3) Form the disparity histogram image (hist(x, d)) using

steps similar to (1)–(3) in the previous algorithm.

4) For each component in the histogram image, find the

pixels in disparity image that contributed to the compo-

nent. Form a side obstacle image obst(x, y) by replacing

each column of these pixels in disparity image with the

bottommost pixel.

5) Assume that the bottom of the object lies on the ground

and compute its vehicle coordinates using the calibration

parameters.
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Fig. 7. (a) LISA-Q intelligent vehicle test bed. (b) Insets are close-up views of the omni cameras on two sides of the vehicle. (c) Video images from the omni
cameras on the left and right sides of the vehicle. (d) Vehicle velocity retrieved from the CAN bus plotted against time. (e) Plot of the distance to the front object
obtained from the radar.

C. Panoramic Surround Generation

The front and side obstacle maps obtained above are used to

generate the surround map. Suppose the two omni cameras are

situated at D1 = (−B1,−H,Zd) and D2 = (+B2,−H,Zd)
in the vehicle coordinate system, where B = B1 +B2 is the

baseline, H is the camera height, and Zd is the longitudinal

distance between the camera and the vehicle center. Assume

without loss of generality that the centers of the rectified virtual

images are at (0, 0), and the focal length is f , corresponding

to the pixel scale. Then, for each pixel (x1, y1) in the front

obstacle map (with respect to (w.r.t.) the left image) with

disparity d, the projections of the 3-D vehicle coordinates on

ground plane (X0, Z0) in the vehicle system are given by

Z0 =
f

d
B + Zd, X0 =

x1

d
B −B1. (16)

In case of side obstacle map, the disparities do not give distance

information for moving objects. Hence, it is assumed that the

points (xb, yb) on the bottom of obstacle lie on the ground, and

the y coordinate of the pixel is used to find the object distance.

Thus, for the left camera

X0 = −

[

yb

f
H +B1

]

, Z0 =
xb

yb

H + Zd (17)

and for the right camera

X0 =

[

yb

f
H +B2

]

, Z0 = −
xb

yb

H + Zd. (18)

The vehicle coordinates (X0, Z0) of each obstacle pixel

in front and side are projected on the panoramic surround

map forming contours corresponding to each component. To

smooth the contours and fill the gaps, a morphological opening

operation is applied to the contours to keep errors on the side of

caution by assigning a closer object distance when in doubt.

The above analysis applies in the case that the own car is

travelling in straight line parallel to its axis. We propose the

following approach when the own car is turning and the axes

of the vehicle and omni camera are continuously changing. The

yaw rate and speed information available from the Controller-

Area-Network (CAN) bus of the vehicle could be used to

compute the position of the car in the current vehicle coordinate

system at the time of the two sample images used for motion

stereo. The virtual images should be created in a vertical

plane parallel to the displacement vector between the two posi-

tions. The disparity analysis should then be applied as before,

and the computed object position should be transformed back to

the vehicle’s current coordinate system. The sensitivity of this
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Fig. 8. (a) Images used for calibration of the cameras. Points on the lines in
parking lot as well as on the horizon line are used to obtain the calibration
parameters. (b) Virtual perspective images from the cameras corresponding to
view in front of the car.

approach to yaw rate accuracy needs to be studied to check the

robustness of the approach.

VI. DPS MAPS: EXPERIMENTAL STUDIES

The LISA-Q intelligent vehicle test bed shown in Fig. 7(a)

[6] is designed as a system capable of collecting large amounts

of data from a variety of modular sensing systems and process-

ing that data to be fed back to the human occupant. Sensor sys-

tems include rectilinear cameras, wide FOV camera systems,

GPS and navigation systems, and the data from internal au-

tomobile vehicle state sensors. The system contains an array

of computers that serve for data collection as well as real-time

processing of information. Fig. 7(b)–(e) shows the samples of

acquired video and other sensor data. The key capabilities of

the LISA-Q intelligent vehicle include

• Eight National Television Standards Committee (NTSC)

hardware video compressors for simultaneous capture;

• CAN interface for acquiring steering angle, pedals, yaw

rate, and other vehicle information;

• Built-in five-beam forward-looking laser radar range

finder;

• Wide Area Augmentation System (WAAS)-enabled GPS;

• Integration into car audio and after-market video displays

for feedback and alerts.

Detailed information about this test bed is described in [6].

For this work, a pair of omni cameras was mounted on the

windows of the test-bed car. The data from the CAN bus was

also acquired. The car was first moved around in a parking lot

with parallel lines used for calibration. Note that the parking

lines are mapped to curves in the omni image. The points on

the lines were manually marked as shown in Fig. 8(a), and

calibration was computed using the method in Section IV.

Rectification using this calibration generates virtual perspective

views in front of the car as shown in Fig. 8(b). Due to error in

estimating the calibration, a small correction in the form of a

vertical translation was manually applied to one of the rectified

images, so that the disparities lie exactly along horizontal lines.

After calibration, the car was driven on city roads. Video

sequences from the omni cameras were captured and stored.

The processing was performed offline on a Pentium IV. Individ-

Fig. 9. Binocular stereo for front surround generation. (a) Left and right image
frames from omni videos. (b) Processing of the omni images in six parts. Top:
Virtual front views generated from omni cameras showing a car in front. Mid
left: Composite color image showing displacement of the car between left and
right images. Mid right: Disparity map showing nearer objects with lighter
shades. Bottom left: Disparity histogram image. The disparities corresponding
to the car in front cluster to form a line segment. Bottom right: Obstacle
image obtained by processing the disparity histogram image. (c) Surround map
showing own car (black) and the projected approximate position of the car in
front (red).

ually, the binocular stereo processing of both images or motion

stereo processing of each of the side images could be performed

with a frame rate of approximately 15 frames/s. This would

result in effective speed of 5 frames/s if all the processing was

performed on a single processor. However, since the processing

for binocular stereo and motion stereo are independent, the use

of three processors could give a rate of 15 frames/s, which

would be suitable for real-time performance.

Fig. 9 shows the application of the binocular stereo on the

surroundings in front of the car. The raw images obtained from

the left and the right omni cameras are shown in Fig. 9(a).

The processing of these images is shown in the six parts of

Fig. 9(b). The top two images in this figure show the virtual

front views obtained by transforming the images using the

calibration parameters. The superimposition of these two im-

ages shown in mid left clearly shows the disparity between

the images for the object car if viewed in color. The stereo

implementation of [47] was used to compute the disparity map

shown in mid right. In this image, brighter shades correspond

to nearer objects and darker shades to farther objects. Pixels

where disparity computations were unreliable due to uniform
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Fig. 10. Motion stereo for side surround generation. (a) Consecutive image
frames from right omni video. (b) Processing of the omni images in six
parts. Top: Virtual side views generated from omni cameras showing a car
on side. Mid left: Composite color image showing displacement of the car
between left and right images. One of the images is translated to make the
disparities positive. Mid right: Disparity map with larger disparity in lighter
shades. Bottom left: Disparity histogram image. The disparities corresponding
to the car and the background cluster to form horizontal line segments.
Bottom right: Obstacle image obtained by backprojecting these clusters to the
disparity image, and for each cluster, marking the lowest pixel in every column.
(c) Surround map showing own car (black) and the projected approximate
position of the car on side (red).

texture are also shaded dark. The histogram image of the

columns of the disparity map was computed as shown in the

bottom left part with each row in this image corresponding to a

particular disparity. Each pixel in this image has the brightness

proportional to the weighted sum of the pixels in that column

having the corresponding disparity. Since the front features

of the car have nearly the same disparity, they accumulate in

the form of a horizontal segment in the disparity image and

can be easily isolated. The histogram image is processed to

give the obstacle image showing the column position and the

disparity of the object in the bottom right part. Using this

information along with the camera calibration parameters, the

segment corresponding to the detected car is projected to the

surround map as shown in Fig. 9(c).

Fig. 10 shows the application of motion stereo on the sur-

roundings on the side of the car. The raw images of successive

frames from the right omni camera video containing an overtak-

ing car are shown in Fig. 10(a). The processing of these images

is shown in the six parts of Fig. 10(b). The top two images

in this figure show the virtual right side views obtained by

transforming the images using the calibration parameters. Note

that the disparity in this case consists of the components due to

the depth of the object as well as the independent motion, which

could be positive or negative. To use the stereo implementation

of [47], which only searches positive disparities, one of the

images was translated. The color superimposition of images is

shown in mid left, and the disparity map is shown in mid right.

Although the car is nearer to the camera than to the background,

the independent motion of the overtaking car in the forward

direction produces negative overall disparity, which, when bi-

ased, becomes a positive value smaller than that from the distant

background. The histogram image containing the distribution

of disparities of each columns of the image was formed. The

histogram image clusters the disparities as shown in the bottom

left, with the vehicle and background layers concentrating as

line segments. However, regions having no significant features

do not get disparity estimates; hence, there are breaks in the seg-

ments. Each cluster is backprojected onto the disparity image

by selecting the pixels that contributed to the cluster, therefore

separating the disparity image into layers. For every layer, the

lowest pixel in each column is selected and marked in the

obstacle image shown in the bottom right part. The projection

of the detected car on the surround map is shown in Fig. 10(c).

Fig. 11 shows the results of surround map generation on

snapshots from the video sequence in which vehicles in front

approach and then recede from the test-bed vehicle. The analy-

sis of the stereo images is shown in the image sets [Fig. 11(a)],

where the top images are the rectified left and right images, the

mid left is the composite image, the mid right is the disparity

image, the bottom left is the disparity histogram image, and

the bottom right is the obstacle image as described before. This

and the motion stereo from side views (not shown for brevity)

are projected onto the surround map in [Fig. 11(b)], showing

the detected cars. The approaching and receding of the detected

vehicles is clearly seen. Fig. 12 shows a car overtaking from

left. In the first three snapshots, the car is detected in side

images using motion stereo. In the last snapshot, the car goes

in front view, and binocular stereo detects it. The surround

map shows the transition of the detected car from side view to

front view.

These experiments show the detection of vehicles in front

as well as on the sides. The size of the objects in the image

determines the distance at which they can be detected reliably.

It was observed that at the distance of 10–15 m, a typical car

had size of approximately 16 × 10 pixels in omni image and

25 × 16 pixels in the virtual perspective image. The disparity

was about 20 pixels, and the object could be detected reli-

ably. However, at distances of 40–50 m, the omni resolution

decreased to 5 × 5 pixels, the virtual image resolution to

10 × 4 pixels, and the disparity to approximately 6 pixels.

The detection at this distance was somewhat sporadic, and

the estimates of range and therefore lateral position were less

accurate. A higher resolution camera, such as 1K × 1K, could

be used to improve the accuracy and resolution.

There were some inaccuracies in localization of the vehicles

due to the errors in the disparity for front images and error in

locating the object cluster in the side images. Fig. 13 shows
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Fig. 11. Results of surround generation for vehicles in front of the car that are approaching and then receding. The virtual front views generated from omni
cameras are analyzed using binocular stereo. (a) Steps in detection. Top: Rectified left and right images. Mid left: Composite image. Mid right: Disparity
image. Bottom left: Disparity histogram image. Bottom right: Obstacle image. (b) Surround map showing own car (black) and approximate positions of other
vehicles (red).

cases where the detection and localization of the objects are

degraded. Improvements in the disparity analysis is likely to

give better results, which would enable accurate tracking and

velocity estimation of the surrounding vehicles.

VII. CONCLUDING REMARKS

The objective of active safety systems is to prevent collisions

of automobiles. Camera-based systems have an important role

in advancing the active safety technology. It is believed that

future driver assistance systems would rely on camera-based

technology to capture and monitor the immediate surroundings

of the vehicle. Such a DPS map may prove to be a crucial

element in the development of appropriate warnings about

potential collisions with obstacles or vehicles that may even

be in the blind spots of the driver. The primary contribu-

tions of this paper are (1) motivating the need for dynamic

surround capture for driver assistance systems and studies of

driver behavior, (2) video-based approaches having relevance to

surround capture, and (3) introduction of an omni-video-based
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Fig. 12. Results of surround generation detecting a vehicle passing from left. The first three image sets are the left side views analyzed using motion, and
the last has the front views generated from the omni cameras and analyzed using stereo. (a) Steps in detection. Top: Rectified left and right images. Mid left:
Composite image. Mid right: Disparity image. Bottom left: Disparity histogram image. Bottom right: Obstacle image. (b) Surround map showing own car (black)
and approximate positions of other vehicles (red).

approach using stereo and motion for dynamic panoramic map

generation.

This paper described the importance of the vehicle sur-

round and discussed the recent research in this field. A novel

framework for synthesizing a panoramic map of the vehicle

surroundings using a pair of omni cameras mounted on the

sides of the vehicle was described. Using the omni camera,

virtual perspective images with FOV in any direction can be

synthesized. For vehicle detection, binocular stereo was used

on the overlapping views of the front of the car, and motion

stereo was used for monocular views of the sides of the car.

The detected vehicles were inserted into a panoramic surround

map. Experimental runs with an instrumented test vehicle

were conducted to show the basic feasibility of omni-camera-

based surround capture algorithm. It was observed that the

resolution of omni cameras is low for the front parts of the

image. Due to this, segmentation and depth estimation becomes

more challenging. However, the use of only two sensors for

analyzing front and side views makes the approach attractive

for designers.

In future work, we plan to explore methods for improving the

robustness of detection and localization of surrounding objects

especially by better handling of featureless regions where dis-

parity estimates are not available. We also intend to integrate

motion and stereo for front surround analysis by performing

disparity analysis on feature tracks obtained from the two

cameras. The calibration is currently performed by manually

marking points on the parking lot lines. To automate this pro-

cedure, we can use Hough transform or other methods to detect

lines. We also plan to explore methods for dynamic correction

of calibration using scene epipolar geometry [44] or fiducial

marks on car body.

Finally, it is important to acknowledge that an effective and

useful approach for surround-based driver assistance system

needs systematic and careful “human-factors”-oriented inves-

tigations in addition to the development of the novel surround
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Fig. 13. Detection and localization problems. (a) Splitting of front object into two parts at different distances. Possible reason: The left side of the object car,
unlike the front, has variable depth. (b) Gaps and sharp curvature in side-object detection. Possible reason: Featureless parts in the middle of the car give unreliable
disparity values.

capture technology. Such multidisciplinary studies consider

optimum means for presenting information about potential dan-

gers to the driver in a nondistracting and reliable manner using

multiple modes of communication, such as visual, auditory,

and haptic. Collaborations with experts from human–machine

interactions, cognitive science, and psychology are essential to

make progress in this area [5], [49]–[52].
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