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Abstract. Despite advances in autonomy, there will always be a need for human involvement in vehicle tele-

operation. In particular, tasks such as exploration, reconnaissance and surveillance will continue to require human

supervision, if not guidance and direct control. Thus, it is critical that the operator interface be as efficient and

as capable as possible. In this paper, we provide an overview of vehicle teleoperation and present a summary of

interfaces currently in use.
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1. Introduction

1.1. Vehicle Teleoperation

Vehicle teleoperation means simply: operating a vehi-

cle at a distance (Fig. 1). It is used for difficult to reach

environments, to reduce mission cost, and to avoid loss

of life. Although some restrict the term teleoperation

to denote only direct control (i.e., no autonomy), we

consider teleoperation to encompass the broader spec-

trum from manual to supervisory control. Furthermore,

the type of control can vary and may be shared/traded

between operator and vehicle.

Vehicle teleoperation has several characteristics

which distinguish it from remote control (i.e., line-

of-sight radio-based driving) and other types of

teleoperation (e.g., telemanipulation). First, vehicle

teleoperation demands reliable navigation. Since vehi-

cles often are deployed in unknown or unstructured en-

vironments, navigation problems may lead to system-

loss. Second, vehicle teleoperation requires efficient

motion command generation. In many cases, task per-

formance is directly correlated to how well a vehicle

moves. Finally, vehicle teleoperation calls for localized

sensor data. Because vehicles may cover large dis-

tances, map building and registration are significant

issues.

1.2. Interfaces

In order for vehicle teleoperation to perform well, the

human-robot interface must be as efficient and as capa-

ble as possible. All interfaces provide tools to perceive

the remote environment, to make decisions, and to gen-

erate commands. Most interfaces also attempt to max-

imize information transfer while minimizing cognitive

and sensorimotor workload. Finally, an interface may

be designed to minimize training or to be user adaptive.

It should be noted that the importance of the oper-

ator interface does not diminish as level of autonomy

increases. Even if a robot is capable of operating au-

tonomously, it still needs to convey to the operator how

and what it did during task execution. This is particu-

larly important when the robot encounters problems or

fails to complete a task. Thus, as robots become more-

autonomous, interfaces are used less for control and

more for monitoring and diagnosis.
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Figure 1. Vehicle teleoperation. An operator at a control station generates commands and receives feedback from displays. The remote vehicle

executes the commands, often using some level of on-board autonomy.

2. History of Vehicle Teleoperation

Vehicle teleoperation first appeared in the early 1900’s,

but it was not until the 1970’s that systems became

widely used. Today, vehicle teleoperation is used for

applications in the air, on the ground and underwa-

ter. Since development occurred over different periods

and domains, it is not surprising that vehicle teleop-

eration is referred to by numerous terms (ROV, RPV,

UAV, UGV). However, regardless of system type, many

common characteristics and features exist.

2.1. Air Vehicles

Pilotless aircraft have existed since the early twentieth

century (Jones, 1997). The first teleoperated air vehi-

Figure 2. The Predator UAV carries a variety of sensors (EO, IR, SAR), and is flown by ground operators via radio or satellite links. It can

autonomously execute flight plans once airborne. Left: predator (USAF Air Combat Command); right: predator control station (USAF Air

Combat Command).

cles were drones, also called Remotely Piloted Vehi-

cles (RPV), used for anti-aircraft training. Drones such

as the US Army’s RP-5 (1941) flew pre-programmed

routes, although they were also occasionally piloted

by radio control (Bailey, 1996). During the 1960’s,

NASA developed Remotely Piloted Research Vehicles

(RPRV). In contrast to drones, which were small in gen-

eral, RPRV’s were full-size manned aircraft modified

for remote controlled flight (Hallion, 1984).

Today, Unmanned Air Vehicles (UAV) are the most

common teleoperated air vehicles. Modern UAV’s are

remotely piloted using radio or satellite links and are

used for tasks such as reconaissance and target identi-

fication. Numerous UAV’s have been used in combat,

including the US Navy Pioneer and the US Air Force

Predator (Fig. 2).
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Figure 3. Lunokhod 1 operated on the moon for eleven months and covered 10,540 m. Left: Lunokhod 1 (Lavochkin); right: Lunokhod control

station (NPO Lavochkina museum).

2.2. Ground Vehicles

We classify teleoperated ground vehicles into three cat-

egories: exploration rovers, Unmanned Ground Vehi-

cles (UGV), and hazardous duty. Exploration rovers are

ground vehicles designed to remotely perform science

tasks such as in-situ sensing and sample collection.

The first exploration rovers were the Soviet Lunokhods

(Fig. 3) which explored the moon in the early 1970’s

(Carrier, 1992). Since then, NASA has produced nu-

merous research vehicles (the Rocky series, Dante I/II,

Nomad, etc.) and has landed the Sojourner rover on

Mars.

Figure 4. Unmanned Ground Vehicles. Left: TeleOperated Dune Buggy (SPAWAR Systems Center); right: TeleOperated Vehicle (SPAWAR

Systems Center).

UGV’s are primarily used for tasks requiring remote

navigation such as reconnaissance or surveillance. In

the early 1980’s, the Naval Ocean Systems Center de-

veloped the TeleOperated Dune Buggy and the Tele-

Operated Vehicle, both of which were driven with

stereo video and replicated controls (Fig. 4). During

the 1990’s, the Tactical UGV program produced sev-

eral vehicles which could be driven using either rate or

waypoint-based control (Gage, 1996).

Hazardous duty vehicles work in conditions which

pose extremely grave dangers (e.g., the vehicle may be

destroyed by explosion). The first notable systems were

the Remote Reconnaissance Vehicle and the Remote
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Figure 5. The Pioneer robot is designed to inspect and assess the Chernobyl nuclear reactor. Left: Pioneer robot (Carnegie Mellon University

and RedZone Robotics, Inc.); right: Pioneer control station (Carnegie Mellon University and RedZone Robotics, Inc.).

Core Borer, which were used to explore and reme-

diate the Three Mile Island reactor (Whittaker and

Champeny, 1988). Recent hazardous duty applications

include: mine rescue and survey (Hainsworth, 1993),

bomb disposal (Graves, 1997), and assessment of the

Chernobyl reactor (Fig. 5) (Blackmon et al., 1999).

2.3. Underwater Vehicles

Remotely Operated Vehicle (ROV)’s represent the

largest market for vehicle teleoperation (Fig. 6). ROV’s

Figure 6. Remotely Operated Vehicles. Left: Cable-Controlled Underwater Recovery Vehicle I (SPAWAR Systems Center, San Diego); right:

a commercial ROV used for undersea inspection and its control console.

are unmanned submersibles which are generally teth-

ered to a surface vessel. ROV’s have existed since the

early 1900’s, but it was the success of the Cable Con-

trolled Underwater Recovery Vehicle I (used by the

US Navy in 1966 to recover an atomic bomb) and the

subsea oil boom which spurred commercial develop-

ment. Today, ROV’s are used for a wide range of

tasks (survey, inspection, oceanography, etc.) and have

increasingly taken over roles once performed by man-

ned submersibles and divers. Although most ROV’s

are controlled using joysticks and video monitors, some
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recent systems incorporate autonomous functions such

as station keeping and track following.

3. Vehicle Teleoperation Interfaces

We classify operator interfaces currently used for ve-

hicle teleoperation into four categories: direct, mul-

timodal/multisensor, supervisory control, and novel.

Direct interfaces contain all “traditional” systems

based on hand-controllers and video feedback. Mul-

timodal/multisensor interfaces provide multiple con-

trol modes or use fused data displays (e.g., virtual re-

ality). Supervisory control interfaces are designed for

high-level command generation and monitoring. Novel

interfaces use unconventional input methods or are in-

tended for unusual applications.

3.1. Direct

The most common method for vehicle teleoperation

has traditionally been the direct interface: the opera-

tor directs the vehicle via hand-controllers (e.g., 3-axis

joysticks for vehicle rates) while watching video from

vehicle mounted cameras (Fig. 7). This is often referred

to as “inside-out” driving/piloting because the operator

feels as if he is inside the vehicle and looking out. Re-

cent direct interfaces include a system for tunnel and

sewer reconnaissance (Laird et al., 2001), remote mine

rescue (Hainsworth, 2001), and video-based telepres-

ence for submersibles (Ballou, 2001).

Direct interfaces are appropriate when: (1) real-time

human decision making or control is required and

Figure 7. Direct teleoperation interface (International Submarine Engineering, Ltd.).

(2) the environment can support high-bandwidth, low-

delay communications. Although direct interfaces can

be used outside these conditions, the resulting perfor-

mance is sub-optimal. In particular, direct control in

the presence of delay (transmission or otherwise) is

tedious, fatiguing, and error prone (Sheridan, 1992).

To minimize training, some direct interfaces provide

controls which are spatially and functionally identi-

cal to those normally used for piloted vehicles. Many

UAV’s, for example, are flown using a ground cockpit

which mimics the design and layout of aircraft cock-

pits (Canan, 1999). Other interfaces attempt to improve

operator performance by providing a sense of tele-

presence via head-mounted video, binaural sound, and

physical cues (Gage, 1996).

It is well known that direct interfaces can be prob-

lematic. A study conducted by McGovern (1990) found

that loss of situational awareness, inaccurate attitude

judgement, and failure to detect obstacles are common

occurrences. Other researchers have studied sensori-

motor requirements (Kress and Almaula, 1988) and

the impact of video system design on remote driving

(Glumm et al., 1992). Finally, since the operator is an

integral part of the control loop and because he depends

on video for perception, direct interfaces typically de-

mand low-delay, high-bandwidth communications.

3.2. Multimodal/Multisensor

When a vehicle operates in a complex or highly dy-

namic situation, it may be difficult for the operator to
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accurately perceive the remote environment or to make

timely control decisions. Multimodal and multisensor

interfaces can be used to cope with these problems by

providing efficient command generation tools and rich

information feedback.

Multimodal interfaces provide the operator with a

variety of control modes (individual actuator, coordi-

nated motion, etc.) and displays (text, visual, etc.). Mul-

timodal interfaces are useful for applications which de-

mand context specific actions, i.e., when it is necessary

to select control modes and displays based on situa-

tional requirements (Fig. 8). Recent multimodal inter-

faces have been used for volcano exploration (Fong

et al., 1995), satellite servicing (Lane et al., 2001), and

to operate mobile robots having adjustable autonomy

(Perzanowski et al., 2000).

Multisensor displays combine information from sev-

eral sensors or data sources to present a single inte-

grated view. In vehicle teleoperation, these displays can

improve situational awareness, facilitate depth judge-

ment, and speed decision making (Terrien et al., 2000).

Draper and Ruff (2001) discuss the use of multisensor

displays for improving Predator UAV operator perfor-

mance. Nguyen et al. (2001) describe several virtual

reality based interfaces for exploration, one of which

is shown in Fig. 9. In contrast to direct interfaces,

Figure 8. UI2D (Left) provided multiple control modes, ranging from individual actuator to path-based, for operating Dante II (right) in the

Mt. Spurr, Alaska volcano (Carnegie Mellon University).

virtual reality provides an external perspective which

allows the operator to drive/pilot the vehicle from the

“outside”.

3.3. Supervisory Control

The term supervisory control is derived from the anal-

ogy between a supervisor’s interaction with subordi-

nates (Sheridan, 1992). To effect supervisory control,

the operator divides a problem into a sequence of sub-

tasks which the robot then executes on its own. This

means that the robot must have some level of autonomy:

it must be capable of achieving goals (even limited

ones) while keeping itself safe.

Supervisory control interfaces are designed for high-

level command generation, monitoring & diagnosis.

These interfaces are well suited for applications in-

volving low-bandwidth or high delay communica-

tions. Cooper (1998) describes how earth-based op-

erators used the Rover Control Workstation (Fig. 10)

to control the Sojourner rover on Mars. Numer-

ous image-based waypoint interfaces have been de-

veloped including Cameron et al. (1986) and Kay

(1997).

In vehicle teleoperation, the operator’s work

is focused primarily on navigation and motion
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Figure 9. VIZ. This virtual reality based interface concisely displays numerous data sets: stereo-vision based terrain, digital elevation map,

and simulated descent images (NASA Ames).

command generation. Thus, supervisory control inter-

faces provide tools to make these tasks easier (Fig. 10).

Facilities for task planning and sequence generation

(often supported by simulation and real-time visualiza-

tion) are common. Additionally, interfaces often pro-

vide methods for reviewing results, so that the operator

can monitor and identify execution anomalies.

There are many design challenges for supervisory

control interfaces including display layout, managing

human-robot interaction, and facilitating sharing/trad-

ing of control. For example, supervisory control inter-

faces must provide mechanisms for the operator and

the robot to exchange information at different levels

of detail or abstraction. This is particularly important

when the robot has problems performing a task and the

operator needs to ascertain what has happened.

3.4. Novel

The last category of vehicle teleoperation interfaces

are the novel interfaces. Of course, the term “novel”

is relative: many present-day interfaces (e.g., virtual

reality systems) were once called “novel”, but are now

commonplace. Thus, it is possible, or perhaps likely,

that the interfaces described below will cease to be

novel at some point in the future.

Some interfaces are novel because they use uncon-

ventional input methods. Amai et al. (2001) describes a

hands-free remote driving interface based on brainwave

and muscle movement monitoring: beta-wave ampli-

tude controls vehicle speed and gaze direction sets the

heading. Fong et al. (2000) describe the HapticDriver

(a haptic interface which enables “drive-by-feel”) and

the GestureDriver (a vision system which maps hand

movements to motion commands).

Web-based interfaces (Fig. 11) are novel because

they are a unique application of the WorldWideWeb. A

Web interface is attractive because it can be accessed

world-wide, is highly cost-effective, and requires little

(or no) operator training. At the same time, however,

Web-based teleoperation is susceptible to problems that

more traditional systems do not have to deal with (e.g.,

communication bandwidth through the Internet varies

significantly).

For some applications, installing conventional

control stations is impractical (or impossible) due to
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Figure 10. Supervisory control interfaces. Left: The Web Interface for TeleScience (WITS) provides numerous command and analysis tools

(NASA JPL); right: The Rover Control Workstation (RCW) was used to operate Sojourner on Mars (NASA JPL).

Figure 11. Web interfaces for remote driving (Swiss Federal Institute of Technology, Lausanne).

monetary, technical or other constraints. An alter-

native is to use a Personal Digital Assistant (PDA)

as an interface devices. PDA’s are lightweight, shirt-

pocket portable, and have touch-sensitive displays.

PDA interfaces for remote driving are described in

Fong et al. (2000) and Perzanowski et al. (2000).

One of these interfaces, the PdaDriver, is shown in

Fig. 12.

Lastly, novel interfaces are not just characterized

by unconventional input methods or displays. Inter-

faces are also novel if they are used in unusual ways.

Paulos and Canny (2001) describe a system which en-

ables operators to “project their presence into a real re-

mote space”. In other words, the teleoperated vehicle

serves as a fully-mobile, physical proxy (a “real-world

avatar”) for the operator.
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Figure 12. PdaDriver is a Personal Digital Assistant based interface for remote driving (Carnegie Mellon University and Swiss Federal Institute

of Technology, Lausanne).

4. Conclusion

Vehicle teleoperation has become increasingly impor-

tant for a wide range of applications in the air, on the

ground, and underwater. Vehicle teleoperation inter-

faces provide tools and displays to perceive the remote

environment, to make decisions, and to generate com-

mands. Rate control interfaces are widely used in do-

mains which can support high-bandwidth, low-delay

communications. Multimodal/multisensor displays are

increasingly being employed, especially for control-

ling vehicles in complex environments. Supervisory

control interfaces, though currently few in number,

will become more common as the use of autonomy

increases, particularly for low-bandwidth, high-delay

applications.
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