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Vehicle Tracking by non-Drifting Mean-shift
using Projective Kalman Filter

Philippe Loic Marie Bouttefroy1, Abdesselam Bouzerdoum1, Son Lam Phung1 and Azeddine Beghdadi2

Abstract— Robust vehicle tracking is essential in traffic
monitoring because it is the groundwork to higher level tasks
such as traffic control and event detection. This paper describes
a new technique for tracking vehicles with mean-shift using
a projective Kalman filter. The shortcomings of the mean-
shift tracker, namely the selection of the bandwidth and
the initialization of the tracker, are addressed with a fine
estimation of the vehicle scale and kinematic model. Indeed, the
projective Kalman filter integrates the non-linear projection of
the vehicle trajectory in its observation function resulting in an
accurate localization of the vehicle in the image. The proposed
technique is compared to the standard Extended Kalman filter
implementation on traffic video sequences. Results show that
the performance of the standard technique decreases with the
number of frames per second whilst the performance of the
projective Kalman filter remains constant.

I. INTRODUCTION

Vehicle tracking has been a focus of attention in the past

years due to increasing demand in visual surveillance and

security on highways. Robust vehicle tracking provides the

groundwork to higher level tasks for Intelligent Transporta-

tion System (ITS). Accurate trajectory extraction provides

essential statistics for traffic control, such as speed, vehicle

count and average vehicle flow. It also enables higher level

tasks such as event detection (e.g. accident, animal crossing)

or traffic regulation (e.g. dynamic speed adaptation, lane

allocation).

There have been several techniques proposed for traffic

monitoring in the literature based on motion extraction and

vehicle tracking. Because monitoring cameras are fixed,

background subtraction techniques provide efficient segmen-

tation of motion areas. Background subtraction by mixture

of Gaussians is generally used for this purpose [13] [14],

although other techniques such as temporal median operation

and filtering appear in the literature [7] [8]. The segmen-

tation provides blobs representing the vehicles in motion.

In this context, feature-based tracking [4], and in particular

histogram-based tracking, is not suitable due to the small

size of the vehicles in the image. Indeed, in the far distance,

the apparent size of the vehicles only provides a mere obser-

vation of the target color distribution which is not sufficient

for robust discrimination upon which feature-based tracking

relies. Traffic monitoring algorithms are differentiated by the

technique used for tracking vehicles. Even though Bayesian

filtering, and in particular Kalman filters, is extensively used
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2 A. Beghdadi is with Université Paris 13, L2TI, Institut Galilée, Av. J.

B. Clément 93430 Villetaneuse, France.

to predict the position of the vehicle, the implementation

differs in many ways. The state vector can be modeled with

data directly available from blobs such as kinematic param-

eters [1] [10] or scale [7]. Other authors proposed to further

process the image to track corners [11] or contours [9] [8]

that are fed into the Kalman filter. Choi et al. [3] used a quad-

tree scale invariant segmentation and template matching to

achieve tracking of vehicles. Gloyer et al. [5] proposed a 3D

model scene to track vehicles through the video sequence.

Vehicle tracking from traffic monitoring presents particular

characteristics due to the nature of the video sequences

and the vehicle trajectories; some making the tracking more

challenging (indicated by “-” below) and some providing

restrictive clues facilitating the tracking (indicated by “+”

below):

1) Low definition and highly compressed video

sequence (-) is the result of the information network

infrastructure. Restricted bandwidth only allows low

bit flows;

2) Very low frame rate (-) makes the information about

the position of the vehicle sparse due to the restricted

bandwidth;

3) Uniform Vehicle Speed (+) during the tracking of the

vehicle; and

4) Vehicle trajectory is constrained (+) by the shape of

the road.

The contribution of this paper is to embed projective infor-

mation in the Kalman filter in order to provide an accurate

estimate of the vehicle position. More precisely, the integra-

tion of the camera calibration equations and the restrictive

clues (marked as “+” above) in the observation model of the

Kalman filter leads to efficient and robust tracking of vehicles

by reducing the observation noise and providing robustness

to the sparsity of the vehicle position. The rest of the paper

is organized as follows. Section II develops the background

subtraction technique and the mean-shift tracker. Section III

introduces the projective Kalman filter and, in particular,

the derivation of the observation function in subsection III-

B. Section IV presents some of the performances of the

algorithm on traffic monitoring sequences before concluding

in Section V.
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II. MOTION DETECTION AND MEAN-SHIFT BLOB

TRACKING

The technique proposed in this paper is based on motion

detection by background subtraction and mean-shift blob

tracking. First, the motion image is extracted from the video

sequence. Then, the mean-shift algorithm is used to track the

blobs through the sequence.

A. Background Modeling Using Gaussian Mixtures

Background modeling using Gaussian mixtures is a pixel-

based process. For a given location, the distribution of the

pixel value (ξ) is modeled by superposition of a set of

independent Gaussian distributions. The probability density

function of a Gaussian mixture comprising K components

is given by

p(ξ) =
K∑

k=1

wk N (ξ;µk, Σk) , (1)

where wk are the prior probabilities, also called the weights,

and N (ξ; µk, Σk) is the normal density of mean µk and

covariance matrix Σk. The aim in background modeling is to

estimate the parameters wk, µk and Σk over time. The update

of the parameters and the background modeling follow

the technique proposed by Stauffer and Grimson in [13].

For background modeling, the K Gaussians are sorted by

decreasing weight-to-standard-deviation ratio, wk/σk. Then,

the B first Gaussians for each pixel value (ξ) model the

background with

B = argminKB

(
KB∑
k=1

wk ≥ λ

)
, (2)

where λ is a constant threshold determining the (a priori)

proportion of background in the scene. The motion image

(M) is composed of every pixel for which the Mahalanobis

distance to each Gaussian component of the background

model is greater than a given threshold. For further details

on the procedure refer to [13]. Figure 1 displays an image

and its corresponding motion mask.

Fig. 1. Background subtraction on a low definition image (128 × 160).

Left is the original image; right is the motion image.

B. The Mean-shift Tracker

Mean-shift is a non-parametric density estimator that is

derived from the Parzen-window. It uses an adaptive gradient

ascent method to find modes in a probability density distribu-

tion. Mean-shift differs from vector quantization algorithms

in that it finds the local modes of a distribution rather than

minimizing the error function. In other words, the use of a

kernel precludes the outliers such as false motion detection

that can prevent convergence to the local maximum. As a

result, mean-shift provides a more accurate localization of a

target. A comprehensive introduction to mean-shift can be

found in [2].

In this paper, mean-shift is applied to the motion mask in

order to determine the position of a blob center. Let us denote

the approximate position of the blob center ĉ = [cx cy]T ,

the set of motion pixel location M = {m1, ...,mN} and

g a Gaussian isotropic kernel with bandwidth b. The new

position of the blob center c is defined as

c =

N∑
n=1

g
(
‖(ĉ − mn)/b‖2

)
mn

N∑
n=1

g
(
‖(ĉ − mn)/b‖2

) , (3)

where N is the number of motion pixels. The mean-shift

vector defining the shift in the center estimation is now

defined as −−→pg,b(ĉ) = c − ĉ . (4)

The mean-shift vector
−−→pg,b(ĉ) points toward the blob center.

Recalling mean-shift is not a global mode finding procedure

but a variable step-size gradient-ascent process, several iter-

ations are required to locate a given center. Thus, Eq. (3) is

iterated until ||−−→pg,b(ĉ)|| < γ with ĉ ← c. The constant γ is

arbitrarily set to 3 in our experiments. A lower value for γ
does not improve the tracking accuracy in our experiments.

The convergence to the true blob center is ensured under

two conditions: (1) The estimated center ĉ is initialized in the

basin of attraction of the blob; (2) the bandwidth b of the ker-

nel is adequate. The basin of attraction of a blob is defined as

the set of locations for which the mean-shift converges to the

blob center. Failing to initialize the mean-shift in the basin of

attraction is the reason why mean-shift trackers diverge and

lose track of the object. The initialization condition will be

addressed in Section III. The match between the bandwidth

of the kernel and the size of the blob is essential to ensure

convergence. Indeed, a too large bandwidth would cause

divergence in the presence of neighboring blobs. On the other

hand, a too small bandwidth would lead to uncertainty in the

blob location. In summary, mean-shift will efficiently and

robustly track vehicles provided that the center is initialized

in the basin of attraction and the bandwidth of the Kernel

matches the size of the blob.

III. PROJECTIVE KALMAN FILTERING

We propose to estimate the kinematic variables, namely

position and speed, and the size of vehicles through Kalman

filtering to initialize the mean-shift tracker in the basin of

attraction of its respective blob with adequate bandwidth.

An accurate estimation of the observed position and scale of

vehicle in the image will provide robust tracking by mean-

shift. The general framework of Kalman filtering is set by

the state-space equations:

Xk = f(Xk−1,vk−1) , (5)
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Zk = h(Xk,wk) , (6)

where Xk and Xk−1 are the state vectors at times k and k−1,

f and h are the process and observation functions, and vk−1

and wk are the process and observation noises at times k−1
and k, respectively. The vector Zk is the observation at time

k. It is assumed that the probability density of the state Xk,

the process noise vk−1 and the measurement noise wk are

zero-mean Gaussians with respective covariance matrices P,

Q and R. Here, the terminology is interpreted in the stricter

sense: the process equation (5) models the physical process

applying to the vehicle (Newton’s laws), and the observation

equation (6) models the observed trajectories after projection

on the image plane. We propose to estimate the position

and speed of the vehicle along the direction of the road

(tangential direction) because the projection severely distorts

the observations; as a consequence, the projection is highly

non-linear. The projection on the normal direction, although

non-linear, is much less severe and normal tracking is less

critical because blobs are well delineated. The state vector

is defined as X = (x; ẋ; s)T
where x and ẋ are the position

and speed of the vehicle following the tangential direction

and s is the size of the vehicle.

The idea underlying the integration of the homographic

transformation (projection on the CCD plane) in the Kalman

filter is that it provides a better estimate of the state than

a homographic transformation followed by Kalman filtering.

Indeed, because of the non-linear nature of the transform, a

slight change in the observation is the result of a large change

in the state for distant objects. The projective Kalman filter

is able to maintain an accurate estimate of the state whereas

homographic transformation followed by Kalman filtering

fails to capture such a change because the error due to the

physical trajectory and the error due to the projection on the

plane are not differentiated. In the proposed method, these

two errors are modeled by two separate Gaussian processes

vk−1 and wk, respectively.

The Extended Kalman Filter (EKF) is used to estimate

the state because the projection is highly non-linear. The

functions f and h are locally linearized by computing the

respective Jacobian matrices F̂ and Ĥ. The EKF recursively

estimates the state vector in two steps: prediction and update.

1) Prediction: The state vector X̂−
k and its covariance

matrix P̂−
k are estimated with the value available at time

k − 1.
X̂−

k = f(Xk−1, 0) , (7)

P̂−
k = Qk−1 + F̂k−1Pk−1F̂T

k−1 . (8)

2) Update: When a new measurement Zk becomes avail-

able, i.e. when the mean-shift tracker has converged to the

center of the blob, the state vector is updated as follows:

Xk = X̂−
k + Kk

[
Zk − hk(X̂−

k , 0)
]
, (9)

Pk = P̂−
k − KkSkKT

k . (10)

where

Sk = ĤkP̂−
k ĤT

k + Rk and Kk = P̂−
k ĤT

k S−1
k .

The Jacobians F̂k−1 and Ĥk are evaluated at Xk−1 and X̂−
k ,

respectively, with process and observation noise equal to 0.

A. EKF Process Equation

The process equation models the physical trajectory of the

vehicle. Therefore, assuming that the vehicle speed varies

slowly, the system equation f is written as

f(Xk−1,vk−1) =

⎡
⎣ xk

ẋk

sk

⎤
⎦ =

⎡
⎣ xk−1 + ẋk−1∆t

ẋk−1

sk−1

⎤
⎦+vk−1.

(11)

B. EKF Observation Equation

The observation function projects the physical trajectory

onto the CCD plane as shown in Fig. 2.

C

h

vp

p

ẑ

Fig. 2. Projection of the vehicle on a plane parallel to the CCD plane of

the camera. The graph shows a cross section of the scene along the direction

d (tangential to the road).

We propose to project the trajectories along the tangential

direction d onto the dp axis, knowing the following “easy-

to-measure” parameters:

• Angle of view (θ);

• Height of the camera (H); and

• Ground distance (D) between the camera and the first

location captured by the camera.

From Fig. 2, by Al-Kashi theorem, we have

ẑ2 = x2 + l2 − 2cos(α)xl (12)

and

l2 = ẑ2 + x2 − 2cos(β)xẑ (13)

where cos(α) = D+x√
(H2+(D+x)2)

and β = arctan(D
H ) + θ

2 .

After squaring and substituting l2 in (12):(
cos αx

√
ẑ2 + x2 − 2 cos βxẑ

)2

=
(
x2 − cos βxẑ

)2
.

(14)
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Grouping the terms in ẑ to get a quadratic form leads to

ẑ2x2(cos2 α − cos2 β) + 2ẑx3 cos β(1 − cos2 α)

+ x4(cos2 α − 1) = 0 . (15)

After discarding the non-physically acceptable solution, one

gets

ẑ(x) = x
(D + x)H sin β − cosβH2

(D + x)2 sin2 β − H2 cos2 β
. (16)

However, because D � H and θ is small in practice, the

angle β is approximately equal to π/2 and, consequently,

Eq. (16) simplifies to ẑ = xH
D+x . Note that this result can be

verified using Thales’s theorem. Finally, we scale ẑ with the

position of the vanishing point Zvp in the image to find the

position of the vehicle in terms of pixel location1, and denote

the function hx as:

z = hx(x) = ẑ(x) × Zvp

lim
x→∞ ẑ(x)

= ẑ(x) × Zvp

H
. (17)

The observed speed of the vehicle ż is defined as

ż = zk − zk−1 =
Dẋk

(xk + D)(xk − ẋk + D)
, (18)

and the observed size of the vehicle b (bandwidth of the

kernel) and its associated function hs is

b = hs(s, x) = hx(xk +
s

2
) − hx(xk − s

2
)

=
sD

(x + D)2 − ( s
2 )2

. (19)

The observation function h is then decomposed as

h(Xk,wk) =

⎡
⎣ zk

żk

bk

⎤
⎦ =

⎡
⎢⎣

xkZvp

xk+D
Dẋk

(xk+D)(xk−ẋk+D)
skD

(xk+D)2−(sk/2)2

⎤
⎥⎦ + wk .

(20)

C. Vehicle Detection and EKF Initialization

The initialization of the variables is essential since the

extended Kalman filter estimates the value of the state

recursively. In vehicle tracking, the zone where the vehicle

appears in the scene is known. Vehicles are detected using

the motion mask, and the corresponding blobs are labeled

using the connected component technique [6]. We assume

here that the vehicle blobs in the detection zone are well

delineated. This condition is met in almost every case since

the apparent size of the vehicle is large in the detection zone.

In the experiments, the rare cases where two vehicles were

merged in the same blob is when the traffic is very dense and

there is a continuous flow of vehicles. Most of the time, the

dense flow of vehicles is correctly segmented. The center c
of each blob is computed through mean-shift after labeling.

The initial state vector value X0 is set as:

1The position of the vanishing point can be approximated either manually

or automatically [12]. For the experiment purpose, we manually estimated

the vanishing point.

X0 =

⎛
⎝ h−1

x (cx)
ẋ0

s0

⎞
⎠ , (21)

where cx is the position of the object on dp axis and h−1
x

is the inverse function of hx. The values ẋ0 and s0 are set

to the speed and the size of vehicles, respectively. We found

that ẋ0 = 25m/s and s0 = 5m provide good results for

the tested sequences. The state covariance matrix (P) is set

to 0 because the state is assumed known with certainty. The

process noise and measurement covariance matrices, (P) and

(Q) respectively, are initialized as follows:

Q =

⎛
⎝ 0.2 0 0

0 0.01 0
0 0 0.1

⎞
⎠ R =

⎛
⎝ 1 0 0

0 0.5 0
0 0 1

⎞
⎠ .

(22)

D. State Backward Projection to Mean-shift Tracker

The estimation of the state in the space provides the

ground distance x of the vehicle from the camera, its speed

and its estimated size (which should be constant). However,

the mean-shift tracker operates on the observed plane, i.e.

the motion image. The state is thus back projected to the

observation plane. As discussed in section II-B, the two

essential parameters for mean-shift are the estimated position

of the object and the bandwidth of the kernel. Mean-shift is

run for each incoming frame. It thus needs to be initialized

with the estimated position and bandwidth for the incoming

frame at time k + 1:

cx,k+1 = hx(xk+1) ≈ hx(xk + ẋk∆t) , (23)

and

bk+1 = hs(sk+1, xk+1) ≈ hs(sk, xk + ẋk∆t) . (24)

The component cy,k+1 is initialized to its previous value (at

time k) since it is not estimated by the Projective Kalman

filter, i.e. cy,k+1 = cy,k.

IV. VEHICLE TRACKING AND PERFORMANCE ANALYSIS

The proposed technique is tested on 15 traffic monitoring

video sequences, each of which is approximately 6 min-

utes long and contains about 195 vehicles each. The video

sequences are low-definition (128 × 160) to comply with

the characteristics of traffic monitoring sequences. First, we

compare the performances of the projective Kalman filter

with the standard Extended Kalman filter for a rate of

30 frames per second (fps). Second, we compare the two

Kalman filters for different frame rate, from 30fps down to

3fps. The second scenario provides a realistic evaluation of

the algorithm performances for traffic monitoring where the

frame rate is usually low.
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Fig. 3. Sequence of images illustrating the drift of a tracker on the top

vehicle of the middle lane: the positions of each tracked object is indicated

by a dark cross. The rows correspond to frames 4340, 4345, 4350, 4355

from top to bottom. left column is the standard Extended Kalman filter

tracker; right column is the proposed tracker.

A. Projective Kalman Filter versus Standard Extended

Kalman Filter

The standard Extended Kalman filter has been imple-

mented in several traffic monitoring and analysis systems,

see, e.g., [1], [11]. The standard Extended Kalman filter

implements the same process function as in (11). However,

the observation function is modeled with the identity matrix

whereas the proposed projective Kalman filter uses the

observation function described in (20). We propose here

to estimate the robustness of the tracking by introducing a

drift measure. Indeed, it is virtually impossible to evaluate

the robustness of a tracker objectively; even comparing the

ground truth with the output of a tracking algorithm is not

satisfactory because it would not provide a framework to

discriminate between errors generated by uncertainty and

actual drifting of the tracker. We propose here to estimate

the percentage of vehicles tracked without severe drift, i.e.

for which the track is not lost. Since the vehicles are con-

verging to the vanishing point, the trajectory of the vehicle

along the tangential axis is monotonically decreasing. As a

consequence, we propose to measure the number of steps

where the vehicle position decreases (pd) and the number

of steps where the vehicle position increases or is constant

(pi), which is characteristic of a drift of the tracker. The

percentage of vehicles tracked without severe drift is then

calculated as

Correct Tracking Rate =
pd

pd + pi
. (25)

The average over 28,000 steps shows a percentage of correct

tracking of 79.6% for the standard Extended Kalman filter

and 96.4% for the projective Kalman filter. The proposed

tracker shows more robust tracking, especially when vehicles

are in the long distance. Fig. 3 is an example of a tracker that

drifts. With the standard method (left column), the tracker on

the top vehicle in the middle lane slowly drifts away from

the vehicle tracked to the following one because the tracker

is initialized on the edge of the two basins of attraction.

After 15 frames, the tracker has changed basin of attraction

and tracks the following vehicle. The proposed algorithm

successfully tracks the vehicle throughout the sequence. In

particular, the results for the proposed algorithm show a

better ability to track long distance objects, prone to more

projective noise than the standard algorithm.

B. Influence of Frame Rate on Tracking

Fig. 4. Plot of Correct Tracking rate versus frame rate.

In this section, the two algorithms are evaluated for

different frame rates. Aside from their low-definition, traffic

monitoring video sequences present a very low frame rate

due to the difficulty to transmit the video stream to the

traffic agency. We propose here to evaluate the performances

of mean-shift trackers initialized with the standard and the

projective Kalman filter. We processed the videos sequences

with decreasing frame rates, from 30fps to 3fps. The tracking

robustness is evaluated according to the correct tracking rate

measure in (25). The results are summarized in Table I

and displayed in Fig 4. Whilst the rate of correct tracking

decreases with the frame rate for the standard technique, it
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TABLE I

CORRECT TRACKING RATE OF THE STANDARD AND PROJECTIVE KALMAN FILTER FOR DIFFERENT FRAME RATES.

Frame Rate 30fps 15fps 10fps 7.5fps 6fps 4.3fps 3.75fps 3.33fps 3fps

Standard EKF 79.6% 41.2% 27.9% 21.0% 16.7% 14.0% 12.0% 10.5% 8.6%

Projective Kalman Filter 96.4% 96.8% 96.4% 96.2% 96.3% 96.2% 96.6% 96.4% 96.7%

remains constant with the proposed method. Indeed, when

the number of frames per second decreases, the displacement

of the vehicle increases. As a consequence, the standard

method is unable to robustly track the vehicles because the

algorithm fails to initialize the mean-shift in the basin of

attraction. Some examples are presented in Fig. 5. Tracking

with the standard Extended Kalman filter fails for distant

objects because the basin of attraction is small and the

standard Extended Kalman filter does not provide a fine

estimation of the position for the initialization of the tracker.

The projective Kalman filter, on the other hand, provides

accurate estimation of the vehicle position in the image

integrating the decrease in the frame rate through adjustment

of the vehicle speed; therefore, the proposed approach is

insensitive to the frame rate.

Fig. 5. Tracking robustness in case of low frame rate (3fps) for the standard

(left) and the proposed method (right). With the standard method, the tracker

drifts quickly and is unable to track the vehicle.

V. CONCLUSION

This paper proposed a tracking algorithm based on mean-

shift and a projective Kalman filter. The algorithm achieves

robust tracking due to the integration of the projection

equation of the vehicle onto the image plane of the CCD

camera. In particular, the observation function of the pro-

jective Kalman filter models the trajectory of vehicles with

respect to their ground distance to the camera. The results

showed that both the standard and the projective Kalman

filter algorithms achieve robust tracking at a rate of 30fps,

even though the projective Kalman filter performs better

on long distance vehicles. However, the robustness of the

standard EKF drops quickly with the frame rate whilst the

robustness of the projective Kalman filter remains constant.
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